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Introduction

Elastic waves are generated by forces acting at the source and affected by the response of a medium to
these forces. Mathematically, they are expressed using the representation theorem (Aki and Richards
2002, Eq. 2.41):

ui x, tð Þ ¼
ð1

�1

ððð
V

fk j, tð Þ Gik x, t; j, tð Þ dtdV jð Þ; (1)

where ui ¼ ui x, tð Þ is the observed displacement field, x is the position vector of an observer, t is time, and
Green’s tensor Gik ¼ Gik x, t; j, tð Þ is the solution of the equation of motion for a point single force with
time dependence of the Dirac delta function. The Green’s tensor is defined as the ith component of the
displacement produced by a force in the xk direction and describes propagation effects on waves along a
path from the source to a receiver. Vector fk ¼ fk j, tð Þ is the density of the body forces acting at the source
being a function of the position vector j and time t at the source. The integration in Eq. 1 is over focal
volume V and time t. For simplicity, an infinite medium is assumed in Eq. 1.

Seismic waves generated at an earthquake source and propagating in the Earth have some specific
properties. Firstly, the body forces associated with the earthquake source are not distributed in a volume
but along a fault. Secondly, the earthquake source is not represented by single forces but rather by dipole
forces. The dipole forces cause the two blocks at opposite sides of the fault to mutually move (Fig. 1a).
They are described by moment tensor density mkl ¼ mkl j, tð Þ defined along fault S (Fig. 1b). A substi-
tution of single forces by dipole forces leads to modifying Eq. 1 as follows (Burridge and Knopoff 1964;
Aki and Richards 2002, Eq. 3.20):

ui x, tð Þ ¼
ð1

�1

ðð
S

mkl j, tð Þ @

@xl
Gik x, t; j, tð Þ dtdS jð Þ: (2)

If the size of the fault is small with respect to distance between the source and the receiver, the
representation theorem can be simplified by introducing the point source approximation:
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ui x, tð Þ ¼
ð1

�1
Mkl tð Þ @

@xl
Gik x, t; j, tð Þ dt; (3)

or simply

ui ¼ Mkl � Gik,l, (4)

where Mkl ¼ Mkl tð Þ is the seismic moment tensor

Mkl ¼
ðð
S

mkl dS; (5)

and symbol “*” means the time convolution. Integration in Eq. 5 is performed over fault S. Moment
tensor M is a symmetric tensor describing nine couples of equivalent dipole forces which can act at the
earthquakes source (Fig. 2). It is a basic quantity evaluated for earthquakes on all scales from acoustic
emissions to large devastating earthquakes (see entries “▶Long-Period Moment-Tensor Inversion: The
Global CMT Project;” “▶Reliable Moment Tensor Inversion for Regional- to Local-Distance Earth-
quakes;” and “▶Regional Moment Tensors Review: An Example from the Euro-Mediterranean
Region”).

The most common type of the moment tensor is the double-couple (DC) source which represents the
force equivalent of shear faulting on a planar fault in isotropic media. However, many studies reveal that
seismic sources often display more general moment tensors with significant non-double-couple (non-DC)
components (Julian et al. 1998; Miller et al. 1998; see entry “▶Non-Double-Couple Earthquakes”). An
explosion is an obvious example of a non-DC source, but non-DC components can also be produced by a
collapse of a cavity in mines (Rudajev and Šílený 1985), by inflation or deflation of magma chambers in
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Â

Fig. 1 (a) Example of motion (normal faulting) and (b) distribution of equivalent dipole forces along fault S
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volcanic areas (Mori and McKee 1987), by shear faulting on a nonplanar (curved or irregular) fault, by
tensile faulting induced by fluid injection when the slip vector is inclined from the fault and causes its
opening (Vavryčuk 2001, 2011), or by shear faulting in anisotropic media (Kawasaki and Tanimoto 1981;
Vavryčuk 2005).

Moment Tensor Decomposition

In order to identify which type of seismic source is physically represented by a retrieved moment tensor
M, the moment tensor is usually diagonalized and decomposed into some elementary parts. The first step
is the decomposition into its isotropic (ISO) and deviatoric (DEV) parts:

M ¼ MISO þMDEV; (6)

where

MISO ¼ 1

3
Tr Mð Þ � I; (7)

and matrix I is the identity matrix. The second step is the decomposition of the deviatoric part ofM. This
step is more ambiguous and can be performed in many alternative ways. The deviatoric part can be
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Fig. 2 Set of nine couples of equivalent dipole forces forming the moment tensor

Encyclopedia of Earthquake Engineering
DOI 10.1007/978-3-642-36197-5_288-1
# Springer-Verlag Berlin Heidelberg 2015

Page 3 of 16



decomposed into three double couples (Jost and Herrmann 1989), into major and minor double couples
(Kanamori and Given 1981; Wallace 1985), into double couples with the same T axis (Wallace 1985), or
into a double couple and a compensated linear vector dipole (CLVD) component (Knopoff and Randall
1970). The last decomposition into the DC and CLVD components proved to be useful for physical
interpretations and became widely accepted. This decomposition was further developed and applied by
Sipkin (1986), Jost and Herrmann (1989), Kuge and Lay (1994), Vavryčuk (2015), and others, and it will
be treated here in detail.

Definition of ISO, CLVD, and DC
The seismic moment tensor M can be decomposed using eigenvalues and an orthonormal basis of
eigenvectors in the following way:

M ¼ M1 e1 � e1 þM 2 e2 � e2 þM 3 e3 � e3; (8)

where

M1 � M 2 � M 3; (9)

and vectors e1, e2, and e3 define the T (tension), N (intermediate or neutral), and P (pressure) axes,
respectively. Symbol “�” in Eq. 8 means the dyadic product of two vectors. Two basic properties of the
moment tensor are separated in Eq. 8: (1) the orientation of the source defined by three eigenvectors and
(2) the type and size of the source defined by three eigenvalues ofM. The eigenvalues can be represented
as a point in three-dimensional (3-D) space (Riedesel and Jordan 1989):

m ¼ M 1 ê1 þM2 ê2 þM3 ê3; (10)

where vectors ê1, ê2, and ê3 define the coordinate system in this space. In order to get a unique
representation, the eigenvalues must be ordered according to Eq. 9. Consequently, the points representing
the source type cannot cover the whole 3-D space but only its wedge called the “source-type space.” The
choice of the coordinate system and the metric for parameterizing the source-type space differ for
individual moment tensor decompositions.

For physical reasons, the three terms in Eq. 8 are further restructured to form isotropic (ISO), double-
couple (DC), and compensated linear vector dipole (CLVD) parts (Fig. 3) in the following way (Knopoff
and Randall 1970; Dziewonski et al. 1981; Sipkin 1986; Jost and Herrmann 1989):

M ¼ MISO þMDC þMCLVD ¼ M ISOEISO þMDCEDC þMCLVDECLVD; (11)

where EISO, EDC, and ECLVD are the ISO, DC, and CLVD elementary (base) tensors andMISO,MDC, and
MCLVD are the ISO, DC, and CLVD moments. The base tensors read
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EISO ¼
1 0 0

0 1 0

0 0 1

2
64

3
75, EDC ¼

1 0 0

0 0 0

0 0 �1

2
64

3
75,

Eþ
CLVD ¼ 1

2

2 0 0

0 �1 0

0 0 �1

2
64

3
75, E�

CLVD ¼ 1

2

1 0 0

0 1 0

0 0 �2

2
64

3
75;

(12)

whereEþ
CLVD orE�

CLVD is used ifM1 þM3 � 2M2 � 0 orM 1 þM3 � 2M 2 < 0, respectively. Hence, the
CLVD tensor is aligned along the axis with the largest magnitude deviatoric eigenvalue. The eigenvalues
of the base tensors are ordered according to Eq. 9 in order to lie in the source-type space. The norm of all
base tensors, calculated as the largest magnitude eigenvalue (i.e., the maximum of |Mi|, i= 1,2,3), is equal
to 1. This condition is called the unit “spectral norm” and physically means that the maximum dipole force
of the base tensors is unity (Fig. 3). Alternative alignments of the CLVD tensor and other normalizations
of the base tensors are also admissible (Chapman and Leaney 2012; Tape and Tape 2012) but have less
straightforward physical interpretations.

Equations 11 and 12 uniquely define values MISO, MDC, and MCLVD expressed as follows:

M ISO ¼ 1

3
M1 þM 2 þM3ð Þ; (13)

MCLVD ¼ 2

3
M1 þM3 � 2M2ð Þ; (14)

MDC ¼ 1

2
M 1 �M3 � M 1 þM3 � 2M 2j jð Þ; (15)

where MCLVD includes also the sign of the elementary CLVD tensor. If the elementary CLVD tensor
ECLVD is considered with its sign as in Eq. 11, then MCLVD should be calculated as the absolute value of

ISO

DC1 DC2

CLVD

Fig. 3 The ISO, DC, and CLVD� base tensors of the moment tensor. The DC part is plotted in the original coordinate system
associated with the fault (DC1) and after its diagonalization (DC2)
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Eq. 14. ValuesMISO,MDC, andMCLVD in Eqs. 13, 14, and 15 are usually further normalized and expressed
using scalar seismic moment M and relative scale factors CISO, CDC, and CCLVD:

CISO

CCLVD

CDC

2
4

3
5 ¼ 1

M

M ISO

MCLVD

MDC

2
4

3
5; (16)

where M reads

M ¼ M ISOj j þ MCLVDj j þMDC; (17)

or equivalently (Bowers and Hudson 1999)

M ¼ jjMISOjj þ jjMDEVjj; (18)

where jjMISOjj and jjMDEVjj are the spectral norms of the isotropic and deviatoric parts of moment tensor
M, respectively. Scale factors CISO, CDC, and CCLVD satisfy the following equation:

CISOj j þ CCLVDj j þ CDC ¼ 1: (19)

Equations 13, 14, 15, 16, and 17 imply thatCDC is always positive and in the range from 0 to 1;CCLVD and
CISO are in the range from �1 to 1. Consequently, the decomposition of M can be expressed as

M ¼ M CISOEISO þ CDCEDC þ CCLVDj jECLVDð Þ; (20)

where M is the norm of M calculated using Eq. 17 and represents a scalar seismic moment for a general
seismic source. The absolute value of the CLVD term in Eq. 20 is used because the sign of CLVD is
included in the elementary tensor ECLVD.

Physical Properties of the Decomposition
The above decomposition of the moment tensor is performed in order to physically interpret a set of nine
dipole forces representing a general point seismic source and to identify easily some basic types of the
source in isotropic media:

• The explosion/implosion is an isotropic source, and thus, it is characterized by CISO ¼ �1 and by zero
CCLVD and CDC.

• Shear faulting is represented by the double-couple force and characterized byCDC ¼ 1and by zeroCISO

and CCLVD.
• Pure tensile or compressive faulting is free of shearing and thus characterized by zero CDC. However,

the non-DC components contain both ISO and CLVD. The ISO and CLVD components are of the same
sign: they are positive for tensile faulting but negative for compressive faulting,

• Shear-tensile (dislocation) source defined as the source, which combines both shear and tensile faulting
(Vavryčuk 2001, 2011), is characterized by nonzero ISO, CLVD, and DC components. The positive
values of CISO and CCLVD correspond to tensile mechanisms when fault is opening during rupturing.
The negative values of CISO and CCLVD correspond to compressive mechanisms when a fault is closing
during rupturing. The ratio between non-DC and DC components defines the angle between the slip
and the fault.
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• Shear faulting on a nonplanar fault is characterized generally by a nonzeroCDC andCCLVD. TheCISO is
zero, because no volumetric changes are associated with this type of source.

Source-Type Plots

For physical interpretations, it is advantageous to visualize the retrieved moment tensors graphically.
Double-couple components of moment tensors are displayed using the well-known “beach balls” which
show orientations of the fault together with the slip vector defining the shear motion along the fault (see
entry “▶Earthquake Mechanism Description and Inversion”). The non-double-couple components of
moment tensors are displayed in the so-called source-type plots.

All moment tensors fill a source-type space which is a wedge in the full 3-D space. The magnitude of
the vector in this space is the scalar moment, and its direction defines the type of the source. In order to
identify the type of the source visually, it is convenient to plot all unit vectors of the source-type space in a
2-D figure using some projections. Here, three basic plots are mentioned: diamond CLVD-ISO plot
(Vavryčuk 2015), Hudson’s skewed diamond plot (Hudson et al. 1989), and the Riedesel-Jordan lune plot
(Riedesel and Jordan 1989).

Diamond CLVD-ISO Plot
The diamond CLVD-ISO plot shows the position of the source in the CLVD-ISO coordinate system in
which the DC component is represented by the color intensity (Fig. 4). Since the sum of absolute values of

DC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

CLVD

ISO

o

o

oexplosion

implosion

shear
crack

tensile
crack

compressive
crack

Fig. 4 Diamond CLVD-ISO source-type plot with positions of basic types of seismic sources. The arrows indicate the range of
possible positions of moment tensors for pure tensile or compressive cracks
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the CLVD and ISO cannot exceed 1, moment tensors must lie inside a diamond. A source with pure or
predominant shear faulting is located at the origin of coordinates or close to it. An explosion or implosion
source is located at the top or bottom vertex of the diamond, respectively. Motion on a pure tensile or
compressive crack is plotted at the margin of the diamond. Points along the CLVD axis correspond to
faulting on nonplanar faults, and points in the first and third quadrants of the diamond correspond to shear-
tensile sources.

For pure tensile and shear-tensile sources, the ISO/CLVD ratio depends on the elastic properties of the
medium surrounding the source. In isotropic media, this ratio is (Vavryčuk 2001, 2011)

CISO

CCLVD
¼ 3

4

vP
vS

� �2

� 1: (21)

Hence, the point representing the pure tensile faulting in Fig. 4 (black dot) can be close to CISO ¼ 1
(corresponding to an explosion) for high values of vP/vS but also close to CCLVD ¼ 1 for low values of
vP/vS. The limiting cases are

vP
vS

! 1 and
vP
vS

¼ 2ffiffiffi
3

p ; (22)

describing fluids and the lower limit of stable solids (l ¼ �2=3 m), respectively. Similar conclusions can
be drawn for pure compressive faulting (see Fig. 4).

Note that the abovementioned basic types of sources cannot be located in the second or fourth
quadrants of the diamond source-type plot in Fig. 4. Moment tensors located in this area indicate

ISOISO

ISOISO

CLVD−

CLVD−

CLVD−

CLVD−

a b

c d

Fig. 5 The Hudson’s diamond t-k plot (a, c) and the skewed diamond u-v plot (b, d). The CLVD� means the reversed CLVD
axis. The dots in (a, b) show a regular grid in CISO and CCLVD from �1 to +1 with step of 0.1. The dots in (c, d) show 3,000
sources defined by moment tensors with randomly generated eigenvalues. For scaling of the eigenvalues, see the text. Plots (c)
and (d) indicate that the distribution of random sources is uniform in both projections
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numerical errors of the moment tensor inversion, a more complicated source model or faulting in
anisotropic media.

As mentioned above, values CISO ¼ �1 and CDC ¼ 1 correspond to an explosion/implosion and to
shear faulting in isotropic media, respectively. Their physical meaning is thus straightforward. However,
the moment tensor withCCLVD ¼ 1does not correspond to any simple seismic source, and the presence of
CLVD inmoment tensors often causes confusions and poses questions whether it is necessary to introduce
the CLVD. The decomposition described above indicates that the CLVD component is required to render
the decomposition mathematically complete, and the CLVD component cannot thus be avoided.
Although, it has no physical meaning itself, it can be interpreted physically in combination with the
ISO component as a product of tensile faulting. In the case of a pure tensile crack, the CLVD component’s
major dipole is aligned with the normal to the crack surface and the volume change associated with the
opening crack is described by the ISO component.

Hudson’s Skewed Diamond Plot
Hudson et al. (1989) introduced two source-type plots: a diamond t-k plot which is the diamond CLVD-
ISO plot described in the previous section but with the opposite direction of the CLVD axis (Fig. 5a) and a
skewed diamond u-v plot (Fig. 5b). The latter plot is introduced in order to conserve the uniform
probability of moment tensor eigenvalues. If eigenvalues M1, M2, and M3 have a uniform probability
distribution between �1 and +1 and satisfy the ordering condition (9), then all points fill uniformly the
skewed diamond plot. Axis u defines the deviatoric sources and axis v connects the pure explosive and
implosive sources.

The moment tensor with arbitrary (but ordered) eigenvalues M1, M2, and M3 is projected into the u-v
plot using the following equations:

u ¼ � 2

3M
M1 þM3 � 2M2ð Þ, v ¼ 1

3M
M1 þM2 þM 3ð Þ; (23)

where M is the scalar seismic moment calculated as the spectral norm of complete moment tensor M

M ¼ max M 1j j, M 2j j, M3j jð Þ : (24)

Equation 23 is similar to Eqs. 13 and 14 in the ISO-CLVD-DC decomposition except for scaling.
Figure 5a, b showmapping of a regular grid inCISO andCCLVD calculated using Eqs. 13, 14, 15, 16, and

17 into the diamond CLVD-ISO plot and into the skewed diamond u-v plot. Figure 5b shows that the
CLVD-ISO grid is deformed in the first and third quadrants of the u-v plot. Figure 5c, d demonstrate that
sources with randomly generated eigenvalues cover uniformly the source-type plots. The uniform
probability distribution function (PDF) is produced by the Hudson’s skewed diamond plot (Fig. 5d) but
also for the diamond CLVD-ISO plot. In this respect, the Hudson’s skewed diamond plot does not provide
any particular advantage compared to the standard CLVD-ISO plot (for details, see Tape and Tape 2012;
Vavryčuk 2015).

Riedesel-Jordan Plot
A completely different approach is suggested by Riedesel and Jordan (1989) who introduce a compact
plot displaying both the orientation and type of source on the focal sphere. Apparently, this plot looks
simple and mathematically elegant but introduces difficulties. The moment tensor is represented by a
vector defined in Eq. 10, and the coordinate axes ê1, ê2, and ê3 are identified with the T, N, and P axes of
M: e1, e2, and e3 defined in Eq. 8. The vector is normalized using the Euclidean norm
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M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
M2

1 þM 2
2 þM2

3

� �r
(25)

and projected on the sphere using a lower-hemisphere equal-area projection (see Fig. 6a).
Chapman and Leaney (2012) pointed out, however, that this representation is not optimum for several

reasons. Firstly, vector m cannot lie everywhere on the focal sphere but inside its small part called the
“lune” (Tape and Tape 2012). The lune covers only one sixth of the whole sphere (see Fig. 6b). Secondly,
vectors characterizing positive and negative isotropic sources (explosion and implosion) are physically
quite different, but they are displayed in the same area on the focal sphere in this projection. Thirdly,
analysis of uncertainties of a moment tensor solution by plotting a cluster of vectors m includes both
effects – uncertainties in the orientation and in the source type. This is fine if the moment tensor is
nondegenerate. However, difficulties arise when the moment tensor is degenerate or nearly degenerate,
because small perturbations cause significant changes of eigenvectors.

Some of the mentioned difficulties can be avoided by fixing the eigenvectors and analyzing the size of
clusters produced by a varying source type only. If we fix the eigenvectors in the form

ISO

DC
CLVD−

CLVD+

P

T

N

deviatoric
solutions

ISOISO

ISO

CLVD CLVD

CLVD

a b

c d

Fig. 6 Riedesel-Jordan source-type plot. (a) The original compact plot proposed by Riedesel and Jordan (1989) displaying the
orientation of the moment tensor eigenvectors (P, T, and N axes), basic source types (ISO, CLVD, DC), and the position of the
studied moment tensor (red dot). (b, c, d) A modified Riedesel-Jordan plot proposed by Chapman and Leaney (2012). The
dashed area in (b) shows the area of admissible positions of sources. The dots in (c) show a regular grid in CISO and CCLVD

from �1 to +1 with step of 0.1. The dots in (d) show 3,000 sources defined by moment tensors with randomly generated
eigenvalues. Plot (d) indicates that the distribution of random sources is uniform in this projection
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e1 ¼ 1ffiffiffi
3

p ,
1ffiffiffi
6

p ,
1ffiffiffi
2

p
� �T

, e2 ¼ 1ffiffiffi
3

p , � 2ffiffiffi
6

p , 0

� �T

, e3 ¼ 1ffiffiffi
3

p ,
1ffiffiffi
6

p , � 1ffiffiffi
2

p
� �T

; (26)

in the north-east-down coordinate system, we obtain a plot shown in Fig. 6b. This plot resembles the
diamond CLVD-ISO plot (Fig. 4) but adapted to a spherical metric. The basic source types are charac-
terized by the following unit vectors:

eISO ¼ 1ffiffiffi
3

p e1 þ e2 þ e3ð Þ ¼ 1, 0, 0ð ÞT ; (27)

eDC ¼ 1ffiffiffi
2

p e1 � e3ð Þ ¼ 0, 0, 1ð ÞT ; (28)

eþCLVD ¼
ffiffiffi
2

3

r
e1 � 1

2
e2 � 1

2
e3

� �
¼ 0,

1

2
,

ffiffiffi
3

p

2

� �T

; (29)

e�CLVD ¼
ffiffiffi
2

3

r
1

2
e1 þ 1

2
e2 � e3

� �
¼ 0, � 1

2
,

ffiffiffi
3

p

2

� �T

: (30)

Basic properties of the Riedesel-Jordan projection are exemplified in Fig. 6c, d. Figure 6c shows mapping
of a regular grid in CISO and CCLVD calculated using Eqs. 13, 14, 15, 16, and 17, and Fig. 6d indicates that
the PDF of sources with randomly distributed eigenvalues M1, M2, and M3 is uniform. For a detailed
analysis on the probability of eigenvalues in the spherical projection, see Tape and Tape (2012).

Analysis of Moment Tensor Uncertainties Using Source-Type Plots

The source-type plots are often used for assessing uncertainties of the ISO, CLVD, and DC components of
moment tensors. The reason for using the source-type plots for assessing the errors is simple. The moment
tensor is usually plotted as a cluster of acceptable solutions, and the size of the cluster reflects uncertainties
of the solution. Such approach is, however, simplistic and rough because the same uncertainties produce
differently large clusters in dependence of the position of the cluster. Although the source-type plots

CLVD

ISOa b

CLVD−

ISO c

CLVD

ISO

Fig. 7 Distribution of random sources displayed in three different source-type plots. (a) The diamond CLVD-ISO plot, (b) the
Hudson’s skewed diamond plot, and (c) the Riedesel-Jordan plot. The dots show 3,000 sources defined bymoment tensors with
randomly generated components in the interval from �1 to +1. The distribution of sources is nonuniform for all three source-
type plots
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display a uniform PDF for randomly generated eigenvalues (see section “Source-Type Plots”), the
behavior of moment tensor uncertainties is not simple. When uncertainties of moment tensor components
are analyzed, the moment tensor is not in the diagonal form. After diagonalizing the moment tensor, the
errors are projected into the errors of eigenvalues in a rather complicated way. This is demonstrated in
Fig. 7. Moment tensors in this figure have all components random and distributed with a uniform
probability in the interval from �1 to 1. Nevertheless, some source types are quite rare. In particular,
sources with a high explosive or implosive component are almost missing. This observation is common
for all source-type plots.

More realistic sources are modeled in Fig. 8: the pure DC and ISO sources defined by tensors EDC and
EISO from Eq. 12 are contaminated by random noise with a uniform distribution in the interval from�0.25
to 0.25. The noise is superimposed to all tensor components and 1,000 random moment tensors are
generated. As expected, the randomly generated source tensors form clusters, but their shape is different
for different projections and their size depends also on the type of the source. For the DC source (Fig. 8,
left-hand plots), the maximum PDF is in the center of the cluster which coincides with the position of the

CLVD

ISO

CLVD− CLVD−

ISO

CLVD

ISO

ISO

CLVD
DC

ISO

DC

ISO

CLVD
DC

a b

c d

e f

Fig. 8 Distribution of pure DC (left-hand plots) and pure explosive (right-hand plots) sources contaminated by random noise
and displayed in three different source-type plots. (a, b) The diamond CLVD-ISO plot, (c, d) the Hudson’s skewed diamond
plot, and (e, f) the Riedesel-Jordan plot. The dots show 1,000 DC sources defined by the elementary tensor EDC (see Eq. (12))
and contaminated by noise with a uniform distribution from �0.25 to +0.25. The noise is superimposed to all tensor
components
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uncontaminated source. In the diamond CLVD-ISO plot and in the skewed diamond plot, the cluster is
asymmetric being stretched along the CLVD axis. A more symmetric shape of the cluster is produced in
the Riedesel-Jordan plot. However, the symmetry of the cluster is apparent because the CLVD and ISO
axes are of different lengths. A significantly higher scatter of the CLVD components compared to the ISO
components in moment tensor inversions has been observed and discussed also in Vavryčuk (2011). For
the pure ISO source (Fig. 8, right-hand plots), the clusters are smaller than for the DC source, and the
maximum PDF is out of the position of the uncontaminated source. This means that the ISO percentage is
systematically underestimated due to errors of the inversion for highly explosive or implosive sources.

Source Tensor Decomposition

A simple classification of sources based on the moment tensor decomposition is possible in isotropic
media only. In anisotropic media, the problem is more complicated. The moment tensor is affected not
only by the geometry of faulting but also by the elastic properties of the focal zone. Depending on these
properties, the moment tensors can take a general form with nonzero DC, CLVD, and ISO components
even for simple shear faulting on a planar fault (Vavryčuk 2005). For this reason, physical interpretations
of shear or tensile dislocation sources in anisotropic media should be based on the decomposition of the
source tensor, which is directly related to geometry of faulting.

The source tensor D (also called the potency tensor) is a symmetric dyadic tensor defined as (Ben-Zion
2003; Vavryčuk 2005)

Dkl ¼ uS

2
sknl þ slnkð Þ; (31)

where vectors n and s denote the fault normal and the direction of the slip vector, respectively, u is the slip
and S is the fault size. The relation between the source and moment tensors reads in anisotropic media
(Vavryčuk 2005, his Eq. 4)

Mij ¼ cijklDkl; (32)

and in isotropic media

Mij ¼ lDkkdij þ 2mDij; (33)

where cijkl is the tensor of elastic parameters and l and m are the Lamé’s parameters. While the moment
and source tensors diagonalize in anisotropic media in different systems of eigenvectors and thus their
relation is complicated, the eigenvectors of the moment and source tensors are the same in isotropic media
and their decomposition according to formulas in section “Definition of ISO, CLVD, and DC” yields
similar results.

Properties of the moment and source tensor decompositions for shear and tensile sources in isotropic
and anisotropic media are illustrated in Figs. 9 and 10. Figure 9 shows the source-type plots for tensile
sources with a variable slope angle (i.e., the deviation of the slip vector from the fault) situated in an
isotropic medium. The plot shows that the ISO and CLVD components are linearly dependent for both
moment and source tensors. For the moment tensors, the line direction depends on the vP/vS ratio (Fig. 9a).
For the source tensors, the line is independent of the properties of the elastic medium, and theCISO/CCLVD

ratio is always 1/2 (Fig. 9b). The differences between the behavior of the source and moment tensors are
even more visible in anisotropic media. Figure 10 indicates that the ISO and CLVD components of the
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moment tensors of shear faulting (Fig. 10a, black dots) or tensile faulting (Fig. 10b, black dots) may
behave in a complicated way. For example, shear faulting in anisotropic media can produce strongly

ISO

CLVD
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3

2
3

1.5
1.4

1.3
1.2

CLVD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DC

a b

Fig. 9 Diamond source-type plots for the shear-tensile source model in an isotropic medium characterized by various values of
the vP/vS ratios (the values are indicated in the plot). Red dots, source tensors; black dots, moment tensors. The dots correspond
to the individual sources. The slope angle (i.e., the deviation of the slip vector from the fault) ranges from �90� (pure
compressive crack) to +90 � (pure tensile crack) in steps of 3�

ISOa

CLVD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DC

b ISO

CLVD

Fig. 10 Diamond source-type plots for the shear (a) and tensile (b) source models in an anisotropic medium. The black dots in
(a) correspond to 500 moment tensors of shear sources with randomly oriented fault and slip. The black dots in (b) correspond
to moment tensors of tensile sources with strike ¼ 0�, dip ¼ 20�, and rake ¼ �90� (normal faulting). The slope angle ranges
from �90� (pure compressive crack) to +90 � (pure tensile crack) in steps of 3�. The red dots in (a) and (b) show the
corresponding source tensors. The medium is transversely isotropic with the following elastic parameters (in 109 kg m�1 s�2):
c11 ¼ 58:81, c33 ¼ 27:23, c44 ¼ 13:23, c66 ¼ 23:54, and c13 ¼ 23:64. The medium density is 2,500 kg/m3. The parameters are
taken from Vernik and Liu (1997) and describe the Bazhenov shale (depth of 12.507 ft)
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non-DC moment tensors (Vavryčuk 2005). This prevents a straightforward interpretation of moment
tensors in terms of the physical faulting parameters. Therefore, first, the source tensors must be calculated
from moment tensors and then interpreted (Fig. 10, red dots). If elastic properties of the medium in the
focal zone needed for calculating the source tensors are not known, they can be inverted from the non-DC
components of the moment tensors (Vavryčuk 2004, 2011; Vavryčuk et al. 2008). Note that the retrieved
medium parameters do not refer to local material properties of the fault, but to the medium surrounding the
fault.

Summary

The moment tensor represents equivalent body forces of a seismic source. The forces described by the
moment tensor are not the actual forces acting at the source because the moment tensor description
assumes elastic behavior of the medium and ignores nonlinear rheology at the focal area. Nevertheless, the
moment tensor proved to be a useful quantity and became widely accepted in seismological practice for
studying seismic sources. The moment tensor is evaluated for earthquakes on all scales from acoustic
emissions to large devastating earthquakes.

In order to understand physical processes at the earthquake source, the moment tensor is commonly
decomposed into double-couple (DC), isotropic (ISO), and compensated linear vector dipole (CLVD)
components. High percentage of DC indicates a source with shear faulting in isotropic media, and high
percentage of ISO indicates an explosive or implosive source. A combination of positive (negative) ISO
and CLVD is produced by tensile (compressive) faulting. The type of the source can be visualized using
the so-called source-type plots; among them, the diamond CLVD-ISO plot, the Hudson’s skewed
diamond plot, and the Riedesel-Jordan lune plot are in common use. In anisotropic media, the physical
interpretation of the DC, ISO, and CLVD percentages is not straightforward, and the decomposition of the
moment tensor must be substituted by that of the source tensor.

Cross-References
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▶Long-Period Moment-Tensor Inversion: The Global CMT Project
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