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Introduction

Earthquakes are processes associated with the sudden rupture of rocks along cracks, fractures or faults
exposed to stress field in the Earth’s crust and lithosphere. If stress reaches a critical value exceeding
strength of faults or fractures in rock, accumulated energy of elastic deformation is partially spent for
anelastic deformations in the focal zone and partially released and radiated in the form of seismic waves.
Stress in the Earth’s crust causing earthquakes can be of tectonic or non-tectonic origin (Ruff 2002;
Zoback 2007; Zang and Stephansson 2010). The main source of non-tectonic stress within the Earth is
gravitational loading. This stress is vertical with largest lateral variations near the Earth’s surface being
more homogeneous at depth. On the other hand, tectonic stress is mostly horizontal and originates in
forces driving the plate motions (Heidbach et al. 2008). These forces typically cause “ridge push”
processes where lithospheric plates are pushed to move away from spreading ridge or “slab pull”
processes where two plates are in collision and one of them is subducting into the asthenosphere
(Fowler 1990). The global plate tectonics successfully explained concentration of large earthquakes on
margins of the plates characterized by the presence of low strength zones exposed to large stresses. On
regional and local scales, stress in the Earth’s crust is also affected by topography and its compensation at
depth, sediment loading or presence of any heterogeneity caused by variations of density, rigidity and rock
rheology, by fluid flow in rocks or by presence of faults, cracks and micro-cracks in rocks.

Properties of the stress field and of the associated fracture processes in the Earth’s crust are closely
related (Scholz 2002). The most common type of fracturing is shear faulting but under special stress
conditions also tensile faulting can be observed (Julian et al. 1998; Vavryčuk 2011b; see entry “▶Non-
Double-Couple Earthquakes”). Type of faulting depends on the stress field but also on the orientation of
activated fractures or faults with respect to the stress (Vavryčuk 2011a). In addition, the slip vector for
shear faulting is close to or coincides with the direction of the maximum shear stress acting on the fault
(Wallace 1951; Bott 1959). Therefore, type of faulting, orientation of activated faults and direction of slip
along activated faults serve as an important source of information about the stress field and its spatial and
lateral variations within the Earth’s crust.

In this entry, the basic concept of stress is introduced and its relation to earthquake mechanisms is
explained (for description of focal mechanisms, see entry “▶Earthquake Mechanism Description and
Inversion”). Mohr’s circle diagram and simple failure criteria are described and used for defining the fault
instability, principal faults and principal focal mechanisms. Methods of determining stress from observed
earthquake mechanisms are reported and their robustness is exemplified on numerical tests. Finally,
several applications of stress inversions from earthquake mechanisms are listed.
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Mathematical Description of Stress

Definition of Stress
Stress describes forces acting on a unit surface in a body (see Fig. 1a). Since the acting force and the
normal of the unit surface are vectors, the stress is a tensor described by nine components

t ¼
t11 t12 t13
t21 t22 t23
t31 t32 t33

2
4

3
5: (1)

The force acting on surface S with normal n is called traction T, and it is expressed as

Ti ¼ tijnj (2)

with its normal and shear components sn and t

sn ¼ Tini ¼ tijninj; (3)

tNi ¼ Ti � sn ni ¼ tijnj � tjknjnkni ¼ tkjnj dik � ninkð Þ; (4)

where N is the direction of shear component t and lies in surface S. Since stress is defined as that part of
forces in a body which causes its deformation but not rotation, the stress tensor must be symmetric

tij ¼ tji; (5)

being described by six independent components only.

Mohr’s Circle Diagram
The values of the stress tensor components depend on the system of coordinates, in which the components
are measured. The coordinate system can always be rotated in the way that the stress tensor diagonalizes:

τ33
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Fig. 1 Definition of the stress tensor in original Cartesian coordinate system (a) and in the rotated system of principal stress
directions (b)
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t ¼
s1 0 0
0 s2 0
0 0 s3

2
4

3
5; (6)

where s1, s2 and s3 are called the maximum, intermediate and minimum principal stresses (compression
is positive):

s1 � s2 � s3; (7)

and the vectors defining this special coordinate system are called the principal stress directions or
principal stress axes (see Fig. 1b). Mathematically, the principal stresses and their directions are found
by calculating the eigenvalues and eigenvectors of the stress tensor.

The normal and shear components sn and t of tractionT (also called the normal and shear stresses) read
in the system of principal stress directions

sn ¼ s1n21 þ s2n22 þ s3n23; (8)

t2 ¼ s21n
2
1 þ s22n

2
2 þ s23n

2
3 � s2n: (9)

If principal stresses s1, s2 and s3 are fixed, then normal and shear stresses sn and t are just functions of
normal n of a fault and can be plotted in the Mohr’s circle diagram (see Fig. 2). All permissible values of
sn and t must lie in the shaded area of the diagram (Jaeger et al. 2007; Mavko et al. 2009). If the sign of
shear stress t is important in the stress analysis, the Mohr’s diagram is not plotted using semi-circles but
full circles, see below.

When stress conditions in real rocks in the Earth’s crust are studied, the Mohr’s diagram is modified.
Rocks are typically porous and contain pressurized fluids which influence overall stress in the rock
(Scholz 2002). For example, fluids present inside a fault reduce the normal stress along the fault. If the
fluid pressure is sufficiently high, fluids can even cause opening of the fault (see Fig. 3a). For this reason,
effective normal stress s is introduced as a difference between normal stress sn and pore-fluid pressure p

s ¼ sn � p; (10)

and the Mohr’s circle diagram is plotted in the s–t plane. Variation of pore-fluid pressure in the rock is
projected into shifting of the Mohr’s diagram along the s-axis. The pore-fluid pressure acts against the

τ

s3 s 2 s 1 sn

Fig. 2 Mohr’s circle diagram. Quantities sn and t are the normal and shear stresses along a fault, s1, s2 and s3 are the principal
stresses. All permissible values of sn and t acting on a fault must lie in the shaded area of the diagram
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compressive normal stress and Mohr’s circles are moved to the left with increasing pore-fluid pressure
(see Fig. 3b).

Tectonic Stress and Faulting Regimes

Principal stress directions in the Earth’s crust are frequently close to vertical and horizontal directions.
This lead Anderson (1951) to developing a simple scheme connecting the basic stress regimes in the
Earth’s crust with type of faulting on a pre-existing fault in the crust (see Fig. 4). Anderson (1951)
distinguishes three possible combinations of magnitudes of principal stresses: the vertical stress is
maximum, intermediate or minimum with respect to the horizontal stresses. If the vertical stress is
maximum, the hanging wall is moving downwards with respect to the foot wall and the normal faulting
is observed along a deeply steeping fault. If the vertical stress is minimum, the crust is in horizontal
compression and the hanging wall is moving upwards with respect to the foot wall and reverse faulting is
observed along a shallow dipping fault. Finally, if the vertical stress is intermediate, the foot and hanging
walls are moving horizontally and the strike slip faulting is observed along a nearly vertical fault.
Obviously, the Anderson’s classification is simple and does not cover all observations but still it proved
to be valid for many seismically active regions and helpful for rough assessment of stress regime
(Simpson 1997; Hardebeck and Michael 2006; see entry “▶Earthquake Mechanisms and Tectonics”).

Rock Failure and Earthquakes

If a rock is critically stressed in the Earth’s crust, the rock is fractured and this fracturing is associated with
an earthquake. In principle, an earthquake can occur on a newly developed fracture or on a pre-existing
fault in the Earth’s crust which is re-activated. The condition under which fracturing or faulting occurs is
described by the so-called failure criteria. The simplest and most known criteria are the Griffith failure
criterion derived from energy conditions imposed on propagating cracks in a rock, and the Mohr-
Coulomb failure criterion (also called the Coulomb failure criterion) based on the concept of friction
between two sliding blocks simulating the case of faulting on a pre-existing fault. Both failure criteria
predict critical values of shear stress as a function of normal stress which lead to failure

tc ¼ f sð Þ: (11)

a b τ

σs3 s2 s1

increasing pore-fluid pressure p

α

n

Σ

u

pore-fluid
pressure p

Fig. 3 Role of pore-fluid pressure in the rock. (a) Opening of the fault caused by fluids. (b) Shift of Mohr’s circles due to
increase of pore-fluid pressure. S is the fault, u is the slip vector and a is the deviation between the slip vector and the fault (the
so-called slope angle, see Vavryčuk 2011b)
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They can be plotted as the so called Mohr failure envelopes in the s–t diagram together with Mohr’s
circles and employed for analysis of stability of fractures or faults under given stress conditions. If the
outer Mohr’s circle touches the failure envelope, there is one fracture or fault which is unstable and can
fail, its orientation being defined by inclination y of the fault from the maximum stress direction (see
Fig. 5a).

Griffith Failure Criterion
The Griffith theory of fracture predicts the failure envelope in the following form (Jaeger et al. 2007,
Eq. 10.139):

t2c ¼ 4T0 T0 þ sð Þ; (12)

where T0 is the uniaxial tensile strength. The criterion is described by a parabola with the most curved part
close to tensile normal stresses. The point at the parabola with the lowest value of normal stress (point 1 in
Fig. 5b) corresponds to fracture lying along the maximum principal stress direction (maximum compres-
sion) s1 and opening during the fracture process. This physically describes the case of a pure tensile crack
created, for example, by hydrofracturing due to fluid injection into the rock mass (Zoback 2007). The
intersection of the parabola with the t-axis (points 2 in Fig. 5b) defines the transition between tensile and
shear modes of faulting and corresponds to fracture orientation which can be found using the following
simple formula (Fischer and Guest 2011):

sV

sV

sV

sH max

sH max

sH max

sH min

sH min

sH min

Normal
sV > sH max > sH min

Strike-slip
sH max  > sV  > sH min

Reverse
sH max  > sH min > sV

P
T

T

P

PT

Fig. 4 Anderson’s classification scheme of stress in the Earth’s crust (left) and corresponding faulting regimes (right). The
focal mechanisms with the P and T axes are shown in the lower-hemisphere equal-area projection
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tan 2ytensile ¼ @tc
@s

����
s¼0

¼
ffiffiffiffiffiffi
T0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 0 þ s

p
����
s¼0

¼ 1; (13)

and consequently ytensile ¼ 22:5�. Hence, tensile faulting (called also shear-tensile faulting) associated
with fault opening can occur only for fractures which deviate from the direction of maximum compression
with angle lower than ytensile (Mohr failure envelope between points 1 and 2 in Fig. 5b). For angles equal
to or higher than ytensile only shear faulting mode can be observed (e.g., points 3 in Fig. 5b). As seen from
Fig. 5b, the parabola is less curved for angles higher than ytensile and the Griffith failure criterion can be
well approximated by the linear Mohr-Coulomb failure criterion, see below.

Mohr-Coulomb Failure Criterion
According to the Mohr-Coulomb failure criterion (Scholz 2002; Zoback 2007), shear stress on an
activated fault must exceed critical value tc, which is calculated from cohesion C, fault friction m and
effective normal stress s:

tc ¼ C þ ms; (14)

or equivalently

tc ¼ C þ m sn � pð Þ; (15)

where sn is the normal stress and p is the pore pressure. Friction m for fractures was measured on rock
samples in laboratory and ranges mostly between 0.6 and 0.8 (Byerlee 1978). The values of friction of
faults in the Earth’s crust are similar (Vavryčuk 2011a) but lower values like 0.2–0.4 have also been
reported for some large-scale faults like the San Andreas fault (Scholz 2002).

If the Mohr-Coulomb failure criterion is satisfied (red area in Fig. 6), the fault becomes unstable and an
earthquake occurs along this fault. The higher the shear stress difference, Dt ¼ t� tc , the higher the
instability of the fault and the higher the susceptibility of the fault to be activated. A fault most susceptible

a b

2θ

2θ

s3 s1

tc

t

t

tc

s

0T0

q

q

0T0

1

2

3

2

3

Fig. 5 Griffith failure criterion. (a) Scheme of a cylindrical specimen with a fracture created by loading with stresses
s1 > s2 ¼ s3 (left) and the corresponding Mohr’s circle diagram (right). (b) Position of different faulting regimes on the
Mohr failure envelope tc(s). Point 1 – pure tensile faulting, points 2 – transition between tensile and pure shear faulting, points
3 – pure shear faulting. Angle y defines the deviation of the fracture from the s1 direction, T0 is the uniaxial tensile strength
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to failure is called the “principal” fault (Vavryčuk 2011a) being defined by the point in which the Mohr-
Coulomb failure criterion touches the Mohr’s circle diagram (blue point in Fig. 6)

Avariety in possible orientations of unstable fault planes is demonstrated in Fig. 7. The left-hand plot of
Fig. 7a shows the Mohr’s diagram, the failure criterion and the positions of randomly distributed unstable
fault planes satisfying the failure criterion. The middle and right-hand plots of Fig. 7a show the nodal lines
and the P (pressure) and T (tension) axes for the corresponding focal mechanisms. The nodal lines and P/T
axes inform about the predominant type of faulting and about the scatter in orientations of the unstable
fault planes. Predominant faulting and its scatter are also projected into a scatter of the P/T axes, which
form clusters of a specific shape and size (Fig. 7a, right-hand plot). The form of the clusters is best
demonstrated using the projection of the Mohr-Coulomb failure criterion (Fig. 7b, blue line in the left-
hand plot) onto the focal sphere (Fig. 7b, right-hand plot). The failure criterion curve splits into two closed
curves for the P axes as well as for the Taxes on the focal sphere corresponding to the failure conditions in
the upper and lower half-planes in the Mohr’s circle diagram. The two P/T failure curves may intersect
each other or be separated. The area inside the failure curves define positions of the P/T axes of focal
mechanisms conceivable under the given stress regime. The pattern when the P/T axes form two distinct
sub-clusters is called as the “two-wing” or the “butterfly-wing” pattern (Vavryčuk 2011a). The butterfly
wings are well separated provided that friction is high (0.5 or higher). If friction is low, the wings come
closer or they overlap.

Fault Instability
Since differently oriented faults have a different susceptibility to be activated and thus being differently
unstable in the given stress field, a quantity which measures this instability can be introduced. For
example, the fault instability I of all fault orientations can be defined in the range from 0 to 1 (see
Fig. 8) using the following formula (Vavryčuk et al. 2013):

I ¼ t� m s� s1ð Þ
tc � m sc � s1ð Þ ; (16)

s3 s2 s1 s
c

0

tc

t

sc

Fig. 6 Mohr-Coulomb failure criterion. The red area shows all possible orientations of fault planes which satisfy the Mohr-
Coulomb failure criterion. The blue dot with shear and normal stresses tc and sc denotes the principal fault plane which is
optimally oriented with respect to stress, and C denotes the cohesion
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where tc and sc are the shear and effective normal stresses along the principal fault (blue dot in Fig. 6, red
dot in Fig. 8), and t and s are the shear and effective normal stresses along the analysed fault (black dot in
Fig. 8).

Since Eq. 16 is independent of absolute stress values, the fault instability I can be evaluated just from
friction m, shape ratio R,

a

b

σ1

σ1

σ3

σ3

σ2

σ2

σ3 σ2 σ1

σ3 σ2 σ1

N N

N N

Fig. 7 Focal mechanisms associated with unstable fault planes. (a) Randomly distributed fault planes inside the unstable area
of the Mohr’s diagram (left), corresponding nodal lines (in the middle) and the P/T axes (right). The P (pressure) axes are
marked by the red circles, the T (tension) axes by the blue crosses. (b) Fault planes corresponding to the Mohr failure envelope
in the Mohr’s diagram (left), corresponding nodal lines (in themiddle) and the P/Taxes (right). The P/Taxes form the P (red)/T
(blue) failure curves displaying the two-wing pattern. The s1, s2 and s3 stress axes have directions (azimuth/plunge): 308�/44�,
209�/9� and 110�/44�. The shape ratio R is 0.5. The azimuth angle is measured clockwise from north (denoted as N), and the
plunge angle from the horizontal plane

τ

s1s2s3 s

Fig. 8 Definition of the fault instability in the Mohr’s diagram. The red dot marks the principal fault characterized by
instability I ¼ 1. The black dot marks an arbitrarily oriented fault with instability I. Quantities t and s are the shear and the
effective normal stresses, respectively; s1, s2 and s3 are the effective principal stresses
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R ¼ s1 � s2
s1 � s3

; (17)

and from directional cosines n defining the inclination of the fault plane from the principal stress axes (i.e.,
n being expressed in the coordinate system of the principal stress directions). If the reduced stress tensor is
scaled as follows:

s1 ¼ 1,s2 ¼ 1� 2R, s3 ¼ �1; (18)

where positive values mean compression, stresses tc and sc along the principal fault read

tc ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p , sc ¼ � mffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p ; (19)

and consequently

I ¼ t� m s� 1ð Þ
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

p ; (20)

where

s ¼ n21 þ 1� 2Rð Þn22 � n23;

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 þ 1� 2Rð Þ2n22 þ n23 � n21 þ 1� 2Rð Þn22 � n23

� �2q
: (21)

The fault instability can be calculated using Eqs. 20 and 21 for all orientations of fault planes and projected
into the focal sphere (see Fig. 9). Such figure is, in particular, helpful when analysing orientations of
unstable faults under stress field with inclined principal stress directions.

σ1
σ3+

o

σ2

x

1

0.8

0.6

0.4

0.2

0

Fig. 9 The fault instability is shown for all possible fault normals; it is colour-scaled and ranges between 0 (the most stable
plane) and 1 (the most unstable plane). The lower-hemisphere equal-area projection is used. Directions of the s1, s2 and s3 axes
are (azimuth/plunge): 146�/48�, 327�/42� and 237�/1�. The shape ratio R is 0.80 and the fault friction m is 0.5 (Modified after
Vavryčuk et al. (2013))
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Principal Focal Mechanisms
As mentioned above, the higher the instability, the higher the probability of the fault being activated.
Obviously, a prominent fault plane is the principal fault (Vavryčuk 2011a). This plane is optimally
oriented in the stress field and has the highest instability I = 1 (see Figs. 6 and 8). Each stress allows
for the existence of two distinct principal faults and two distinct principal focal mechanisms (Fig. 10). The
reason for the existence of two principal mechanisms is the same as for observing the two-wing pattern of
the failure curves and two clusters of focal mechanisms – one principal fault lying in the upper half-plane
and the other principal fault in the lower half-plane of the Mohr’s circle diagram. The P/T axes of the
principal focal mechanisms lie within the two P/T butterfly wings. If the area of unstable faults (see Fig. 6)
is decreased, for example, by decreasing pore pressure, the wings become smaller being shrunk to the P/T
axes of the principal focal mechanisms in the limit.

The orientation of the principal fault planes and principal focal mechanisms depends on stress and fault
friction. The B (neutral) axes of both principal focal mechanisms coincide with the s2 axis (Fig. 10b). The
P/T axes lie in the s1–s3 plane: the s1 axis is in the centre between the two P axes, and the s3 axis is in the
centre between the two Taxes. The principal fault planes are those nodal planes whose deviation from the
s1 axis is less than 45�. Deviation y between the two principal fault planes is expressed by a formula
similar to that for the 2-D stress:

P

o
o

o
o

+

+

+
+

o

P

T

T

s1

s3

s2

N

N N

B B

a b

c d

Fig. 10 Principal focal mechanisms. (a) Full Mohr’s circle diagram, (b) principal nodal lines and P/T axes, and (c, d) principal
focal mechanisms. The blue dot in (a) marks the principal fault plane, the arrows in (c) and (d) denote the nodal lines
corresponding to the principal fault plane. Point B in (c) and (d) denotes the neutral axis, N denotes north (After Vavryčuk
(2011a))
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m�1 ¼ tan 2y: (22)

Since the relation between the principal focal mechanisms and the orientation of stress is simple, the
inversion for stress orientation from principal focal mechanisms is straightforward. On the other hand, the
shape ratio cannot be retrieved from the principal focal mechanisms. The shape ratio constrains the mutual
relation between the size and shape of the P and T butterfly wings. Therefore, a rather large set of focal
mechanisms is needed to map the wings accurately. Methods for inversion of stress including the shape
ratio from a set of focal mechanisms are described below.

Inversion for Stress From Earthquake Mechanisms

Several methods have been proposed for the determination of stress from a set of focal mechanisms of
earthquakes (Maury et al. 2013). These methods usually assume that (1) tectonic stress is uniform
(homogeneous) in the region, (2) earthquakes occur on pre-existing faults with varying orientations,
(3) the slip vector points in the direction of shear stress on the fault (the so-calledWallace-Bott hypothesis;
see, Wallace 1951; Bott 1959), and (4) the earthquakes do not interact with each other and do not disturb
the background tectonic stress. Obviously, these conditions might not be always satisfied. Firstly, in case
that stress is not uniform, the area should be subdivided into smaller areas in which the condition of
uniform tectonic stress is reasonable to assume. Secondly, if a high variety of focal mechanisms is not
observed, the inversion yields less accurate results. The smaller variety of the observed focal mechanisms,
the larger uncertainty in the stress orientations retrieved. Thirdly, the Wallace-Bott assumption of the slip
vector parallel to the stress on the fault is valid only in isotropic media. In anisotropic media, both vectors
need not be parallel and the problem becomes more involved, particularly, if anisotropy in the focal zone
is not known. Finally, stress changes due to the occurrence of small earthquakes are usually negligible but
large earthquakes can significantly affect the background stress field. In this case, inverting for stress
should be performed from earthquakes clustered not only in space but also in time and periods between
and after a large earthquake should be distinguished.

If the above-mentioned assumptions are reasonably satisfied, the stress inversion methods are capable
to determine four parameters of the stress tensor: three angles defining the directions of the principal stress
directions, s1, s2 and s3, and shape ratio R. The methods are unable to recover the remaining two
parameters of the stress tensor. Therefore, the stress tensor is usually searched with the normalized
maximum compressive stress

s1 ¼ þ1; (23)

and with the zero trace

Tr tð Þ ¼ s1 þ s2 þ s3 ¼ 0: (24)

This implies that no information about pore pressure, which is isotropic, can be gained from the focal
mechanisms.

Next, the individual approaches to stress inversion are described and their pros and cons are mentioned.

Michael Method
A simplest approach to stress inversion is the method of Michael (1984). This method employs Eq. 4
expressed in the following form:
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tkjnj dik � ninkð Þ ¼ tNi: (25)

In order to be able to evaluate the right-hand side of the equation, Michael (1984) applies theWallace-Bott
assumption that direction N of shear stress component of traction T on a fault is identical with the slip
direction s, and he further assumes that shear stress t on activated faults has the same value for all studied
earthquakes. Since the method cannot determine absolute stress values, t in Eq. 25 is assumed to be 1 and
Eq. 23 is not applied. Subsequently, Eq. 25 is expressed in the matrix form

At ¼ s; (26)

where t is the vector of stress components

t ¼ t11 t12 t13 t22 t23½ �; (27)

A is the 3 � 5 matrix calculated from fault normal n,

n1 n22 þ 2n23
� �

n2 1� 2n21
� �

n3 1� 2n21
� �

n1 �n22 þ n23
� � �2n1n2n3

n2 �n21 þ n23
� �

n1 1� 2n22
� � �2n1n2n3 n2 n21 þ 2n23

� �
n3 1� 2n22
� �

n3 �2n21 � n22
� � �2n1n2n3 n1 1� 2n23

� �
n3 �n21 � 2n22
� �

n2 1� 2n23
� �

2
4

3
5; (28)

and s is the unit direction of the slip vector. Extending Eq. 28 for focal mechanisms of K earthquakes with
known fault normals n and slip directions s, a system of 3 � K linear equations for five unknown
components of stress tensor is obtained. The system is solved using the generalized linear inversion in
the L2-norm (Lay and Wallace 1995, their Section 6.4)

t ¼ A�gs: (29)

The basic drawback of this method is the necessity to know orientations of the faults. Usually, when
determining the focal mechanisms, orientations of the two nodal planes are calculated: one nodal plane
corresponding to the fault and the other nodal plane (called the auxiliary plane) defining the slip direction.
The inherent ambiguity of focal mechanisms does not allow distinguishing easily which of the nodal
planes is the fault. If the Michael’s method is used with incorrect orientations of the fault planes, the
accuracy of the retrieved stress tensor is decreased. On the other hand, the method is quite fast and it can be
run repeatedly. Therefore, the confidence regions of the solution are determined using the standard
bootstrap method (Michael 1987). If the orientation of fault planes in the focal mechanisms is unknown,
each nodal plane has a 50 % probability of being chosen during the bootstrap resampling.

Recently, Vavryčuk (2014) modified the Michael’s method and removed the difficulty with the
unknown fault orientations. He proposed inverting jointly for stress and for the fault orientations by
applying the fault instability constraint. According to this constraint, the fault is identified with that nodal
plane which has a higher value of instability calculated using Eq. 20. The stress is calculated in iterations
and overall friction m on faults is also determined. Numerical tests show that the iterative stress inversion
is fast and accurate and performs better than the standard Michael’s inversion.

Angelier Method
The difficulty with determining the fault plane in the focal mechanisms is also overcome in the method
developed by Angelier (2002). This method is based on maximizing the slip shear stress component
(SSSC) along the fault
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ts ¼ Tisi ¼ tijnisj: (30)

Since the SSSC value is symmetric with respect to vectors n and s, it is invariant of the choice of the fault
plane from the two nodal planes. The condition of the maximum shear stress Eq. 30 is not fully correct and
physically means that faults should obey the so-called Tresca failure criterion where faults are assumed to
have zero friction. Only faults with zero friction can achieve maximum shear stress and satisfy Eq. 30; for
faults with friction, the SSSC value is always reduced (see Fig. 11).

For K focal mechanisms, the total SSSC value is maximized as follows:

ttotals ¼ tij
tmax

XK
k¼1

n kð Þ
i s kð Þ

j ; (31)

where

tmax ¼ s1 � s3
2

: (32)

and the optimum stress tensor is calculated analytically (see Angelier 2002). An alternative approach
defines the total SSSC value in the form:

ttotals ¼ tij
XK
k¼1

n kð Þ
i s kð Þ

j ; (33)

with the normalization condition

s21 þ s22 þ s23 ¼ 1: (34)

and with the zero trace condition Eq. 24. In this case, the inversion for the optimum stress tensor can be
performed using a grid search through the principal stress directions and shape ratio R. The fit function is
maximized in the L1-norm.

Although the condition of maximizing the SSSC value looks as a rather rough approximation, its use in
practice is advocated by Angelier (2002) for the following reasons. Firstly, the activated fault planes are
located mostly close to the top of the Mohr’s circle diagram. For example, friction of 0.6 reduces the

τ
Mohr-Coulomb

a b
τ

Tresca

s3 s2 s1 s s3 s2 s1 s

Fig. 11 Tresca and Mohr-Coulomb failure criteria. The Tresca failure criterion is unphysical and corresponds to a fault with
zero friction. The red dot marks the principal fault plane
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maximum shear stress by 13 % only. Secondly, numerical tests show that if focal mechanisms inverted
display a sufficient variety, maximizing the SSSC value leads to a small bias in the retrieved stress
directions. Thirdly, maximizing the SSSC value is quite robust with respect to the errors present in focal
mechanisms.

Gephart and Forsyth Method
Another way how to solve the problem with ambiguous fault plane orientations in stress inversions is
proposed by Gephart and Forsyth (1984). The method is based on minimizing the deviation between
directionN of shear stress and slip direction s along the fault. This deviation is calculated for both options
of the fault orientation and the lower value enters into the total sum over all K focal mechanisms
minimized during the inversion:

S ¼
XK
k¼1

acos N kð Þ � s kð Þ
� �

: (35)

The method was further modified and improved by Lund and Slunga (1999) who applied a more physical
criterion for identifying the true fault planes. The criterion is based on the evaluation of instability of the
fault using Eq. 20 and the fault plane is identified with that nodal plane which is more unstable and thus
more susceptible to failure under the given stress field. The misfit function is minimized in the L1-norm by
using the robust grid search inversion scheme. It is also possible to exclude a predefined number of
outliers from the misfit function the result of the inversion to be less sensitive to large errors in input data.
Since the misfit function is usually smooth and simple, the time-consuming grid search can be substituted
by any non-linear inversion method. For example, the gradient or simplex methods can be applied with a
success. This applies also to the Angelier method defined by Eqs. 33 and 34.

Accuracy of Stress Inversion Algorithms: Numerical Tests

The robustness and accuracy of the stress inversion methods can be efficiently tested using numerical
modelling. The key parameters of any stress inversion are the number of focal mechanisms inverted, their
accuracy and variability. The inversions yield orientations of the principal stress axes and shape ratio R.

Numerical tests performed with sets of 25–250 focal mechanisms are presented. The stress tensor is
fixed for all datasets. The focal mechanisms are selected to satisfy theMohr-Coulomb failure criterion (see
Fig. 12a,b) and subsequently they are used for the calculation of moment tensors. The moment tensors
were contaminated by uniform noise ranging from 0 to �50 % of the norm of the moment tensor
(calculated as the maximum of absolute values of the moment tensor eigenvalues). The noisy moment
tensors were decomposed back into strikes, dips and rakes of noisy focal mechanisms inverted for stress.
The deviation between the true and noisy fault normals and slips attained values from 0� to 25� (see
Fig. 13). Since the inverted focal mechanisms were calculated from moment tensors, knowledge of the
orientation of the fault planes was lost in the data set. The inversion was run repeatedly using 50 realiza-
tions of random noise and for two types of sets of focal mechanisms. The first set consisted of focal
mechanisms which projected into both half-planes of the Mohr’s circle diagram and thus covered both
butterfly wings in the P/T plot (see Fig. 12, left plots). The second set consisted of focal mechanisms
projected just into upper half-plane of theMohr’s circle diagram and covered just one butterfly wing in the
P/T plot (see Fig. 12, right plots). The inverted principal stress directions and shape ratios for both data
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σ3

σ2

σ1

σ3

σ2

a b

c d

e f

Fig. 12 Example of data used in numerical tests of stress inversions. The plots show 200 noise-free focal mechanisms selected
to satisfy the Mohr-Coulomb failure criterion. Left/right plots – dataset with a full/reduced variety of focal mechanisms. (a, b)
Mohr’s circle diagrams, (c, d) P/Taxes and (e, f) corresponding nodal lines. The P axes are marked by the red circles and Taxes
by the blue crosses in (c) and (d). The s1, s2 and s3 stress axes are (azimuth/plunge): 115�/65�, 228�/10� and 322�/23�,
respectively. Shape ratio R is 0.70, cohesionC is 0.85, pore pressure p is zero and friction m is 0.60. The minimum instability of
faults is 0.82
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Fig. 13 Mean deviation of noisy fault normals as a function of noise superimposed on the moment tensors. The deviation is
colour-coded and evaluated in degrees. The noisy slip directions display the same deviations
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sets and all realizations of random noise were compared with the true values and the errors were evaluated
(see Figs. 14 and 15).

The tests indicate that the accuracy of the stress inversions significantly varies and strongly depends on
noise in the data and on the number of focal mechanisms inverted. All inversions yield satisfactory results
for the principal stress directions with an average error less than 15� for 25 noisy focal mechanisms
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Fig. 14 Mean error of principal stress directions (left) and of the shape ratio (right) as a function of the number of inverted
focal mechanisms and noise in moment tensors. The data set with the full variety of focal mechanisms (two-wings data) is
inverted. The errors are shown for the method of Michael (1984), Angelier (2002), Gephart and Forsyth (1984) and Lund and
Slunga (1999). The method of Angelier (2002) employs Eqs. 33 and 34. The errors are calculated from 50 random realizations
of noise. The errors in the stress directions are in degrees, the errors in the shape ratio are in percent
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inverted (see Fig. 14, left plots). If a reduced variety of focal mechanisms was used (see Fig. 15, left plots),
the method of Angelier (2002) produced systematically worse results than the other methods. The errors
occurred even in the case of 250 noise-free focal mechanisms. Slightly biased results for noise-free data
were produced also by the method of Michael (1984), because this method is sensitive to the ambiguity in
the orientation of fault planes.

In addition, the tests reveal that the shape ratio is a more critical parameter than the orientation of the
principal stress directions (see Figs. 14 and 15, right plots). The method of Angelier (2002) completely
failed even when the high number of noise-free focal mechanisms of the full variety were inverted (see
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Fig. 15 The same as for Fig. 14, but for the data set with the reduced variety of focal mechanisms (one-wing data)
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Fig. 14) yielding the shape ratio of about 0.5 instead of 0.7. Also the method of Michael (1984) works
significantly worse than the method of Gephart and Forsyth (1984) and its modification proposed by Lund
and Slunga (1999). The latter two methods produce results of similar accuracy, the method of Lund and
Slunga (1999) working slightly better and being less sensitive to the low number of focal mechanisms,
high noise in the data and the limited variability of focal mechanisms (see Fig. 15, right plots).

Inversion for Temporal or Spatial Variation of Stress

With an increasing number and accuracy of focal mechanisms of earthquakes occurring in seismically
active regions, it becomes possible to study spatial variations of stress or its temporal evolution. The
simplest approach how to study the spatial variation of stress is to subdivide the study area into subareas or
cells of a similar stress regime and invert for stress of individual cells. Similarly, in case of the time
evolution of stress, the total time period of observations can be split into several phases of the seismic
activity and stress can be inverted for individual time windows. In order to increase the number of focal
mechanisms inverted, the individual cells or time windows can partly overlap. This produces smooth
results highlighting their large-scale lateral variations or long-period trends being very analogous to the
moving average method.

The mentioned stress inversions can be exemplified on several applications. The simplest approach,
when the area under study is subdivided just into two subareas of different stress regimes, was presented,
for example, by Vavryčuk (2006) for deep earthquakes in the Tonga subducting slab (see Fig. 16). The
slab is considerably deformed at depths between 500 and 670 km and can be subdivided into two
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Fig. 16 Inversion for stress in the Tonga subduction zone. Left plot – the map view with epicentres of earthquakes.Green dots
mark earthquake foci at depths between 100 and 500 km, blue/red dots mark deep-focus earthquakes at depths greater than
500 km in the northern/southern cluster. The grey arrows show the horizontal projections of the maximum compression in the
northern/southern cluster.Middle plots – P axes (circles) and Taxes (plus signs) of focal mechanisms distributed over the focal
sphere for earthquakes from the northern (upper plot) and southern (lower plot) slab segments. Right plots – the misfit function
for the principal stress axis s1, defined as the average deviation (in degrees) between the predicted shear stress directions and
the observed slips at the faults. The Gephart and Forsyth inversion method (1984) was applied. The optimum directions of the
principal stresses are marked by circles (Modified after Vavryčuk (2006))
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segments of different orientations characterized by different principal stress directions. The stress
inversion shows that the maximum compressive stress is directed along the down-dip motion of the
slab in both segments. A more detailed mapping of lateral variations of stress obtained from focal
mechanisms was published by Hardebeck (2006) for Southern California who employed the stress
inversion code SATSI developed by Hardebeck and Michael (2006). This code inverts simultaneously
for stress in all subareas of the region under study and minimizes the difference in stress between adjacent
subareas to suppress over fitting of noisy data (see Fig. 17). A modification of this code, called MSATSI
and working in the Matlab environment, was applied by Ickrath et al. (2014) to analyse spatial and
temporal variations of stress prior and after the 1999 Mw 7.4 Izmit earthquake in Turkey. This analysis
revealed systematic rotations of stress related to the occurrence of the Izmit earthquake. The rotation of the
principal stress directions have been observed also after the 1999 Mw 7.6 Chi-Chi earthquake in Taiwan
(Wu et al. 2010) and for the 2011 Mw 9 Tohoku-oki earthquake in Japan (Yang et al. 2013). Spatial and
temporal variations of stress from focal mechanisms have been studied also for New Zealand (Townend
et al. 2012) with focus on the 2010 Mw 6.2 Christchurch earthquake, and for other seismoactive regions
including geothermal fields in which seismicity is induced by fluid injections (Martínez-Garzón
et al. 2013).

Fig. 17 Stress inversion for southern California. A data set of 6957 focal mechanisms is inverted for the stress tensor at points
on a 0.1� grid. The bar orientation shows the direction of the maximum horizontal stress axis, and the shading of the bar
indicates the stress regime, following Simpson (1997). Light grey lines show mapped fault traces, and the black line shows the
San Andreas Fault. The damped inversion method of Hardebeck and Michael (2006) is used with damping parameter e = 1
(After Hardebeck and Michael (2006), their figure 5c)
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Summary

The stress field and fracture processes in the Earth’s crust are closely related phenomena. Fracturing is
controlled by shear stress on the fault, pore-fluid pressure, cohesion and fault friction. In addition, the
orientation of the fault with respect to the principal stress directions governs susceptibility of the fault to be
ruptured. An essential role in the stress analysis play principal faults – the faults which are optimally oriented
for shear faulting and thus being themost unstable under the given stress conditions. The type of faulting, the
orientation of the activated faults and the direction of the slip along the faults can be inverted for stress and its
spatial and temporal variations within the Earth’s crust. The stress inversions work best if the fault
orientations are known. If the fault plane cannot be uniquely identified from the focal mechanisms, the
inversions are less accurate. The inversions are capable to retrieve four stress parameters: the principal stress
directions and the shape ratio. The accuracy of the results depends on the applied inversion method, on the
number of inverted focal mechanisms, their errors and variety. Themost critical parameter is the shape ratio,
which can be successfully recovered only by the Gephart and Forsyth (1984), Lund and Slunga (1999) and
Vavryčuk (2014) methods provided that a high number of accurate focal mechanisms is available.

Cross-References

▶Earthquake Mechanism Description and Inversion
▶Earthquake Mechanisms and Tectonics
▶Non-Double-Couple Earthquakes
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