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Focal mechanisms produced by shear faulting in
weakly transversely isotropic crustal rocks

Vaclav Vavryguk'

ABSTRACT

Shear faulting in anisotropic rocks produces non-double-
couple (non-DC) mechanisms. The non-DC mechanisms can
comprise the isotropic (ISO) and compensated linear vector
dipole (CLVD) components. The formulas for percentages of
the ISO and CLVD are simplified under the assumption of
weak transverse isotropy and can be expressed advanta-
geously in terms of Thomsen’s anisotropy parameters. Shear
faulting in crustal rocks with anisotropy strength of 10% can
produce an ISO of up to 10% and a CLVD of up to 30%. Such
values are significant and detectable in carefully determined
focal mechanisms.

INTRODUCTION

Focal mechanisms of earthquakes provide valuable information
about the orientation of fractures, type of faulting, pore pressure, and
tectonic stress in a seismically active area. In exploration geophys-
ics, focal mechanisms can be determined for microearthquakes in-
duced in reservoirs during gas or oil production or during well stimu-
lation by hydraulic fracturing (Rutledge and Phillips, 2003). Knowl-
edge of focal mechanisms helps enhance reservoir characterization
by imaging the orientation, complexity, and temporal growth of in-
duced fractures and by fault mapping (Rutledge et al., 1998; Max-
well and Urbancic, 2001). Focal mechanisms can be utilized also in
estimating pore pressure. If pore pressure is low, only shear faulting
is observed and focal mechanisms are double couple (DC). If pore
pressure is high, tensile faulting is observed and focal mechanisms
are non-DC (Vavrycuk, 2001, 2002).

So far, focal mechanisms have been mainly computed and inter-
preted under the assumption of an isotropic medium. The geologic
structures of the earth’s crust, however, frequently display anisotro-
py (Thomsen, 1986; Babuska and Cara, 1991; Tsvankin, 2001),
which can be caused by sediment layering; by the presence of
aligned microcracks, cracks, or fractures; or by the textural ordering

of rock-forming minerals. Anisotropy not only significantly influ-
ences seismic wave propagation (Musgrave, 1970; Kravtsov and Or-
lov, 1990; Helbig, 1994; Cerveny, 2001), but it also alters and com-
plicates the properties of seismic sources (Kawasaki and Tanimoto,
1981; Julian et al., 1998; Réssler et al., 2004; Vavry¢uk, 2004). For
example, Vavrycuk (2005) has shown that DC mechanisms pro-
duced by shear faulting under isotropy can become non-DC under
anisotropy. Also the fault-plane solutions calculated under the as-
sumption of isotropy can deviate from the true orientations if the
source area is actually anisotropic (Sileny and Vavry&uk, 2002).

In this paper, I continue earlier work (Vavry¢uk, 2005) in which
focal mechanisms in general anisotropy of arbitrary symmetry and
arbitrary strength are studied. I specify this theory for weak trans-
verse isotropy, the most commonly assumed type of anisotropy used
in exploration geophysics. Applying the first-order perturbation the-
ory (PSencik and Gajewski, 1998; VavryCuk and PSencik, 1998;
PSencik and Dellinger, 2001; Farra, 2004, 2005), 1 derive approxi-
mate formulas for the non-DC components produced by shear fault-
ing in transversely isotropic (TT) media. The formulas are expressed
using Thomsen’s anisotropy parameters (Thomsen, 1986; Tsvankin
and Thomsen, 1994), and accuracy of the derived approximations is
tested on theoretical models of crustal anisotropy as well as anisotro-
py observed in crustal rock samples.

MOMENT TENSORS IN ANISOTROPIC MEDIA

The moment tensor M of a seismic source situated in an anisotrop-
ic medium is expressed as (Vavrycuk, 2005, equation 4)

M;; = cijuDy- (1)

Tensor ¢, is the tensor of elastic parameters of the anisotropic medi-
um surrounding the fault, and tensor Dy, denotes the seismic source
tensor

uS
Dy = E(anl + Uy, (2)

where u is the slip, S the fault area, v the slip direction, and n the fault
normal. If vectors v and n are perpendicular, the source tensor de-
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scribes shear faulting; if they are arbitrarily oriented, the source ten-
sor describes tensile faulting.

In general, the moment tensors in anisotropic media are compli-
cated. They can be decomposed into the DC, compensated linear

vector dipole (CLVD), and isotropic (ISO) parts
M = MISO + MCLVD + MDC (3)

which are defined as follows (Jost and Hermann, 1989; Vavryc¢uk,
2005):

. 1 00
M0 = ZTr(M)(0 1 0 |, 4)
0 01
-1 00
MCLVD _ [¢CLVD) M\*max\ 0 -1 0/, (S)
0 0 2
-1 00
MPC = (1 - 2|8CLVD|)Mrmax| 0001, (6)
0 01

where Tr(M) is the trace of tensor M. Parameter £“-VP measures the
size of the CLVD relative to the DC and is defined as

M

[min|
CLVD _ _ (7)

where M|y, and M|, are the eigenvalues of deviatoric moment
M* = MCVP 4 MPC with the maximum and minimum absolute
values, respectively. To assess the relative amounts of the DC,
CLVD, and ISO components in a moment tensor, we usually calcu-
late their percentages as

1 Tr(M
150 = LM oo, (8)
3| \max\|
CLVD = 2£“%YP(100 - [1SO)), )

DC = 100 — [ISO| -

(10)

where M\,,,, denotes the eigenvalue of M with maximum absolute
value.

MOMENT TENSORS IN ISOTROPIC MEDIA

The moment tensors are simplified considerably under the as-
sumption of isotropy. Taking into account that the elastic parameters
¢;u can be expressed by Lamé constants as (Aki and Richards, 2002,
equation 2.33)

Cijit = A0 + (630 + 5404), (11)
equation 1 yields

P= )\Dkk5 + 2/LD”,

Dkk:Dll +D22+D33:MSH'V, (12)

where the dot is the scalar product. Moment tensor M is diagnoal-
ized as (Vavrycuk, 2005, equation 42)

A+pum-v+u 0 0
M = y§ 0 v 0 (13)
0 0 A+pn-v-pu

in the coordinate system of the eigenvectors of M,

n+v ne®wv n-v

€ = , €3 = s (14)
n-v

where ® denotes the vector product. Assuming that the source is

shear, then

€ =

In+v|’ In ®

n-v=nrv +n2V2+n3V3=0, (15)

and equation 13 is simplified further to (Aki and Richards, 2002, p.
59)

+1 0 0
MdYe = yusl 0 0 0], (16)
00 -1

which represents a pure DC source. Hence, shear faulting in isotro-
pic media generates no CLVD or ISO components.

SHEAR FAULTING IN WEAK
TRANSVERSE ISOTROPY

Thomsen’s anisotropy parameters

Assuming a shear source situated in a weakly TI medium, the me-
dium is described by the elastic parameters of the isotropic back-
ground Cs; and Cy,, and by Thomsen’s anisotropy parameters (Th-
omsen, 1986; Tsvankin and Thomsen, 1994):

c,-C
2C33
Ceo — C
y= M’ (18)
2Cy
1 Ciz+ Cu)?
o= C” _ C44 _ ( 13 44) ) (19)
2Cyy C33— Cyy

where Cy, are the elastic parameters in the Voigt notation. The elastic
parameters are expressed in the coordinate system with the symme-
try axis along the vertical. Thomsen’s parameters &, y, and o can
serve as a measure of strength of TI; they are zero for isotropy and
close to zero for weak anisotropy.

Moment tensors

Let us assume fixed geometry of faulting with fault normal n
=(0,0,1)" and slip direction v = (1,0,0)”. The symmetry axis of
transverse isotropy is inclined, specified by unit direction vector t.

Under weak anisotropy, the moment tensor M can be expressed as
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the sum of the moment tensor M° produced by shear faulting in the
isotropic background and its perturbation AM produced by anisotro-

Py,

M= M° + AM, (20)
where
M0 = O O 0 5 AM = AM12 AM22 AM23 N

21

and M denotes the scalar seismic moment, M = uSc,,. The compo-
nents of AM are expressed in terms of Thomsen’s anisotropy param-
eters as follows:

AM | = Myt 1] —ke + a'(2t% - 1],
AMy, = Mot ts[—ke + 0263 — 1) + 4],
AMys = Mt 15[ —ke + 0265 = 1)],
AM |5 = 2M tot5(—y + ot}),
AM 5 = 2Mo(yt5 + oti83),
AMyy = 2M ot 1 (—y + o13), (22)
where
K = C33/Cyy. (23)
The trace of the moment tensor reads
Tr(M) = Tr(AM) = Myt 15(-3ke + 4y — a); (24)

hence, it is zero for isotropic media, but generally nonzero for TI.
Using the formulas for calculating the perturbation of eigenvalues of
M (Korn and Korn, 2000),

AM,| = AMye ey, AM, = AMyeyey;,
AM5 = AMyesies;, (25)

T obtain

AM | = Myt t5(—ks + 201,13) + Mt3(2y — oty13),
AM, = Myt 15[ —ke + a’(2t§ - 1) + 4y,
AMy = Mt 15(—ke — 201,13) — Mgt3(2y + oty13),
(26)
where vectors e, e,, and e; are the eigenvectors of moment tensor
M referred to the isotropic background,

1 1
€ = ?(1a091)T7 €)= (07190)T, €3 = ?(—1,0,1)7-.
V2 V2

(27)

Note that AM; is the perturbation of eigenvalue M; of moment tensor
M, while AM ; is the perturbation of moment tensor component M ;.

Non-DC components

Assuming that perturbations AM |, AM,, and AM; are small with
respect to Mo, Tr(M) and M, expressed as

Tr(M)=AM1 +AM2+AM3,
. 1 1
M i = AM, — gTr(M) = _E(AMl + AM; - 2AM.,),

(28)
are also small, and M|,y and M "‘max‘, expressed as

|Mmax|| = max(Mo + AM 1, M — AM;), (29)
" 1
|M\max\| = maX<MO - g[AMZ + AM3 - 2AM1],

1
MO + E[AMI + AM2 - 2AM3]), (30)

are close to M. Hence, considering first-order perturbations, I sub-
stitute | M ‘max‘| and |M| f;mx‘\ in equations 7 and 8 simply by M, and ob-
tain

AM| + AM, + AM
3M, ’

ISO = 100 X (31)

AM, + AM; - 2AM,
3M, ’

8CLVD =

(32)

where, again, ISO is expressed as a percentage. Substituting equa-
tions 26 into equations 31 and 32, I finally obtain

1
ISO = 100 X 5t1t3(—3K8 +4y-0), (33)
cvp 2 2
e = §t1t3[_47+ a(l - 365)]. (34)

The CLVD is obtained by inserting equations 33 and 34 into equa-
tion 9.

More accurate equations than 33 and 34 can be derived if | M|, |
and | M| are calculated correctly by equations 28 and 29, rather
than replaced by M,,. This approach yields

1
ISO = 100 X —115(-3ke + 4y - 0),  (35)
3D,

2
VP = —— 1 n[-4y + o(1 - 35)], (36)
3D,

where

D, = max(1 + ;15[ F ke + 201,15) + B2y F ot113)),
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D2 =max|1 + 5'}/[3t2 -+ 2t1t3]

1
+ gat1t3[6t1t3 T35« 1]), (37)

and I have used the following notation: max(a + b + ¢) = max(a
+b-c,a—-b+c).

I derived the non-DC components of M assuming a fixed geome-
try of faulting with fault normal n = (0,0, 1)” and slip direction v =
(1,0,0)". General formulas valid for shear faulting with arbitrarily
oriented fault normal n and slip direction v are obtained from the for-
mulas derived here by applying the following substitutions:

fh=tew, t3=t-n, and3=1-11-173, (38)

where t is the direction of the symmetry axis.

APPLICATION TO CRUSTAL ROCKS

In this section, I apply the derived formulas to theoretical models
of crustal anisotropy and to anisotropy observed on crustal rock sam-
ples. Four anisotropy models are considered: one model produced
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by the presence of aligned water-filled cracks and three models pro-
duced by layering. The effective anisotropy is calculated using the
Hudson (1981) theory for cracks and the Backus (1962) averaging
for layers. Furthermore, I consider ten published models of anisotro-
py observed in rocks. The anisotropy was measured in the laboratory
for sedimentary and metamorphic rock samples that originated in
the upper crust. The presented models clearly do not cover all possi-
ble variations of anisotropy in focal areas, but they do provide in-
sight into how significant non-DC components can be generated by
shear faulting in the crust and the accuracy of the derived approxi-
mations for calculating non-DC components.

The anisotropy models are summarized in Table 1. The table lists
Thomsen’s anisotropy parameters for each model, together with the
rock sample or model identification and the literature reference. Be-
cause some of the models were defined in terms of standard elastic
parameters (Shearer and Chapman, 1989; Baptie etal., 1995; Rabbel
et al., 2004; Godfrey et al., 2000), the anisotropy parameters in the
table had to be calculated using equations 17—19. Table 2 summariz-
es the anisotropy strength of P-, SV-, and SH-waves, and maximum
absolute values of the CLVD and ISO components generated by
shear faulting in the specified anisotropy model. The percentage an-
isotropy strength is defined as

Table 1. Anisotropy models — »* and »° are vertical P and S velocities; €, v, and & are Thomsen’s anisotropy parameters; p is

density.
P VS P Model/rock
Model/rock (km/s)  (km/s) € y ) (g/em?) identification Reference
Theoretical models

Cracks 4.477 2.258 0.005 0.125 -0.111 2.80 Model 1 Shearer and Chapman (1989)

Layers I 3.907 2.185 0.021 0.015 0.008 2.60 PTL1 Baptie et al. (1995, Table 1)

Layers II 3.091 1.749 0.150  0.141 0.023  2.60 PTL2 Baptie et al. (1995, Table 1)

Layers III 2.585 1.472 0.323  0.318 0.032  2.60 PTL3 Baptie et al. (1995, Table 1)

Rocks

Sandstone 1 4.476 2.814 0.097  0.051 0.091 2.50 Mesaverde (4912) Thomsen (1986, Table 1)
immature sandstone

Sandstone 1T 4.099 2.346 0.077  0.066 0.010 245 Mesaverde (4946) Thomsen (1986, Table 1)
immature sandstone

Sandstone I 4.349 2.571 0.091  0.105 0.148 2.46 Mesaverde (5481.3)  Thomsen (1986, Table 1)
immature sandstone

Shale I 3.901 2.682 0.137 0.026 -0.012 2.64 Mesaverde shale Thomsen (1986, Table 1)
(1599)

Shale II 4.721 2.890 0.135 0.180 0.205 2.64 Cotton Valley shale Thomsen (1986, Table 1)

Shale III 2.202 0.969 0.015 0.030 0.060 2.25 Pierre shale Thomsen (1986, Table 1)
(z =950 m)

Gneiss I 6.000 3.380 0.043  0.125 -0.007 2.78 KTB (2.2-3.0 km) Rabbel et al. (2004, Table 1)

Gneiss 11 5.109 3.126 0215  0.222 0.107 2.75 KTB (7.9-8.2 km) Rabbel et al. (2004, Table 1)

Phyllite 5.947 3.438 0.100  0.149 -0.043 272 Chugach phyllite, Godfrey et al. (2000, Table 1)
TA-2, p = 100 MPa

Schist 5.727 3.439 0.150 0.049 0.085 2.72 Pelona schist, Godfrey et al. (2000, Table 1)

LA-1, p = 100 MPa
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max min

c
a =200 X

P in?®
CHI«.IX + cmlﬂ

(39)

where ¢™> and c™" are the maximum and minimum phase velocities
of the given wave type. The maximum values of the CLVD and ISO
were calculated under fixed geometry of faulting and over all orien-
tations of the symmetry axis. The direction of the symmetry axis var-
ied in a grid of spherical angles #and ¢ in steps of 2°. The CLVD and
ISO were calculated using exact equations 8 and 9 and approxi-

mate equations 33-36. The CLVD and ISO calculated using equa-
tions 33 and 34 are denoted as CLVD, and ISO,, and those calculat-
ed using equations 35 and 36 are denoted as CLVD, and ISO,.

The directional variation of phase velocity as a function of the
wave normal (i.e., the normal to the wavefront of a propagating
plane wave) is exemplified for the Layers Il model (see Table 1) in
Figures 1 and 2. The anisotropy strength is 13.1%, 8.1%, and 12.4%
for the P-, SV-, and SH-waves, respectively (see Table 2). Shear
faulting in this anisotropy generates the maximum ISO and CLVD
components of 14.4% and 18.7%. The directional variation of the

Table 2. Anisotropy strength and percentages of ISO and CLVD. Quantities a, a5V and a5 denote the anisotropy strength of
P-, SV-, and SH-waves, which is defined in equation 39. ISO™>* and CLVD™ are the exact maximum absolute values of the
ISO and CLVD components. ISOP®* and CLVDP* are the approximate values calculated using equations 33 and 34, and ISOy**
and CLVD?** are approximate values calculated using equations 35 and 36.

a® asy ast ISOmax ISOpax ISOya~ CLVD™* CLVDp CLVDgy*
Model/rock (%) (%) (%) (%) (%) (%) (%) (%) (%)
Theoretical models
Cracks 3.5 11.0 11.2 0.6 0.1 0.1 19.9 24.3 19.6
Layers I 2.1 1.0 1.5 2.9 3.1 2.9 2.6 2.6 2.6
Layers II 13.1 8.1 12.4 14.4 20.6 14.4 18.7 22.8 18.8
Layers III 24.8 152 24.5 224 43.5 224 31.7 44.9 322
Sandstone 1 8.9 0.3 4.9 8.2 9.1 8.1 10.2 11.4 11.1
Sandstone 11 7.2 4.6 6.2 8.8 10.8 8.8 10.4 11.6 10.4
Sandstone II1 8.4 3.6 9.5 3.7 33 3.1 33.9 37.6 37.0
Shale I 12.1 6.6 2.5 13.8 18.0 13.8 10.2 11.5 10.2
Shale 11 11.9 3.9 15.3 3.6 2.9 2.7 49.8 58.7 55.6
Shale III 1.9 5.9 2.9 2.0 2.0 2.2 23.6 23.0 24.4
Gneiss 1 4.1 3.6 11.2 0.8 0.9 0.8 20.3 23.4 20.4
Gneiss 11 17.9 5.5 18.3 13.3 18.8 13.1 27.5 35.1 28.8
Phyllite 9.5 9.3 13.0 9.0 12.2 8.9 20.4 25.5 20.5
Schist 13.1 3.7 4.7 159 20.6 15.9 8.2 8.6 8.0
3.6 2
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Figure 1. Phase velocity of the P-wave as a function of the angle
between the wave normal and the symmetry axis for the Layers Il
model.

Angle (degrees)

Figure 2. Phase velocity of the SV- and SH-waves as a function of
the angle between the wave normal and the symmetry axis for the
Layers Il model.
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exact values of the ISO and CLVD together with errors produced by
approximate equations 33-36 are shown in Figures 3 and 4. The er-
rors are the difference between the approximate and exact percent-
ages. The errors are almost 6% and 4% for the ISO, and CLVD,. The
ISO, and CLVD, are more accurate, having maximum errors of
0.04% and 0.8%.

Figure 3a shows that the exact ISO component for Layers II has
one maximum and one minimum that lie in the plane of the slip and
fault normal. The same or a similar pattern can be observed also for
the other anisotropy models (see Figure 5). However, the directional
variation of the CLVD percentage is more variable for the different
anisotropy models, and can be more complicated. In the Layers Il
model, the CLVD displays two maxima and two minima that lie off

Q) Exact IO

(%)
10
5
" 0
5
10

c) Errors of ISO,
b) Errors of ISO,4

0.0 (%)
0.02
” 0
-0.02
I © (%)
|
X

Figure 3. The ISO components generated by shear faulting in the
Layers II model with an inclined symmetry axis: (a) the exact ISO,
(b) the difference between the ISO, and the exact ISO, and (c) the
difference between the ISO, and the exact ISO. The geometry of
faulting is fixed; the fault normal is along the z-axis, and the slip di-
rection is along the x-axis. Points inside the circle correspond to TI
with a varied orientation of the symmetry axis. The plus sign marks
the TI with the vertical symmetry axis; the points along the circle
correspond to the TI with horizontal symmetry axes. Equal-area pro-
jection is used.

N

® &~ N O

E f CLVD.
a) Exact CLVD ) C) rrors of CLVD,
o,

o8 %)
10 05

X Y . X
-10 0 05
-15

b) Errors of CLVD4
4(%)
2
X 0
-2
Figure 4. The CLVD components generated by shear faulting in the
Layers II model with an inclined symmetry axis: (a) the exact
CLVD, (b) the difference between the CLVD, and the exact CLVD,
and (c) the difference between the CLVD, and the exact CLVD. For
details, see the caption of Figure 3.

o

the plane defined by the slip and fault normal (see Figure 4a), but
other models can produce a lower or higher number of local maxima
and minima (see Figure 6).

The anisotropy models presented in Tables 1 and 2 span the range
of anisotropy strength from 2% to almost 25%. Shear faulting in the
models produces the maximum ISO percentage in the range from
0.6% to 22.4% and the maximum CLVD percentage from 2.6% to
49.8%. Usually, the CLVD is higher than the ISO, but for some mod-
els (Shale I, Schist) the opposite is observed. Interestingly, some
models with a rather weak anisotropy generate a considerably high
CLVD. This applies, for example, to Shale III of anisotropy strength
less than 6% that generates a CLVD of 23.6%, and to Sandstone III
of anisotropy strength less than 10%, but with a CLVD of 33.9%.
This implies that shear faulting in crustal rocks can generate detect-
able and significant non-DC components owing to anisotropy.

a)iso

(%)

Figure 5. The percentage of the exact ISO components generated by
shear faulting in the (a) Sandstone ITI model, (b) Sandstone IT model,

and (c) Shale I model. For details of the faulting geometry and the
projection, see the caption of Figure 3.
30 (%) 10 (%)
20 5
10
0 X 0
-10
-20 ki
@ I %)

Figure 6. The percentage of the exact CLVD components generated
by shear faulting in the (a) Sandstone IIT model, (b) Sandstone 1T
model, and (c) Shale I model. For details of the faulting geometry
and the projection, see the caption of Figure 3.

a) cwo c)
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CONCLUSIONS

Shear faulting in anisotropic rocks produces non-DC mecha-
nisms. For weak anisotropy, the formulas for the percentages of the
CLVD and ISO can be simplified using first-order perturbation theo-
ry. For weak TI, the CLVD and ISO can be expressed using Thoms-
en’s anisotropy parameters. If we fix the fault normal and slip direc-
tion and vary the orientation of the symmetry axis, the ISO compo-
nent has an identical directional variation for all values of anisotropy
parameters. It is characterized by one maximum and one minimum
generated if the symmetry axis lies in the plane of the fault normal
and slip and is inclined by 45° from the fault normal. The directional
variation of the CLVD is more dependent on anisotropy parameters
and can be more complicated. The maxima and minima can lie off
the plane of the fault normal and slip. Usually, the CLVD is larger
than the ISO and can attain values up to 30%—-35% for anisotropy
with strength of 10% or less. Hence, the anisotropy of rocks can in-
fluence significantly computed focal mechanisms and should thus be
considered in their interpretations.

The interpretations, however, should also consider origins of non-
DC mechanisms other than anisotropy, such as numerical error in the
moment tensor inversion, faulting on nonplanar fractures, and ten-
sile faulting produced by opening or closing of fractures. Separating
the contribution of anisotropy from those of the other origins of the
non-DC mechanisms can be complicated and ambiguous. Neverthe-
less, in cases when it is possible, the non-DC mechanisms can be ex-
ploited for estimating the geometry of faulting and the anisotropy in
the source area.
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