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ocal mechanisms produced by shear faulting in
eakly transversely isotropic crustal rocks
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ABSTRACT

Shear faulting in anisotropic rocks produces non-double-
couple �non-DC� mechanisms. The non-DC mechanisms can
comprise the isotropic �ISO� and compensated linear vector
dipole �CLVD� components. The formulas for percentages of
the ISO and CLVD are simplified under the assumption of
weak transverse isotropy and can be expressed advanta-
geously in terms of Thomsen’s anisotropy parameters. Shear
faulting in crustal rocks with anisotropy strength of 10% can
produce an ISO of up to 10% and a CLVD of up to 30%. Such
values are significant and detectable in carefully determined
focal mechanisms.

INTRODUCTION

Focal mechanisms of earthquakes provide valuable information
bout the orientation of fractures, type of faulting, pore pressure, and
ectonic stress in a seismically active area. In exploration geophys-
cs, focal mechanisms can be determined for microearthquakes in-
uced in reservoirs during gas or oil production or during well stimu-
ation by hydraulic fracturing �Rutledge and Phillips, 2003�. Knowl-
dge of focal mechanisms helps enhance reservoir characterization
y imaging the orientation, complexity, and temporal growth of in-
uced fractures and by fault mapping �Rutledge et al., 1998; Max-
ell and Urbancic, 2001�. Focal mechanisms can be utilized also in

stimating pore pressure. If pore pressure is low, only shear faulting
s observed and focal mechanisms are double couple �DC�. If pore
ressure is high, tensile faulting is observed and focal mechanisms
re non-DC �Vavryčuk, 2001, 2002�.

So far, focal mechanisms have been mainly computed and inter-
reted under the assumption of an isotropic medium. The geologic
tructures of the earth’s crust, however, frequently display anisotro-
y �Thomsen, 1986; Babuška and Cara, 1991; Tsvankin, 2001�,
hich can be caused by sediment layering; by the presence of

ligned microcracks, cracks, or fractures; or by the textural ordering
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f rock-forming minerals. Anisotropy not only significantly influ-
nces seismic wave propagation �Musgrave, 1970; Kravtsov and Or-
ov, 1990; Helbig, 1994; Červený, 2001�, but it also alters and com-
licates the properties of seismic sources �Kawasaki and Tanimoto,
981; Julian et al., 1998; Rössler et al., 2004; Vavryčuk, 2004�. For
xample, Vavryčuk �2005� has shown that DC mechanisms pro-
uced by shear faulting under isotropy can become non-DC under
nisotropy. Also the fault-plane solutions calculated under the as-
umption of isotropy can deviate from the true orientations if the
ource area is actually anisotropic �Šílený and Vavryčuk, 2002�.

In this paper, I continue earlier work �Vavryčuk, 2005� in which
ocal mechanisms in general anisotropy of arbitrary symmetry and
rbitrary strength are studied. I specify this theory for weak trans-
erse isotropy, the most commonly assumed type of anisotropy used
n exploration geophysics.Applying the first-order perturbation the-
ry �Pšenčík and Gajewski, 1998; Vavryčuk and Pšenčík, 1998;
šenčík and Dellinger, 2001; Farra, 2004, 2005�, I derive approxi-
ate formulas for the non-DC components produced by shear fault-

ng in transversely isotropic �TI� media. The formulas are expressed
sing Thomsen’s anisotropy parameters �Thomsen, 1986; Tsvankin
nd Thomsen, 1994�, and accuracy of the derived approximations is
ested on theoretical models of crustal anisotropy as well as anisotro-
y observed in crustal rock samples.

MOMENT TENSORS IN ANISOTROPIC MEDIA

The moment tensor M of a seismic source situated in an anisotrop-
c medium is expressed as �Vavryčuk, 2005, equation 4�

Mij = cijklDkl. �1�

ensor cijkl is the tensor of elastic parameters of the anisotropic medi-
m surrounding the fault, and tensor Dkl denotes the seismic source
ensor

Dkl =
uS

2
��knl + �lnk� , �2�

here u is the slip, S the fault area, � the slip direction, and n the fault
ormal. If vectors � and n are perpendicular, the source tensor de-

ovember 10, 2005; published onlineAugust 28, 2006.
31 Praha 4, Czech Republic, E-mail: vv@ig.cas.cz.
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D146 Vavryčuk
cribes shear faulting; if they are arbitrarily oriented, the source ten-
or describes tensile faulting.

In general, the moment tensors in anisotropic media are compli-
ated. They can be decomposed into the DC, compensated linear
ector dipole �CLVD�, and isotropic �ISO� parts

M = MISO + MCLVD + MDC, �3�

hich are defined as follows �Jost and Hermann, 1989; Vavryčuk,
005�:

MISO =
1

3
Tr�M��1 0 0

0 1 0

0 0 1
� , �4�

MCLVD = ��CLVD�M �max�
* �− 1 0 0

0 − 1 0

0 0 2
� , �5�

MDC = �1 − 2��CLVD��M �max�
* �− 1 0 0

0 0 0

0 0 1
� , �6�

here Tr�M� is the trace of tensor M. Parameter �CLVD measures the
ize of the CLVD relative to the DC and is defined as

�CLVD = −
M �min�

*

�M �max�
* �

, �7�

here M �max�
* and M �min�

* are the eigenvalues of deviatoric moment
* = MCLVD + MDC, with the maximum and minimum absolute

alues, respectively. To assess the relative amounts of the DC,
LVD, and ISO components in a moment tensor, we usually calcu-

ate their percentages as

ISO =
1

3

Tr�M�
�M �max��

� 100, �8�

CLVD = 2�CLVD�100 − �ISO�� , �9�

DC = 100 − �ISO� − �CLVD� , �10�

here M �max� denotes the eigenvalue of M with maximum absolute
alue.

MOMENT TENSORS IN ISOTROPIC MEDIA

The moment tensors are simplified considerably under the as-
umption of isotropy. Taking into account that the elastic parameters
ijkl can be expressed by Lamé constants as �Aki and Richards, 2002,
quation 2.33�

cijkl = ��ij�kl + ���ik� jl + �il� jk� , �11�

quation 1 yields

M = �D � + 2�D ,
ij kk ij ij
Dkk = D11 + D22 + D33 = uSn · �, �12�

here the dot is the scalar product. Moment tensor M is diagnoal-
zed as �Vavryčuk, 2005, equation 42�

Mdiag = uS��� + ��n · � + � 0 0

0 �n · � 0

0 0 �� + ��n · � − �
� �13�

n the coordinate system of the eigenvectors of M,

e1 =
n + �

�n + ��
, e2 =

n � �

�n � ��
, e3 =

n − �

�n − ��
, �14�

here � denotes the vector product. Assuming that the source is
hear, then

n · � = n1�1 + n2�2 + n3�3 = 0, �15�

nd equation 13 is simplified further to �Aki and Richards, 2002, p.
9�

Mdiag = �uS�+ 1 0 0

0 0 0

0 0 − 1
� , �16�

hich represents a pure DC source. Hence, shear faulting in isotro-
ic media generates no CLVD or ISO components.

SHEAR FAULTING IN WEAK
TRANSVERSE ISOTROPY

homsen’s anisotropy parameters

Assuming a shear source situated in a weakly TI medium, the me-
ium is described by the elastic parameters of the isotropic back-
round C33 and C44, and by Thomsen’s anisotropy parameters �Th-
msen, 1986; Tsvankin and Thomsen, 1994�:

� =
C11 − C33

2C33
, �17�

� =
C66 − C44

2C44
, �18�

� =
1

2C44
�C11 − C44 −

�C13 + C44�2

C33 − C44
� , �19�

here Ckl are the elastic parameters in the Voigt notation. The elastic
arameters are expressed in the coordinate system with the symme-
ry axis along the vertical. Thomsen’s parameters �, �, and � can
erve as a measure of strength of TI; they are zero for isotropy and
lose to zero for weak anisotropy.

oment tensors

Let us assume fixed geometry of faulting with fault normal n
�0,0,1�T and slip direction � = �1,0,0�T. The symmetry axis of

ransverse isotropy is inclined, specified by unit direction vector t.
Under weak anisotropy, the moment tensor M can be expressed as
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Shear faulting in anisotropic rocks D147
he sum of the moment tensor M0 produced by shear faulting in the
sotropic background and its perturbation 	M produced by anisotro-
y,

M = M0 + 	M , �20�

here

M0 = � 0 0 M0

0 0 0

M0 0 0
�, 	M = �	M11 	M12 	M13

	M12 	M22 	M23

	M13 	M23 	M33
� ,

�21�

nd M0 denotes the scalar seismic moment, M0 = uSc44. The compo-
ents of 	M are expressed in terms of Thomsen’s anisotropy param-
ters as follows:

	M11 = M0t1t3�−
� + ��2t1
2 − 1�	 ,

	M22 = M0t1t3�−
� + ��2t2
2 − 1� + 4�	 ,

	M33 = M0t1t3�−
� + ��2t3
2 − 1�	 ,

	M12 = 2M0t2t3�−� + �t1
2� ,

	M13 = 2M0��t2
2 + �t1

2t3
2� ,

	M23 = 2M0t1t2�−� + �t3
2� , �22�

here


 = C33/C44. �23�

he trace of the moment tensor reads

Tr�M� = Tr�	M� = M0t1t3�−3
� + 4� − ��; �24�

ence, it is zero for isotropic media, but generally nonzero for TI.
sing the formulas for calculating the perturbation of eigenvalues of
�Korn and Korn, 2000�,

	M1 = 	Mkle1ke1l, 	M2 = 	Mkle2ke2l,

	M3 = 	Mkle3ke3l, �25�

obtain

	M1 = M0t1t3�−
� + 2�t1t3� + M0t2
2�2� − �t1t3� ,

	M2 = M0t1t3�−
� + ��2t2
2 − 1� + 4�	 ,

	M3 = M0t1t3�−
� − 2�t1t3� − M0t2
2�2� + �t1t3� ,

�26�

here vectors e1, e2, and e3 are the eigenvectors of moment tensor
0 referred to the isotropic background,

e1 =
1

2

�1,0,1�T, e2 = �0,1,0�T, e3 =
1

2

�−1,0,1�T.

�27�
ote that 	Mi is the perturbation of eigenvalue Mi of moment tensor
, while 	Mij is the perturbation of moment tensor component Mij.

on-DC components

Assuming that perturbations 	M1, 	M2, and 	M3 are small with
espect to M0, Tr�M� and M �min�

* , expressed as

Tr�M� = 	M1 + 	M2 + 	M3,

M �min�
* = 	M2 −

1

3
Tr�M� = −

1

3
�	M1 + 	M3 − 2	M2� ,

�28�

re also small, and M �max� and M �max�
* , expressed as

�M �max�� = max�M0 + 	M1,M0 − 	M3� , �29�

�M �max�
* � = max�M0 −

1

3
�	M2 + 	M3 − 2	M1	,

M0 +
1

3
�	M1 + 	M2 − 2	M3	� , �30�

re close to M0. Hence, considering first-order perturbations, I sub-
titute �M �max�� and �M �max�

* � in equations 7 and 8 simply by M0 and ob-
ain

ISO 
 100 �
	M1 + 	M2 + 	M3

3M0
, �31�

�CLVD 

	M1 + 	M3 − 2	M2

3M0
, �32�

here, again, ISO is expressed as a percentage. Substituting equa-
ions 26 into equations 31 and 32, I finally obtain

ISO 
 100 �
1

3
t1t3�−3
� + 4� − �� , �33�

�CLVD 

2

3
t1t3�−4� + ��1 − 3t2

2�	 . �34�

he CLVD is obtained by inserting equations 33 and 34 into equa-
ion 9.

More accurate equations than 33 and 34 can be derived if �M �max��
nd �M �max�

* � are calculated correctly by equations 28 and 29, rather
han replaced by M0. This approach yields

ISO 
 100 �
1

3D1
t1t3�−3
� + 4� − �� , �35�

�CLVD 

2

3D2
t1t3�−4� + ��1 − 3t2

2�	 , �36�

here

D1 = max�1 + t1t3��
� + 2�t1t3	 + t2
2�2� � �t1t3	� ,
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D2 = max�1 +
2

3
��3t2

2 � 2t1t3	

+
1

3
�t1t3�6t1t3 � 3t2

2 ± 1	� , �37�

nd I have used the following notation: max�a ± b � c� = max�a
b − c,a − b + c�.
I derived the non-DC components of M assuming a fixed geome-

ry of faulting with fault normal n = �0,0,1�T and slip direction � =
1,0,0�T. General formulas valid for shear faulting with arbitrarily
riented fault normal n and slip direction � are obtained from the for-
ulas derived here by applying the following substitutions:

t1 = t · �, t3 = t · n, and t2
2 = 1 − t1

2 − t3
2, �38�

here t is the direction of the symmetry axis.

APPLICATION TO CRUSTAL ROCKS

In this section, I apply the derived formulas to theoretical models
f crustal anisotropy and to anisotropy observed on crustal rock sam-
les. Four anisotropy models are considered: one model produced

able 1. Anisotropy models — �P and �S are vertical P and S
ensity.

Model/rock
�P

�km/s�
�S

�km/s� � � �

Theore

racks 4.477 2.258 0.005 0.125 −0.111

ayers I 3.907 2.185 0.021 0.015 0.008

ayers II 3.091 1.749 0.150 0.141 0.023

ayers III 2.585 1.472 0.323 0.318 0.032

andstone I 4.476 2.814 0.097 0.051 0.091

andstone II 4.099 2.346 0.077 0.066 0.010

andstone III 4.349 2.571 0.091 0.105 0.148

hale I 3.901 2.682 0.137 0.026 −0.012

hale II 4.721 2.890 0.135 0.180 0.205

hale III 2.202 0.969 0.015 0.030 0.060

neiss I 6.000 3.380 0.043 0.125 −0.007

neiss II 5.109 3.126 0.215 0.222 0.107

hyllite 5.947 3.438 0.100 0.149 −0.043

chist 5.727 3.439 0.150 0.049 0.085
y the presence of aligned water-filled cracks and three models pro-
uced by layering. The effective anisotropy is calculated using the
udson �1981� theory for cracks and the Backus �1962� averaging

or layers. Furthermore, I consider ten published models of anisotro-
y observed in rocks. The anisotropy was measured in the laboratory
or sedimentary and metamorphic rock samples that originated in
he upper crust. The presented models clearly do not cover all possi-
le variations of anisotropy in focal areas, but they do provide in-
ight into how significant non-DC components can be generated by
hear faulting in the crust and the accuracy of the derived approxi-
ations for calculating non-DC components.
The anisotropy models are summarized in Table 1. The table lists

homsen’s anisotropy parameters for each model, together with the
ock sample or model identification and the literature reference. Be-
ause some of the models were defined in terms of standard elastic
arameters �Shearer and Chapman, 1989; Baptie et al., 1995; Rabbel
t al., 2004; Godfrey et al., 2000�, the anisotropy parameters in the
able had to be calculated using equations 17–19. Table 2 summariz-
s the anisotropy strength of P-, SV-, and SH-waves, and maximum
bsolute values of the CLVD and ISO components generated by
hear faulting in the specified anisotropy model. The percentage an-
sotropy strength is defined as

ities; �, �, and � are Thomsen’s anisotropy parameters; � is

�
/cm3�

Model/rock
identification Reference

odels

Model 1 Shearer and Chapman �1989�

PTL1 Baptie et al. �1995, Table 1�

PTL2 Baptie et al. �1995, Table 1�

PTL3 Baptie et al. �1995, Table 1�

Mesaverde �4912�
immature sandstone

Thomsen �1986, Table 1�

Mesaverde �4946�
immature sandstone

Thomsen �1986, Table 1�

Mesaverde �5481.3�
immature sandstone

Thomsen �1986, Table 1�

Mesaverde shale
�1599�

Thomsen �1986, Table 1�

Cotton Valley shale Thomsen �1986, Table 1�

Pierre shale
�z = 950 m�

Thomsen �1986, Table 1�

KTB �2.2–3.0 km� Rabbel et al. �2004, Table 1�

KTB �7.9–8.2 km� Rabbel et al. �2004, Table 1�

Chugach phyllite,
TA-2, p = 100 MPa

Godfrey et al. �2000, Table 1�

Pelona schist,
LA-1, p = 100 MPa

Godfrey et al. �2000, Table 1�
veloc

�g

tical m

2.80

2.60

2.60

2.60

Rocks

2.50

2.45

2.46

2.64

2.64

2.25

2.78

2.75

2.72

2.72
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a = 200 �
cmax − cmin

cmax + cmin , �39�

here cmax and cmin are the maximum and minimum phase velocities
f the given wave type. The maximum values of the CLVD and ISO
ere calculated under fixed geometry of faulting and over all orien-

ations of the symmetry axis. The direction of the symmetry axis var-
ed in a grid of spherical angles 
 and � in steps of 2°. The CLVD and
SO were calculated using exact equations 8 and 9 and approxi-

able 2. Anisotropy strength and percentages of ISO and CLV
-, SV-, and SH-waves, which is defined in equation 39. ISOm

SO and CLVD components. ISO1
max and CLVD1

max are the app
nd CLVD2

max are approximate values calculated using equatio

Model/rock
aP

�%�
aSV

�%�
aSH

�%�
ISOmax

�%�

Theore

racks 3.5 11.0 11.2 0.6

ayers I 2.1 1.0 1.5 2.9

ayers II 13.1 8.1 12.4 14.4

ayers III 24.8 15.2 24.5 22.4

andstone I 8.9 0.3 4.9 8.2

andstone II 7.2 4.6 6.2 8.8

andstone III 8.4 3.6 9.5 3.7

hale I 12.1 6.6 2.5 13.8

hale II 11.9 3.9 15.3 3.6

hale III 1.9 5.9 2.9 2.0

neiss I 4.1 3.6 11.2 0.8

neiss II 17.9 5.5 18.3 13.3

hyllite 9.5 9.3 13.0 9.0

chist 13.1 3.7 4.7 15.9

igure 1. Phase velocity of the P-wave as a function of the angle
etween the wave normal and the symmetry axis for the Layers II
odel.
ate equations 33–36. The CLVD and ISO calculated using equa-
ions 33 and 34 are denoted as CLVD1 and ISO1, and those calculat-
d using equations 35 and 36 are denoted as CLVD2 and ISO2.

The directional variation of phase velocity as a function of the
ave normal �i.e., the normal to the wavefront of a propagating
lane wave� is exemplified for the Layers II model �see Table 1� in
igures 1 and 2. The anisotropy strength is 13.1%, 8.1%, and 12.4%
or the P-, SV-, and SH-waves, respectively �see Table 2�. Shear
aulting in this anisotropy generates the maximum ISO and CLVD
omponents of 14.4% and 18.7%. The directional variation of the

uantities aP, aSV and aSH denote the anisotropy strength of
CLVDmax are the exact maximum absolute values of the
ate values calculated using equations 33 and 34, and ISO2

max

and 36.

ax

�
ISO2

max

�%�
CLVDmax

�%�
CLVD1

max

�%�
CLVD2

max

�%�

odels

1 0.1 19.9 24.3 19.6

1 2.9 2.6 2.6 2.6

6 14.4 18.7 22.8 18.8

5 22.4 31.7 44.9 32.2

1 8.1 10.2 11.4 11.1

8 8.8 10.4 11.6 10.4

3 3.1 33.9 37.6 37.0

0 13.8 10.2 11.5 10.2

9 2.7 49.8 58.7 55.6

0 2.2 23.6 23.0 24.4

9 0.8 20.3 23.4 20.4

8 13.1 27.5 35.1 28.8

2 8.9 20.4 25.5 20.5

6 15.9 8.2 8.6 8.0

igure 2. Phase velocity of the SV- and SH-waves as a function of
he angle between the wave normal and the symmetry axis for the
ayers II model.
D. Q
ax and
roxim
ns 35

ISO1
m

�%

tical m

0.

3.

20.

43.

Rocks

9.

10.

3.

18.

2.

2.

0.

18.

12.

20.
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D150 Vavryčuk
xact values of the ISO and CLVD together with errors produced by
pproximate equations 33–36 are shown in Figures 3 and 4. The er-
ors are the difference between the approximate and exact percent-
ges. The errors are almost 6% and 4% for the ISO1 and CLVD1. The
SO2 and CLVD2 are more accurate, having maximum errors of
.04% and 0.8%.

Figure 3a shows that the exact ISO component for Layers II has
ne maximum and one minimum that lie in the plane of the slip and
ault normal. The same or a similar pattern can be observed also for
he other anisotropy models �see Figure 5�. However, the directional
ariation of the CLVD percentage is more variable for the different
nisotropy models, and can be more complicated. In the Layers II
odel, the CLVD displays two maxima and two minima that lie off

igure 3. The ISO components generated by shear faulting in the
ayers II model with an inclined symmetry axis: �a� the exact ISO,

b� the difference between the ISO1 and the exact ISO, and �c� the
ifference between the ISO2 and the exact ISO. The geometry of
aulting is fixed; the fault normal is along the z-axis, and the slip di-
ection is along the x-axis. Points inside the circle correspond to TI
ith a varied orientation of the symmetry axis. The plus sign marks

he TI with the vertical symmetry axis; the points along the circle
orrespond to the TI with horizontal symmetry axes. Equal-area pro-
ection is used.

igure 4. The CLVD components generated by shear faulting in the
ayers II model with an inclined symmetry axis: �a� the exact
LVD, �b� the difference between the CLVD1 and the exact CLVD,
nd �c� the difference between the CLVD2 and the exact CLVD. For
etails, see the caption of Figure 3.
he plane defined by the slip and fault normal �see Figure 4a�, but
ther models can produce a lower or higher number of local maxima
nd minima �see Figure 6�.

The anisotropy models presented in Tables 1 and 2 span the range
f anisotropy strength from 2% to almost 25%. Shear faulting in the
odels produces the maximum ISO percentage in the range from

.6% to 22.4% and the maximum CLVD percentage from 2.6% to
9.8%. Usually, the CLVD is higher than the ISO, but for some mod-
ls �Shale I, Schist� the opposite is observed. Interestingly, some
odels with a rather weak anisotropy generate a considerably high
LVD. This applies, for example, to Shale III of anisotropy strength

ess than 6% that generates a CLVD of 23.6%, and to Sandstone III
f anisotropy strength less than 10%, but with a CLVD of 33.9%.
his implies that shear faulting in crustal rocks can generate detect-
ble and significant non-DC components owing to anisotropy.

igure 5. The percentage of the exact ISO components generated by
hear faulting in the �a� Sandstone III model, �b� Sandstone II model,
nd �c� Shale I model. For details of the faulting geometry and the
rojection, see the caption of Figure 3.

igure 6. The percentage of the exact CLVD components generated
y shear faulting in the �a� Sandstone III model, �b� Sandstone II
odel, and �c� Shale I model. For details of the faulting geometry

nd the projection, see the caption of Figure 3.
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CONCLUSIONS

Shear faulting in anisotropic rocks produces non-DC mecha-
isms. For weak anisotropy, the formulas for the percentages of the
LVD and ISO can be simplified using first-order perturbation theo-

y. For weak TI, the CLVD and ISO can be expressed using Thoms-
n’s anisotropy parameters. If we fix the fault normal and slip direc-
ion and vary the orientation of the symmetry axis, the ISO compo-
ent has an identical directional variation for all values of anisotropy
arameters. It is characterized by one maximum and one minimum
enerated if the symmetry axis lies in the plane of the fault normal
nd slip and is inclined by 45° from the fault normal. The directional
ariation of the CLVD is more dependent on anisotropy parameters
nd can be more complicated. The maxima and minima can lie off
he plane of the fault normal and slip. Usually, the CLVD is larger
han the ISO and can attain values up to 30%–35% for anisotropy
ith strength of 10% or less. Hence, the anisotropy of rocks can in-
uence significantly computed focal mechanisms and should thus be
onsidered in their interpretations.

The interpretations, however, should also consider origins of non-
C mechanisms other than anisotropy, such as numerical error in the
oment tensor inversion, faulting on nonplanar fractures, and ten-

ile faulting produced by opening or closing of fractures. Separating
he contribution of anisotropy from those of the other origins of the
on-DC mechanisms can be complicated and ambiguous. Neverthe-
ess, in cases when it is possible, the non-DC mechanisms can be ex-
loited for estimating the geometry of faulting and the anisotropy in
he source area.
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