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elocity, attenuation, and quality factor in anisotropic
iscoelastic media: A perturbation approach
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ABSTRACT

Velocity, attenuation, and the quality �Q-� factor of waves
propagating in homogeneous media of arbitrary anisotropy
and attenuation strength are calculated in high-frequency as-
ymptotics using a stationary slowness vector, the vector eval-
uated at the stationary point of the slowness surface. This
vector is generally complex-valued and inhomogeneous,
meaning that the real and imaginary parts of the vector have
different directions. The slowness vector can be determined
by solving three coupled polynomial equations of the sixth
order or by a nonlinear inversion. The procedure is simplified
if perturbation theory is applied. The elastic medium is
viewed as a background medium, and the attenuation effects
are incorporated as perturbations. In the first-order approxi-
mation, the phase and ray velocities and their directions re-
main unchanged, being the same as those in the background
elastic medium. The perturbation of the slowness vector is
calculated by solving a system of three linear equations. The
phase attenuation and phase Q-factor are linear functions of
the perturbation of the slowness vector. Calculating the ray
attenuation and ray Q-factor is even simpler than calculating
the phase quantities because they are expressed in terms of
perturbations of the medium without the need to evaluate the
perturbation of the slowness vector. Numerical modeling in-
dicates that the perturbations are highly accurate; the errors
are less than 0.3% for a medium with a Q-factor of 20 or high-
er. The accuracy can be enhanced further by a simple modifi-
cation of the first-order perturbation formulas.

INTRODUCTION

The high-frequency asymptotic approximation is used frequently
n wave-propagation modeling because it is reasonably accurate in

any seismic applications and requires almost no computer time
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ompared with exact methods. Asymptotic formulas for velocities,
ttenuations, and quality �Q-� factors of waves propagating in aniso-
ropic attenuative media have been published �Vavryčuk, 2007a,
007b�. The formulas are valid for waves propagating in homoge-
eous media of arbitrary anisotropy and attenuation strength. The
ave quantities are calculated using a stationary slowness vector

hat predicts the complex energy velocity vector parallel to a ray. The
tationary slowness vector is generally complex-valued and inho-
ogeneous, and determining it is the most complicated step when

alculating the asymptotic wave quantities. The stationary slowness
ector can be calculated �1� by a nonlinear inversion for four real-
alued angles defining the directions of the real and imaginary parts
f the slowness vector or �2� by solving a system of three coupled
olynomial equations of the sixth order in three unknown compo-
ents of the complex-valued slowness vector �Vavryčuk, 2006�.

The problem is simplified if perturbation theory is applied. The
lastic medium is viewed as the background medium, and the attenu-
tion effects are calculated as perturbations. The procedure is similar
o that for calculating wave quantities in weakly anisotropic elastic

edia, in which weak anisotropy is introduced as a perturbation of
he isotropic background �Thomsen, 1986; Jech and Pšenčík, 1989;
svankin and Thomsen, 1994; Vavryčuk, 1997, 2003; Farra, 2001,
004; Song et al., 2001; Pšenčík and Vavryčuk, 2002�. The only dif-
erence is that the isotropic background is degenerate and the pertur-
ations caused by weak anisotropy are real-valued. For anisotropic
edia with attenuation, the background medium is nondegenerate

nd perturbations are complex-valued. This approach has been
dopted by several authors and applied to various aspects of study-
ng plane-wave propagation in seismic exploration �Carcione, 2000;
hichinina et al., 2006; Zhu and Tsvankin, 2006, 2007; Červený and
šenčík, 2007�.
In this paper, I apply the first-order perturbation theory to calcu-

ate high-frequency asymptotic quantities in anisotropic viscoelastic
edia. I derive the perturbation formula for the stationary slowness

ector and consequently for other asymptotic quantities such as ray
nd phase velocities, attenuations, and Q-factors. The accuracy of
he perturbations is tested using numerical examples.

November 2007; published online 23 July 2008.
g.cas.cz.
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D64 Vavryčuk
BASIC PERTURBATION FORMULAS

In formulas, the real and imaginary parts of complex-valued
uantities are denoted by superscripts R and I, respectively. A com-
lex-conjugate quantity is denoted by an asterisk. The direction of a
omplex-valued vector v is calculated as v/�v ·v, where the dot indi-
ates a scalar product �the normalization condition v/�v ·v* is not
sed�. The magnitude of v is complex-valued and calculated as
v ·v. If any complex-valued vector v is defined by a real-valued di-
ection, it is called homogeneous; if defined by a complex-valued di-
ection, it is called inhomogeneous. The type of wave �P, S1, S2� is
enoted by superscripts ��1�,�2�,�3��. The background quantity is
enoted by superscript zero.

The perturbation of f is denoted by �f . The symbol �af denotes
he perturbation of f�aijk�,pi� resulting from the perturbations of me-
ium parameters aijk�. The symbol �pf denotes the perturbation of

f�aijk�,pi� from the perturbation of slowness vector p. In formulas,
he Einstein summation convention is used for repeated subscripts.
esides the standard four-index notation for viscoelastic parameters

ijk� and quality parameters qijk�, the two-index Voigt notation AMN

nd QMN is used. Voigt notation reduces pairs of indices i, j or k,l into
single index M or N using the following rules: 11→1,22→2, 33
3, 23→4, 13→5, and 12→6.

efinition of the medium

A viscoelastic medium is defined by density-normalized stiffness
arameters aijk� � cijk�/�, which are, in general, frequency depen-
ent and complex-valued. The real and imaginary parts of aijk�,

aijk���� � aijk�
R � iaijk�

I , �1�

efine elastic and viscous properties of the medium. Their ratio,
alled the matrix of quality parameters,

qijk���� � �
aijk�

R

aijk�
I �no summation over repeated indices� ,

�2�

uantifies how attenuative the medium is. The sign in formula 2 de-
ends on the definition of the Fourier transform used to calculate the
iscoelastic parameters in the frequency domain. Here, I use the for-
ard Fourier transform with the exponential term exp�i�t�. Hence,

he quality parameters are defined with the minus sign in formula 2.
hen using the Fourier transform with the exponential term

xp��i�t�, the minus sign must be omitted.
Let us assume that aijk� satisfy symmetry relations

aijk� � ajik� � aij�k � ak�ij �3�

nd that viscous parameters aijk�
I are small with respect to elastic pa-

ameters aijk�
R . The viscoelastic medium then can be viewed as a me-

ium obtained by a small perturbation of an elastic background,

aijk� � aijk�
0 � �aijk�, �4�
here aijk�
0 defines the background medium and �aijk� its perturba-

ion,

aijk�
0 � aijk�

R , �aijk� � iaijk�
I . �5�

igenvalues and eigenvectors of the Christoffel tensor

The Christoffel tensor in the viscoelastic medium is defined alter-
atively in terms of slowness direction n,

�jk�n� � aijk�nin�, �6�

r slowness vector p,

�jk�p� � aijk�pip�, �7�

here aijk� are the complex-valued viscoelastic parameters. Direc-
ion n and the slowness magnitude p � �pjpj are generally complex
alued. The Christoffel tensor �jk has three eigenvalues and three
igenvectors, which define properties of the P, S1, and S2 waves. Ei-
envalues G�n� and G�p� read

G�n� � aijk�nin�gjgk � c2, �8�

G�p� � aijk�pip�gjgk � 1, �9�

here c � 1/p is the complex phase velocity. The eigenvectors of
jk define the polarization vectors g.
If not specified explicitly, the Christoffel tensor �jk and eigenval-

es G are assumed to be functions of the slowness vector p, �jk

�jk�p�, and G � G�p�. Using perturbation theory, the Christoffel
ensor �jk is decomposed as

�jk � �jk
0 � ��jk, �10�

here �jk
0 is the Christoffel tensor in the background medium

�jk
0 � aijk�

0 pi
0p�

0 �11�

nd ��jk is its perturbation controlled by perturbations of elastic pa-
ameters �aijk� and by perturbation of the slowness vector �p:

��jk � �aijk�pi
0p�

0 � aijk�
0 �pi

0�p� � p�
0�pi� . �12�

If the Christoffel tensor �jk
0 has three different eigenvalues G0�m�,

� 1,2,3, it is called nondegenerate, and standard perturbation
ormulas for calculating its eigenvalues and eigenvectors can be ap-
lied �Korn and Korn, 2000, their section 15.4–11�. The perturba-
ions of the P-wave eigenvalue G�1� and the P-wave eigenvector g�1�

f �jk are expressed as follows:

�G�1� � ��jkgj
0�1�gk

0�1�, �13�

�gi
�1� �

�G�12�

G0�1� � G0�2�gi
0�2�

�
�G�13�

G0�1� � G0�3�gi
0�3�, �14�

here

�G�rs� � ��jkgj
0�r�gk

0�s�. �15�
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Velocity, attenuation, and quality factor D65
ormulas for the perturbations �G�2�, �G�3�, �g�2�, and �g�3� are anal-
gous.

nergy velocity

The perturbation of energy velocity v �called the group velocity in
lastic media�,

vi �
1

2

�G

� pi
� aijk�p�gjgk, �16�

s expressed as

�vi � �aijk�p�
0gj

0gk
0 � aijk�

0 p�
0�gj

0�gk � gk
0�gj�

� aijk�
0 �p�gj

0gk
0. �17�

aking into account equation 14, we obtain for the P-wave

�vi
�1� � �avi

�1� � �pvi
�1�, �18�

�avi
�1� � �aijk�p�

0�1�gj
0�1�gk

0�1� �
vi

0�12��aG�12�

G0�1� � G0�2�

�
vi

0�13��aG�13�

G0�1� � G0�3� , �19�

�pvi
�1� � aijk�

0 �p�
�1�gj

0�1�gk
0�1� �

vi
0�12��pG�12�

G0�1� � G0�2�

�
vi

0�13��pG�13�

G0�1� � G0�3� , �20�

here

vi
0�rs� � aijk�

0 p�
0�1��gj

0�r�gk
0�s� � gk

0�r�gj
0�s�� , �21�

�aG�rs� � �aijk�pi
0�1�p�

0�1�gj
0�r�gk

0�s�, �22�

�pG�rs� � aijk�
0 �p�

0�1��pi
�1� � pi

0�1��p�
�1��gj

0�r�gk
0�s�.

�23�

erturbation formulas for the S1- and S2-waves are analogous.

STATIONARY SLOWNESS VECTOR

In this section, the perturbation approach is applied to asymptotic
avefields. The asymptotic quantities describe high-frequency
aves observed at large distances from the source and are calculated

or the slowness vector, taken at a stationary point on the slowness
urface. The stationary point is a point for which the energy velocity
ector v is homogeneous and its direction is parallel to the ray �for
etails, see Vavryčuk, 2007a�. The stationary slowness vector p is
enerally complex-valued and inhomogeneous, and it can be calcu-
ated by a nonlinear inversion or by solving a system of three cou-
led sixth-order polynomial equations. Once p is found, all
symptotic wave quantities can be calculated readily.

If the viscoelastic medium is obtained by a small perturbation of
n elastic background medium �see equations 4 and 5�, the vis-
oelastic wave quantities can be calculated as perturbations of the
lastic ones by using the general perturbation formulas derived in the
revious section. However, the perturbation formulas must be modi-
ed further to be valid for asymptotic quantities. The main differ-
nce between general perturbations and perturbations for asymp-
otic quantities lies in the perturbation of slowness vector �p. In gen-
ral formulas, �p is not a priori fixed but depends on the studied
ave, characterized by its wave normal and wave inhomogeneity

Červený and Pšenčík, 2005� On the other hand, �p is not arbitrary
or asymptotic quantities but takes only one specific value with no
reedom in setting the wave normal or wave inhomogeneity. The val-
e of �p must ensure that p is taken at the stationary point on the
omplex-valued slowness surface. Taking the slowness vector at the
tationary point implies that v is homogeneous and parallel to the
xed ray direction.

erturbation �v

In the first-order perturbation theory, the ray direction N can be
xed, so energy velocity vector v is parallel to the ray in the back-
round as well as in the perturbed medium

v � Nv, v0 � Nv0. �24�

onsequently, velocity perturbation �v is parallel to background ve-
ocity v0:

�v � N�v . �25�

aking into account equation 16 and the fact that the eigenvalue G of
jk for the studied wave is equal to one �see equation 9� in the back-

round as well as in the perturbed medium, we obtain

vipi � 1, vi
0pi

0 � 1. �26�

ence,

�vipi
0 � vi

0�pi � 0. �27�

ultiplying equation 17 by pi
0 and taking into account equation 27,

e obtain

�vipi
0 �

1

2
�aijk�pi

0p�
0gj

0gk
0. �28�

he left-hand side of equation 28 can be simplified further to read

�vipi
0 �

�v
v0 , �29�

here

�vi � �vNi and Nipi
0 �

1

v0 . �30�

ence,

�v �
v0

2
�aijk�pi

0p�
0gj

0gk
0 �31�

nd
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D66 Vavryčuk
�vi �
vi

0

2
�amjk�pm

0 p�
0gj

0gk
0. �32�

erturbation �p

Equations 18 and 32 yield

�avi � �pvi �
vi

0

2
�amjk�pm

0 p�
0gj

0gk
0, �33�

here �av and �pv are defined in equations 19 and 20. Equation 33
an be expressed as

Hi�
0 �p� �

vi
0

2
�amjk�pm

0 p�
0gj

0gk
0 � �avi, �34�

here Hi�
0 is the wave metric tensor in the background medium �see

avryčuk, 2003, his equation 15�. The wave metric tensor Hi� is de-
ned as �Červený, 2001, his equation 2.2.65�

Hi��p� �
1

2

� 2G�p�
� pi� p�

�35�

nd is connected with the Gaussian curvature of the slowness surface
see Klimeš, 2002�. Taking into account equation 15 of Vavryčuk
2003� and equations 19 and 22 in this paper, tensor Hi�

0 and vector
av in equation 34 are expressed for the P-wave as follows:

Hi�
0�1� � aijk�

0 gj
0�1�gk

0�1� �
vi

0�12�vl
0�12�

G0�1� � G0�2� �
vi

0�13�vl
0�13�

G0�1� � G0�3� ,

�36�

�avi
�1� � �amjk�p�

0�1�gj
0�1��� imgk

0�1� �
vi

0�12�pm
0�1�gk

0�2�

G0�1� � G0�2�

�
vi

0�13�pm
0�1�gk

0�3�

G0�1� � G0�3� � , �37�

here � ij is the Kronecker delta. All quantities in the background
edium are real valued and �aijk� is purely imaginary, so equations

6 and 37 imply that Hi�
, also is real valued and �av is purely imagi-

ary.
Equation 34 represents a system of three linear equations in un-

nown perturbations �p1, �p2, and �p3; hence, perturbation �p fi-
ally comes out as

�p� � �Hi�
0 ��1�vi

0

2
�amjk�pm

0 p�
0gj

0gk
0 � �avi	 . �38�

ll background quantities are real valued, and �aijk� and �av are
urely imaginary, so �p is purely imaginary. Obviously, this proper-
y is lost when higher-order perturbations are applied. Also the as-
umption of the fixed N is generally no longer valid in the higher or-
er ray theory.

Note that equation 38 is valid under several limitations. First, vis-
ous parameters must be small with respect to elastic parameters
see equations 4 and 5�. Second, the wave must not propagate in di-
ections close to cusp edges on the wave surface. The cusp edges
rise when the wavefront is multifolded and correspond to parabolic
ines on the slowness surface �Vavryčuk, 2003�. The inverse of the
ave metric tensor �Hi�

0 ��1 is large or diverges near parabolic lines;
hus, the perturbation theory is inapplicable. Third, the wave must
ot propagate near directions associated with singularities �acoustic
xes� on the slowness surface �Vavryčuk, 2005�. The Christoffel ten-
or is nearly degenerate in these directions, and the standard pertur-
ation formulas fail.

PHASE VELOCITY, ATTENUATION,
AND Q-FACTOR

efinitions

Phase quantities describe propagation of a plane tangential to the
avefront. By decomposing p, we obtain �see Vavryčuk, 2007b; his

quation 2�

p � ��Vphase��1 � iAphase�s � iDphaset , �39�

here Vphase, Aphase, and Dphase are the real-valued phase velocity,
hase attenuation, and phase inhomogeneity. Vectors s and t are real-
alued, mutually perpendicular unit vectors; s is normal to the wave-
ront �called the wave normal�; and t lies in the wavefront �called the
ave tangent�. Hence, the phase velocity and phase attenuation are

alculated from p as

Vphase �
1


pR

, �40�

Aphase � pI · s , �41�

Dphase � pI · t , �42�

here

s �
pR


pR

, t �

pI � �pI · s�s

pI � �pI · s�s


, �43�

nd symbol 
a
 � �a ·a � �ajaj denotes the magnitude of real-val-
ed vector a.
The phase Q-factor �Qphase-factor� is defined as �Carcione, 2000,

is equation 14; Carcione, 2001, his equation 4.92�

Qphase ��
�c2�R

�c2�I , �44�

here c is the complex-valued phase velocity c � 1/�pipi.
In elastic media, p is real-valued. Consequently, the Qphase-factor

s infinite, and c becomes real-valued and equals the phase velocity
phase.

erturbations

Taking into account that

p � p0 � �p , �45�

here p0 is a real-valued vector and perturbation �p is a purely
maginary vector �see equation 38�
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p0 � p0R, �p � i�pI, �46�

e readily obtain

Vphase � �Vphase�0, �47�

Aphase � �pI · s0, �48�

Dphase � 
�pI � Aphases0
 . �49�

sing the following approximate formula,

c2 �
1

�pi
0 � �pi��pi

0 � �pi�
�

1

pi
0pi

0 � 2pi
0�pi

�
1

pj
0pj

0�1 � 2
�pipi

0

pj
0pj

0 	 , �50�

he inverse of the phase quality factor comes out as

�Qphase��1 � 2
�pi

Ipi
0R

pj
0Rpj

0R � 2c0Aphase. �51�

imilar to the phase velocity, the wave normal s remains unchanged
or the background and the perturbed medium.

RAY VELOCITY, ATTENUATION, AND Q-FACTOR

efinitions

Ray quantities describe the propagation of waves along a ray. The
ay velocity Vray�see Vavryčuk, 2007b, his equation 21�,

Vray �
vv*

vR
�

vRvR � vIvI

vR , �52�

ontrols the propagation velocity along a ray. The ray attenuation
ray �see Vavryčuk, 2007b, his equation 22�,

Aray � �
vI

vv*
� �

vI

vRvR � vIvI , �53�

ontrols the amplitude decay along a ray. The ray velocity and ray at-
enuation are real-valued and can be measured in wavefields along a
ay. Analogous to the phase Q-factor defined in equation 44, we also
an introduce the ray Q-factor �see Vavryčuk, 2007b, his equation
4�:

Qray ��
�v2�R

�v2�I . �54�

ntroducing ray inhomogeneity Dray makes no sense because v is ho-
ogeneous; hence, Dray is identically zero.
erturbations

Substituting the equations

vR � v0R and �v � ivI �55�

nto equations 52 and 53, taking into account equation 32, and retain-
ng the first-order perturbations, we obtain

Vray � v0R � v0, �56�

Aray �
i�v

v0Rv0R � �
1

2v0�aijk�
I pi

0p�
0gj

0gk
0. �57�

inally, using equation 31 and the approximate formula

v2 � �v0 � �v�2 � �v0�2 � 2v0�v , �58�

he inverse of the ray Q-factor comes out as

�Qray��1 � ��aijk�
I pi

0p�
0gj

0gk
0 � 2v0Aray. �59�

he ray direction N is the same for the background and the perturbed
edia because it was fixed when perturbations were derived. For-
ulas similar to 57 and 59 are also valid for the ray attenuation and

ay Q-factor of weakly inhomogeneous plane waves �see Červený
nd Pšenčík, 2007�. Note that equation 59 also is derived by Gajew-
ki and Pšenčík �1992�, who assume a weakly attenuating medium
escribed by Futterman’s dispersion relation �Futterman, 1962�.
ere, I show that equation 59 is valid independent of any type of dis-
ersion.

PHASE AND RAY VELOCITIES WITH
IMPROVED ACCURACY

The phase and ray velocities in the perturbed viscoelastic medium
ave the same value as in the elastic background medium �see equa-
ions 47 and 59�. This implies that the first-order perturbations do not
eflect the velocity shift caused by attenuation of the medium. If such
n approximation is insufficient and more accurate formulas are
eeded, we can combine perturbations with exact calculations. In
his way, the perturbations are used only for determining the station-
ry slowness vector, which is the crucial and most complicated step
n the calculations. All other quantities are computed by using exact
ormulas. Note that this approach is not applicable to inhomoge-
eous media because the assumption of a fixed ray direction used in
erturbations is not exact but approximate for inhomogeneous me-
ia.

Specifically, we apply the following procedure. First, the slow-
ess vector p is calculated using equations 38 and 45. Second, p is
ormalized to obtain the slowness direction n � p/�pjpj. Third, the
omplex phase velocity c and real phase velocity Vphase are calculated
sing equations 8 and 40. Finally, the complex energy velocity vec-
or v and the ray velocity Vray are calculated using equations 16 and
2.

NUMERICAL EXAMPLES

This section demonstrates the accuracy of the perturbation formu-
as using numerical examples performed on the P-wave. Eight test
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D68 Vavryčuk
viscoelastic models display transverse isotropy
with various strength of anisotropy and attenua-
tion. The anisotropy strength ranges from 10% to
20%, close to observations typical for sedimenta-
ry rocks �Thomsen, 1986; Vernik and Liu, 1997;
Jakobsen and Johansen, 2000�. The Q-factors
range over a broad interval of values, from mod-
erate �Q � 40–60� to very strong �Q � 5–7� at-
tenuation. The very strong attenuation is rather
extreme and typically is not measured �Shank-
land et al., 1993; Liu et al., 1997; Best et al., 2007�
or predicted from theoretical models of sedimen-
tary rocks �Carcione, 2000; Carcione et al.,
2003�. Here, it demonstrates limits of applicabili-
ty of perturbations. Although the models are arti-
ficial and do not cover all possible variations of
anisotropy and attenuation in realistic rocks, they
should give sufficient insight into the efficiency
of perturbation formulas derived.

The viscoelastic parameters of the models are
summarized in Tables 1 and 2. Table 1 lists the pa-
rameters in Voigt notation, and Table 2 lists them
in Thomsen notation. The eight models combine
two models of velocity anisotropy �models A and
B� and four levels of attenuation �models A1–A4
and B1–B4�. The P-wave anisotropy is about
23% for models A1–A4 and about 10% for mod-
els B1–B4 �see Table 3�. The strongest attenua-
tion is in models A1 and B1, the mean Qray-factor
being about 5.5. The weakest attenuation is in
models A4 and B4, the mean Qray-factor being
about 43.5. The attenuation anisotropy is 65% for
models A1–A4 and 55% for models B1–B4. The
Q-factor anisotropy is 45.5% for all eight models.
The frequency of the signal is assumed to be
30 Hz.

Figure 1 shows polar plots of the P- and SV-
wave group velocities for the elastic background
of models A and B. The SV-wave group velocity
displays a triplication. The triplication causes a
nonunique relation between the phase and ray di-
rections. For some ray directions, three wave nor-
mals can be observed �see Figure 2�. As men-
tioned, the triplication prevents the perturbation
formulas from being applicable; hence, the calcu-
lations are performed only for the P-wave.

Figure 3 shows the directional variations of
real and imaginary parts of the slowness, the di-
rectional variations of the phase and ray veloci-
ties, the attenuations, and the Q-factors for model
A1. The angles range from 0° to 90°. The slow-
ness, velocities, attenuations, and Q-factors are
calculated using two approaches: �1� asymptotic
formulas described in Vavryčuk �2007b� and �2�
the first-order perturbations derived in this paper.
Figure 3 shows that the perturbations yield biased
results with errors of about 2%–4%. The best ap-
proximation is obtained for the Q-factor, with er-
rors less than 0.5%.

or
ijk�.
itive to

arameters

Q33 Q44

5 4

10 8

20 16

40 32

5 4

10 8

20 16

40 32

ion of
Tsvankin
sensitive to

eters

� Q

3 0.500

3 0.500

3 0.500

3 0.500

3 0.383

3 0.383

3 0.383

3 0.383

y, Āray, and
ay, aA

ray, and
nd
Umin)Õ
values of

aQ
ray �%�

45.4

45.4

45.4

45.4

45.6

45.6

45.6

45.6
able 1. Viscoelastic parameters. Two-index Voigt notation is used f
ensity-normalized elastic parameters aijk�

R and quality parameters q
arameter A66

R and Q66 are not listed because the P-wave is not sens
hem.

Elastic parameters Attenuation p

odel
A11

R

�km2/s2�
A13

R

�km2/s2�
A33

R

�km2/s2�
A44

R

�km2/s2� Q11 Q13

1 14.4 4.50 9.00 2.25 7.5 4

2 14.4 4.50 9.00 2.25 15 8

3 14.4 4.50 9.00 2.25 30 16

4 14.4 4.50 9.00 2.25 60 32

1 10.8 3.53 9.00 2.25 7.5 4

2 10.8 3.53 9.00 2.25 15 8

3 10.8 3.53 9.00 2.25 30 16

4 10.8 3.53 9.00 2.25 60 32
able 2. Viscoelastic parameters in Thomsen notation. For a definit
arameters in Thomsen notation, see Thomsen (1986) and Zhu and
2006). Parameters � and � Q are not listed because the P-wave is in
hem.

Elastic parameters Attenuation param

odel
VPo

�km/s�
VS0

�km/s� � �
AP0

�10�2�
AS0

�10�2� �Q

1 3.00 1.50 0.30 0.00 9.90 12.31 �0.33

2 3.00 1.50 0.30 0.00 4.99 6.23 �0.33

3 3.00 1.50 0.30 0.00 2.50 3.12 �0.33

4 3.00 1.50 0.30 0.00 1.25 1.56 �0.33

1 3.00 1.50 0.10 �0.10 9.90 12.31 �0.33

2 3.00 1.50 0.10 �0.10 4.99 6.23 �0.33

3 3.00 1.50 0.10 �0.10 2.50 3.12 �0.33

4 3.00 1.50 0.10 �0.10 1.25 1.56 �0.33
able 3. P-wave velocity and attenuation anisotropy. The values V̄ra

¯ ray are the mean P-wave ray velocity, attenuation, and Q-factor; aV
r

Q
ray are the P-wave ray velocity anisotropy, attenuation anisotropy, a
-factor anisotropy. The anisotropy is calculated as a � 200 (Umax �

Umax � Umin), where Umax and Umin are the maximum and minimum
he respective quantity.

odel V̄ray �km/s� aV
ray �%� Āray �s/km� aA

ray �%� Q̄ray

1 3.32 22.6 28.8�10�3 64.3 5.4

2 3.28 23.2 14.7�10�3 65.4 10.8

3 3.27 23.3 7.4�10�3 65.6 21.5

4 3.27 23.4 3.7�10�3 65.7 43.0

1 3.10 9.5 30.2�10�3 53.9 5.4

2 3.07 10.3 15.4�10�3 55.1 10.9

3 3.06 10.5 7.7�10�3 55.4 21.7

4 3.06 10.5 3.9�10�3 55.4 43.5
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) b)

) d)

Figure 1. Polar plots of the P- and SV-wave group
velocities for models A and B. �a� P-wave velocity
in modelA, �b� SV-wave velocity in modelA, �c� P-
wave velocity in model B, and �d� SV-wave veloci-
ty in model B. Only parameters of the elastic back-
ground medium are considered. For parameters of
the models, see Tables 1 and 2.
) b)

) d)

Figure 2. P- and SV-wave phase angles as a func-
tion of the ray direction for models A and B. �a�
P-wave phase angle in modelA, �b� SV-wave phase
angle in model A, �c� P-wave phase angle in model
B, and �d� SV-wave phase angle in model B. Only
parameters of the elastic background medium are
considered. For parameters of the models, see Ta-
bles 1 and 2.
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Model A1 displays the strongest attenuation
among models A1–A4, exhibiting that the pertur-
bation formulas work with the lowest accuracy.
For models of weaker attenuation, the accuracy
increases. For models A2, A3, and A4, the errors
are less than 1%, 0.3%, and 0.1%, respectively
�see Table 4�. Figure 4 compares the asymptotic
solution and the first-order perturbations for
model A3, proving that the differences between
the solutions are almost invisible. Similar values
of errors also are obtained for models B1–B4 �see
Table 4�.

Figures 5 and 6 compare the correct asymptot-
ics, the first-order perturbations, and the perturba-
tions with improved accuracy for models A1 and
B1. The errors are summarized in Table 5. The
comparison indicates that the accuracy of the
first-order perturbations is improved remarkably
by following the procedure described earlier. For

r for a
Uexact and
ty. The

or
ase

�

Error
Qray

�%�

3 0.50

0 0.13

0 0.04

0 0.03

0 0.50

5 0.13

5 0.04

5 0.02

b)

d)

f)

h)
able 4. Maximum errors of the first-order perturbations. The erro
articular ray is calculated as E � 100�Uexact � Uapprox�ÕUexact, where
aprox are the exact and approximate values of the respective quanti
resented values are the maxima over all rays.

odel

Error
pR

�%�

Error
pI

�%�

Error
Vphase

�%�

Error
Vray

�%�

Error
Aphase

�%�

Error
Aray

�%�

Err
Qph

�%

1 1.72 4.25 1.63 1.63 2.88 2.79 0.1

2 0.44 1.08 0.42 0.42 0.73 0.70 0.1

3 0.11 0.29 0.11 0.11 0.19 0.18 0.1

4 0.03 0.10 0.03 0.03 0.10 0.05 0.1

1 1.66 3.84 1.63 1.63 2.79 2.80 0.1

2 0.42 0.97 0.42 0.42 0.70 0.71 0.0

3 0.11 0.25 0.11 0.11 0.18 0.18 0.0

4 0.03 0.07 0.03 0.03 0.05 0.05 0.0
a)

c)

e)

g)

igure 3. Plots of real and imaginary parts of �a, b�
-wave slowness, �c, d� P-wave phase and ray ve-

ocities, �e, f� attenuations, and �g, h� Q-factors in
odelA1. Solid line — exact formulas; dashed line

first-order perturbations. The ray angle repre-
ents the deviation of a ray from the vertical axis.
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b)a)

d)c)

f))

h)g)

Figure 4. Plots of real and imaginary parts of �a, b�
P-wave slowness, �c, d� P-wave phase and ray ve-
locities, �e, f� attenuations, and �g, h� Q-factors in
modelA3. Solid line — exact formulas; dashed line
— first-order perturbations.
b))

d))

Figure 5. Plots of �a, b� P-wave slowness and �c, d�
velocities in model A1. Solid line — exact formu-
las; dotted line — first-order perturbations; dashed
line — perturbations with improved accuracy.
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D72 Vavryčuk
odels A1 and B1, which have the strongest attenuation, the refined
ormulas yield the errors in the phase and ray velocities less than
.5%. This documents that the perturbation approach is sufficiently
ccurate not only for media with weak attenuation but for the whole
ange of attenuative media, which might be observed in seismology
nd seismic exploration.

CONCLUSIONS

For calculating asymptotic wave quantities in media with attenua-
ion, it is advantageous to apply the first-order perturbation theory.
he elastic medium is considered as a background medium, and the
ttenuation effects are incorporated as perturbations. Interestingly,
ome quantities are unaffected by the first-order perturbations being
he same for perturbed as well as unperturbed media. This concerns
he phase and ray velocities and their directions. The perturbations of
he slowness vector, the polarization vector, and the other quantities
nder study are nonzero.

The most complicated task is to calculate perturbation of the sta-
ionary slowness vector �p. Perturbation �p is calculated by solv-
ng a system of three linear equations; it involves inverting the wave

able 5. Maximum errors of the improved perturbations.

odel
Error pR

�10�1%�
Error pI

�10�1%�
Error Vphase

�10�1%�

1 4.60 23.62 4.68

2 1.25 6.22 1.11

3 0.33 1.70 0.29

4 0.13 1.17 0.13

1 2.36 18.11 2.41

2 0.67 4.77 0.72

3 0.18 1.27 0.20

4 0.05 0.54 0.06

a)

c)

igure 6. Plots of �a, b� P-wave slowness and �c, d�
elocities in model B1. Solid line — exact formu-
as; dotted line — first-order perturbations; dashed
ine — perturbations with improved accuracy.
metric tensor of the background medium Hi�
0 .

Equation 38 for calculating �p is the key result of
this paper. Once �p is evaluated, calculating
Aphase, Qphase, and Dphase is straightforward �see
equations 48, 49, and 51�. Calculating the ray
quantities Aray and Qray is even simpler than calcu-
lating the corresponding phase quantities. The
ray quantities can be expressed in terms of medi-
um perturbations �aijk� without the need to calcu-
late �p �see equations 57 and 59�. This finding is
important because it can greatly facilitate the in-
version for quality parameters from observations
of wave attenuation in anisotropic media.

The derived formulas are valid under the fol-
lowing limitations. First, they describe high-fre-
quency wavefields at distances far from the
source. Second, the wave must not propagate in
directions close to cusp edges on the wave surface

ecause the standard asymptotics fail in these directions. Third, the
ave must not propagate near directions associated with singulari-

ies �acoustic axes� on the slowness surface because the Christoffel
ensor becomes nearly degenerate and the standard perturbation for-

ulas fail.
Numerical modeling documents that the first-order perturbations

re highly accurate. They yield a reasonable accuracy even for ex-
remely strong attenuation. The accuracy is 4% or less for media
ith a Q-factor of about five, and 0.3% or less for media with a
-factor of 20 or higher. Because most rocks in the earth’s crust and

n the mantle are characterized by Q-factors higher than 20, the ap-
licability area of the first-order perturbations is very broad, cover-
ng applications from global earthquake seismology to seismic ex-
loration. Moreover, the accuracy of perturbations can be enhanced
urther. If perturbations are used only to calculate the complex direc-
ion of the stationary slowness vector and all other computations are
erformed exactly, the accuracy is remarkably higher. This costs al-
ost no additional computer time and results in errors of the phase

nd ray velocities less than 0.5% in media with a Q-factor of five and
ess than 0.03% in media with a Q-factor of 20 or higher.

Error Vray

�10�1%�

3.72

1.02

0.26

0.07

2.16

0.62

0.16

0.04

b)

d)
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