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Weak anisotropy-attenuation parameters

Vaclav Vavryéuk'

ABSTRACT

Velocity anisotropy and attenuation in weakly anisotropic
and weakly attenuating structures can be treated uniformly
using weak anisotropy-attenuation (WAA) parameters. The
WAA parameters are constructed in a way analogous to weak
anisotropy (WA) parameters designed for weak elastic aniso-
tropy. The WA A parameters generalize WA parameters by in-
corporating attenuation effects. They can be represented al-
ternatively by one set of complex values or by two sets of real
values. Assuming high-frequency waves and using the first-
order perturbation theory, all basic wave quantities such as
the slowness vector, the polarization vector, propagation ve-
locity, attenuation, and the quality factor are linear functions
of WAA parameters. Numerical modeling shows that pertur-
bation equations have different accuracy for different wave
quantities. The propagation velocity usually is calculated
with high accuracy. However, the attenuation and quality fac-
tor can be reproduced with appreciably lower accuracy. This
happens mostly when the strength of velocity anisotropy is
higher than 10% and attenuation is moderate or weak (Q
-factor > 20). In this case, the errors of the attenuation or
Q-factor can attain values comparable to the strength of an-
isotropy or even higher. A simple modification of the equa-
tions by including some higher-order perturbations improves
accuracy by three to four times.

INTRODUCTION

Anisotropic attenuating media are frequently found in exploration
seismics and are studied intensively in the theory of seismic wave
propagation (Carcione, 1994, 2000, 2007). Because a general ap-
proach valid for wave modeling in anisotropic attenuating media
with any strength of anisotropy and attenuation is complicated and
demanding computationally (Carcione, 1990; Saenger and Bohlen,
2004), it is advantageous to adopt several simplifying assumptions.
First, we often assume the studied waves are of high frequency; sec-

ond, we assume the medium is weakly anisotropic and/or weakly at-
tenuating. Both conditions are reasonable and frequently metin seis-
mic practice. Imposing these conditions is worthwhile because it al-
lows us to apply (1) aray theory, designed for propagating high-fre-
quency waves (Cerveny, 2001), (2) perturbation theory, suitable for
solving wave-propagation problems related to weak anisotropy and
weak attenuation.

So far, the perturbation theory has been applied mainly to wave-
propagation problems in weakly anisotropic elastic media (Thom-
sen, 1986; Jech and PSencik, 1989; Vavrycuk, 1997, 2003; Farra,
2001, 2004; Song et al., 2001; PSenéik and Vavrycuk, 2002). This
medium is introduced as a perturbation of an isotropic elastic back-
ground, and anisotropic wave quantities are calculated as perturba-
tions of isotropic wave quantities. The perturbation equations de-
pend linearly on weak anisotropy (WA) parameters, which quantify
the elastic anisotropy of the medium (Thomsen, 1986; Mensch and
Rasolofosaon, 1997; Rasolofosaon, 2000; PSencik and Farra, 2005;
Farra and PSencik, 2008). A similar approach can be applied to
weakly attenuating media where wave quantities in attenuating me-
dia are calculated as perturbations of those in nonattenuating media.
These approaches can be combined, and the effects of weak aniso-
tropy and weak attenuation can be treated simultaneously and uni-
formly.

I have developed a perturbation theory applicable to propagating
high-frequency waves in weakly anisotropic and weakly attenuating
media. All basic wave quantities are expressed in terms of weak an-
isotropy-attenuation (WA A) parameters, which quantify the veloci-
ty and attenuation anisotropy and play a key role in the perturbation
equations. They can be defined as complex-valued or real-valued
quantities.

Complex WAA parameters were first introduced by Rasolofosaon
(2008) and were applied to propagating homogeneous plane waves
in weakly anisotropic and weakly attenuating media of arbitrary
symmetry. Rasolofosaon (2008) uses the correspondence principle
in his derivation and considers an anisotropic viscoelastic reference
medium. A complete set of real-valued WAA parameters has not
been published yet. Real-valued WA A parameters have a form simi-
lar to a linearized version of Thomsen parameters known from stud-
ies of elastic and viscoelastic transverse isotropy (Zhu and Tsvankin,
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2006) and orthorhombic anisotropy (Zhu and Tsvankin, 2007).

All previous approaches are based on the assumption of propaga-
tion of homogeneous plane waves. Because I deal with high-fre-
quency waves that are generally inhomogeneous, this paper is a step
further from homogeneous plane-wave approaches (Carcione,
2000; Chichinina et al., 2006; Cerveny and PSencik, 2005, 2008a,
2008b; Zhu and Tsvankin, 2006, 2007; Rasolofosaon, 2008) toward
more realistic wave modeling. This mainly relates to calculating sta-
tionary slowness vectors, polarization vectors, and other wave quan-
tities that inherently depend on wave inhomogeneity (see Vavry¢uk,
2007a, 2007b). Wave inhomogeneity can be calculated uniquely in
the ray theory from an experimental setup (i.e., from source and re-
ceiver positions, medium parameters, and boundary conditions) but
must be assumed a priori in plane-wave approaches.

This paper is also an extension of previous work (Vavrycuk, 2008)
because it assumes the reference background medium is attenuating
instead of purely elastic.

PERTURBATION EQUATIONS

A weakly anisotropic and weakly attenuating medium can be
viewed as a medium obtained by a small perturbation of an isotropic
elastic or viscoelastic reference medium:

_ 0
Aijpr = iy T Aajigs (1)

where a?jk, defines the reference medium and Aa its perturbation.
The density-normalized viscoelastic stiffness parameters agy, can be
expressed in terms of the P- and S-wave velocities ¢§ and ¢} in the
reference medium:

a?jkl = ((cp)* — 2(0(5))2)5ij5k1 + (0(5))2(5ik5j1 + 8ud ),
()

where &;; denotes the Kronecker delta. If the reference medium is
elastic, the reference parameters are real and the perturbations are
complex,

a?jkl = a}}kl’ Aayy = Aa};kl + iAatl‘jkl’ 3)
where perturbations Aaj,, and Aaj,, describe weak anisotropy and
weak attenuation, respectively. If the reference medium is viscoelas-
tic, the reference parameters and perturbations are complex. To keep
the approach as general as possible, the reference medium is consid-
ered as viscoelastic.

Using the first-order perturbation theory, we can simplify the
equations for the phase and ray quantities derived for homogeneous
media of arbitrarily strong anisotropy and attenuation (see Vavry-
¢uk, 2007a, 2007b). The approach is basically the same as presented
in Vavry¢uk (2008) except we now consider a different reference
medium because the reference medium is assumed to be anisotropic
elastic in Vavry¢uk (2008) and isotropic viscoelastic in this paper.
The ray direction is fixed during perturbations. The perturbation of
the eigenvalue of the Christoffel tensor G(n),

G(n) = a;ynng;gr = ¢, 4)
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reads

G =Gy + AG, (5)
Go=cg. AG=Aanin]gls). (6)

The eigenvalue G, in the reference medium and the perturbation AG
are complex valued:

Go= Gy +iGy, AG=AGR +iAG, (7)
AGR = Aajyniniejey, (®)
AG' = Aajyninig)e;, ©)

where slowness and polarization vectors n® and g° are real valued
and correspond to an isotropic viscoelastic reference medium. For
the P-wave, the polarization vector g° equals the slowness direction
vector n’. For the S-waves, the polarization vectors g° lie in the plane
perpendicular to n°. Their orientation in this plane must be calculat-
ed according to perturbation equations designed for degenerate
eigenvectors (see Appendix A in Vavry¢uk, 2003).

Equations 8 and 9 are valid if perturbations Aajy, and Aaj,, are
mutually comparable and small with respect to reference medium
values. Because Aajy, often is significantly smaller than Aajy,, equa-
tion 9 can appear to have a low accuracy (see Numerical Examples).
The inaccuracy is incorporated into equation 9 by identifying slow-
ness direction n and polarization vector g in an anisotropic medium
with n and g in the isotropic reference medium. Thus, the effects of
the velocity anisotropy are neglected fully in equation 9. The accura-
cy is improved if we adopt a modified equation for AG', expressed as

AG'= Aagjkln:»{n?g;)gg. (10)

Even higher accuracy is achieved for AG', expressed as
I R RRR

where nR and gR are the real parts of the slowness and polarization
vectors in a weakly anisotropic medium, respectively. Similarly,
equation 8 for AGR should be modified in a way analogous to equa-
tions 10 or 11 if we study the details of a very weakly anisotropic but
strongly attenuating medium.

The perturbation of the slowness vector is derived in Appendix A.
The slowness vector is homogeneous in the reference medium but
generally inhomogeneous in a perturbed medium. However, the in-
homogeneity is small, being on the order of the first perturbation.
The perturbation of a polarization vector is derived in Appendix B.

If we calculate complex energy velocity v as the magnitude of
complex energy velocity vector v,

—
U =NV, Ui = QP18 8 ks (12)

and complex phase velocity ¢ from equation 4, we obtain velocities v
and c that are equal in the first-order perturbation theory and read

v=c= \/5. (13)

Similarly, other ray and phase quantities (for their definitions, see
Vavry€uk, 2007b) are equal in the first-order perturbation theory:

Vphase — Vray’ [Qphase]—l — [Qray]—l, Aphase = AT (14)
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Hence, hereafter I do not distinguish between the ray and phase
quantities but speak only of velocity V, quality factor Q, and attenua-
tionA.

The propagation velocity is expressed as

— lAGR)
V=yVGR=Vy|1+= ) 15
\ 0( 2 GOR ( )

This equation follows from the expression V2 = V3 + AGR, where V,
corresponds to the velocity in the isotropic elastic part of the refer-
ence medium V3 = G§. The attenuation and Q-factor read

AG' AG'

= A:AV_2_V3’

o (16)

-1 _ -1
0 —Xv

or, alternatively,

. 4 AG! AG!
0 =0y 1+?, AZAVI-I—?, (17)

0 0
where
GO = C(z), Gg = (C%)R’ G{) = (c(z))l’
GI
-1 0
QV = - W?
Go
Ay= — ﬁ . (18)
Equations 16 and 17 follow from equations Q! = —G'/GR and

A = Q7'/2V (seeequations 44, 51, 54, and 59 in Vavrycuk, 2008). It
should be emphasized that Q,,' and A are not quantities describing
anisotropic viscoelastic reference medium; they reflect the effects of
weak velocity anisotropy being directionally dependent. The depen-
dence on velocity Vis acknowledged by using subscript V. Equation
16 holds for viscoelastic and elastic reference media; equation 17 is
restricted to the viscoelastic reference medium only (Gj in the de-
nominator must be nonzero).

Although the phase and ray quantities are equal, the ray and slow-
ness directions differ (see PSencik and Vavry&uk, 2002). Ray direc-
tion N is real and fixed and therefore does not change during pertur-
bations N = N°. The ray direction N is equal to the slowness direc-
tion n’ in the isotropic reference medium. However, the slowness di-
rection n in a perturbed medium deviates from n° and N and is gener-
ally complex. The difference between directions n and N is on the
order of the first perturbation.

A similar observation about the approximate equality of phase
and ray attenuations (equation 14) is reported by Behura and Ts-
vankin (2009), who show that the so-called normalized group atten-
uation coefficient estimated along seismic rays practically coincides
with the phase attenuation coefficient computed for a zero-inhomo-
geneity angle. However, in strongly anisotropic and attenuating me-
dia, the equality of the ray and phase attenuation coefficients can be
broken under certain conditions, especially for large inhomogeneity
angles (Vavry¢uk, 2007b; Behura and Tsvankin, 2009).

WAA PARAMETERS

Instead of using perturbations Aa;;, in equations for wave quanti-
ties, it is convenient to rearrange the equations by introducing the di-
mensionless WAA parameters. They are constructed very similarly
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to WA parameters, which are used in weak elastic anisotropy. The
WAA parameters can be defined as complex quantities or real quan-
tities. The complex parameters describe a directional variation of the
complex energy velocity or, equivalently, of the complex phase ve-
locity and jointly reflect the velocity anisotropy and attenuation. One
set of complex WAA parameters can be split into two sets of real
WAA parameters, which describe the directional variations of real
velocity and real attenuation separately.

Procedure

To construct complex and real WAA parameters, we define di-

mensionless perturbations Ag;;y, Agf),,, and Ae&, as

Agjy = %ﬂ, As,-‘;k, = A—ggﬂ, Asgkl = A—gfl’ﬂ
0 0
(19)
Hence,
G = Gy(1 + Agyynin)g)gy),
GR = GOR(I + Asxkln?n?g?gg),
G'=Gy(1 + Asgk,n?n?gggg). (20)
Using the notation
Ae = Asijk,n?n?g?gg,
Ae" = Asgkzn?n?g?gg’
Al = Asgkzn?n?g?g% (21)

the equations for the eigenvalue of the Christoffel tensor, phase ve-
locity, Q-factor, and attenuation read

1
G=Gyl+Ag), V= Vo(l + 5A8V>,

07'=0,'(1+Ae9, A=Ayl + A9, (22)

where
G, G
Go=ci Vo=\l@ 0'=-7 Av=-2L
(23)

Quantities G, and V|, describe the isotropic reference medium and
are directionally independent. Quality factor Qy and attenuation Ay
are directionally dependent.

Definition of complex WAA parameters

To keep the notation consistent with WA parameters defined pre-
viously by Farra and PSencik (2008; their equation A1), the dimen-
sionless perturbations Ag,;;, are expressed in Voigt notation and
slightly rearranged. Hence, complex WAA parameters are defined
ultimately as

_ap— Gg

P P
e _a— Gy e e azy; — Gy
o2y Y 26y T Y 26y

>
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5_[123"‘2(144 Gg _a13+2a55—Gg v a_lfs V_a_lf6 V_a_1224 V_a_zRﬁ
x = G* S GF ’ B1s= 20 BT 20 FuT o0 BT oo
0 0
P R R
5_a12+2a66 Gy v _ 94 v _ Y9
= P ) €34 = "5, E35= "5,
G o a
S S S R R R
7_“44_Go y_ass_Go y ags — Gy g = v %6 v s (26)
=" 5 > ) : ) 46— 20 €56 20 fasT o
T 2G; Y26 268 B B B
ap,+2a ars + 2a . .
it 26 = 46 The attenuation anisotro; arameters are defined analogously as
Xx P y P Py P gously
Gy G the velocity anisotropy parameters but in terms of aj;, Og, and Q5,
I AP 2 I P 2
X:a%6+2a45 o anQyta o anQyta
z GP ’ ey = 2 5 Sy - 2 5
0 2a0 2
I P 2
ais ai6 a4 a2 ap0y) + a
E15= _p» €16 p» €24~ _p» €26~ _p> g? = -,
I I \P 2
£y = 4 45 52— _ (ag; +2a,)Q) + @
¥T G BT b x = 2 >
0 0 a
I I \HP 2
d46 ase das ap;;+2a +a
€46~ g €56 _qv €457 _q» (24) 5)Q = — ( 13 SSZ)QO s
where a;; are complex viscoelastic parameters in the Voigt notation 0 (a112 + 2a166) Ql(; + a?
and where Gf, and G§ are complex eigenvalues of the Christoffel ten- 6, =~ o’ >
sor in the isotropic viscoelastic reference medium corresponding to
the P- and S-waves. They can be calculated from real P- and S-wave 0 ai 4Q8 + B2
velocities @ and B and quality factors Qf and Q5 as follows: YT T 282
. . I AS 2
! ! a +
Go=a1-—], G=8}1-—]. (29 o_ % th
0 P 0 S J’y 2 B
Qo Qo 28
I S 2
¥ = — agQ + B
oge 4 2 s
Definition of real WAA parameters : 2B
If we separate the effects of velocity anisotropy and attenuation, 0 ayy+2ass p 0 Q55 + 261}16 P
we obtain two sets of real WAA parameters: one for the velocity an- Xx =~ 2 00 Xy =~ a? 0>
isotropy (with superscript V) and one for the attenuation anisotropy
(with superscript Q). Again, perturbations Ae},, and Ag%, are rear- 0 a136 + 2a£5 p
ranged in a way similar to equation 24. For the velocity anisotropy Xz =~ a2 0>
parameters, we obtain
I I
R _ 2 R _ 2 R 2 o_ _%s5.p o_ %6, p
v_n—a v _dmm @ v _dnT @ eis=—"500 &i6= 1%
x 2 0 &y 2 0 &z 2
2 2 2a
I I
R R _ 2 R R _ 2 a4 p 9% P
sV = 923 +2a, — v_ i3t 2as5 — « &5 =— —0p» g5 = — —0q»
a2 ’ y a2 ’
a a
R R _ 2 o _ 34 p 0 _ 95 p
V_ ap + 2‘166 o 3= — 7, Qp, €355= — o? Oo»
z 2 ’
a
a as
R 2 R 2 R 2 46 ~S 56 ~S
YV = ay — B ¥ = ass— BB ¥ = ags — B 84%: _FQ()’ 85Q6: _EQO,
X 2,82 4 y ZBZ 4 b4 2B2 4
I
R R R R 445 s
v _ st 2ase v Gos T 2ay el=——30;. (27)
Xx - az ’ Xy - az s ﬁ

R R
v a3e+ 2ays

X =
z a2
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The two sets of real WA A parameters do not coincide with the real
and imaginary parts of the one set of complex WA A parameters. This
is because complex WAA parameters do not separate the effects of
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velocity and attenuation anisotropy (see equation 19). For example,
the real parts of the complex WAA parameters are affected not only
by the velocity anisotropy but also by the attenuation of the reference
medium. On the other hand, the two sets of real WAA parameters
strictly separate the effects of the velocity and attenuation anisotro-
py. The velocity anisotropy parameters are not affected by attenua-
tion, and attenuation anisotropy parameters are independent of the
elastic anisotropy or the elastic properties of the reference medium.
The reader is reminded that the equations for the attenuation aniso-
tropy parameters fail for the elastic reference medium. In this case,
only the approach with complex WA A parameters is applicable.

P-WAVE IN TI MEDIA

In this section, the derived equations are specified for the P-wave
propagating in a transversely isotropic medium with a vertical axis
of symmetry (VTT medium). The medium is described by the follow-
ing parameters in Voigt notation: ayy, dx = a1, dss, Aas, dss = Aaa, A,
ags, ys = dgs, and app = a;; — 2ae. All other parameters are zero.
The parameters a;; are complex valued. The velocity anisotropy and
attenuation are assumed to be weak. The wave quantities are studied
in the x,-x; plane. Perturbations for the SV-wave can be found analo-
gously to the P-wave, and the SH-wave quantities can readily be cal-
culated exactly in the VTI medium.

Equations using perturbations of viscoelastic
parameters

The complex and real velocities, quality factors, and attenuations
for the P-wave are expressed by the following equations:

1AGR
cz=c(2)+AG, V=V0(1 + - ),
2V
01=0; =29 a-a,- 20 (28)
A
where
AG = AanN‘ll + Aa33N§ + 2(Aa13 + 2Aa44)N%N§,
AGR = Ad®\NT + AaN; + 2(Ad, + 2Aa%)NIN2,
AG' = Aa} N} + Ad;N3 + 2(Aal; + 2Ad)NIN3.
(29)
The reference quantities in equation 28 read
i
co=a\|1——=, Vy=a,
9
2 2
o a1 a1
==, Ay="">=—. 30
\%4 Vz QO \%4 2V3 Qg ( )

Vector N is the real ray direction vector, N = (sin 6,0,cos #)”, quan-
tities a and Qf) are the real P-wave velocity and Q-factor in the iso-
tropic viscoelastic reference medium, and angle @ defines the devia-
tion of aray from the symmetry axis.

Equations using WAA parameters

The complex and real velocities, Q-factors, and attenuations for
the P-wave are expressed in terms of WA A parameters by the follow-
ing equations:

wB207

1
2= cg(l +Ag), V= Vo(l + 5A8V>,

07'=0,'(1+A9), A=A/1+As9. (31)
Perturbations Ae, Ae”, and Ag? in equation 31 read
Ae =2(g,N| + &,N3 + 6 NIN3),
Ae¥=2(e/Nj + /N3 + 6/NiN3),
Al = 2(8?1\/? + SZQN;‘ + 5XQN%N§), (32)

where N, = sin 6 and N; = cos 6. The reference quantities are de-
fined in equation 30, and the WAA parameters are defined in equa-
tions 24, 26, and 27.

Equations with improved accuracy

The accuracy of first-order perturbations for A and Q can be im-
proved by incorporating higher-order perturbations. This can be
done when treating the slowness vector in a more accurate way than
in standard equations. So far, the slowness direction n was identified
simply with ray direction N in equations 29 and 32. This approxima-
tion works well for very weak anisotropy. The stronger the anisotro-
py. the lower the accuracy of this approximation. Hence, instead of
using slowness direction n® = N in equation 9, we can use the linear-
izedn®:

n® =n’ + An® = N + Ank. (33)

The perturbation equation for AnR is derived in Appendix A for an-
isotropy of arbitrary symmetry and in Appendix C for transverse
isotropy. Hence, in TI media we obtain for the P-wave,

N
Anf = =2 [ATN] + AIN3],

N
Anf = —2[ATN] + (AT — AN = A7]. (34)

Constants A} and A} are expressed in terms of perturbations Aay, as
R R R R R
Ay = —Aaj, + 2Aa); — Aazyy + 4Aay,,

AN = Ad%, — Ad®, — 2A4%, (35)

and in terms of WA A parameters such as
R 2V _ V_ .V R 2 14 1%
Al =2a°(6; — &, —€]), Ay=a*(— 6, +2¢g).
(36)

Because we correct the slowness direction but not the polarization
vectors in equation 10, substituting ray direction N by the corrected
slowness direction n in equations 29 and 32 will read as follows:

1 1
n=n’+ EAnR =N+ EAnR. (37)

Hence, the corrected equation 32 reads
Ae =2(en| + eni + 8.nin3),

Ae¥=2(eVni + elni + 8Vnin3),
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Ae? =2(%n7 + e2n3 + 6%1n3), (38)

where
ny=N{1—(8) —2e))N; — 2(e¥ + &) — 5))NIN3},
ny = Nx{1 + (5;/ — 28;/)1\7% + 2(8;/ + 8;/ — 5¥)N‘11},
(39)

and n in equation 39 is further normalized to be of a unit length be-
fore being inserted into equation 38.

NUMERICAL EXAMPLES

In this section, I demonstrate the accuracy of the perturbation
equations using numerical examples for the P-wave in homoge-

Table 1. Viscoelastic parameters. The two-index Voigt notation is used for
density-normalized elastic parameters and for quality parameters. Parameters
ags and Qg are not listed because the P-wave is not sensitive to them.

Vavryéuk

neous VTI media. I adopt four viscoelastic models with two
strengths of anisotropy and two levels of attenuation. The models are
denoted as models A2, A4, B2, and B4, taken from Vavryuk (2008).
The anisotropy strength (i.e., the magnitude of the directional veloc-
ity variation) is 23% for models A2 and A4 and 10% for models B2
and B4. The average Q-factors are about 10 for models A2 and B2
and 40 for models A4 and B4. The Q-factor anisotropy is 46% for all
four models (see Table 3 in Vavry&uk, 2008). The models with an an-
isotropy strength of 23% cannot be considered weakly anisotropic.
Here, they are used to illustrate how the accuracy of the perturbation
equations deteriorates in this case. The viscoelastic parameters of
the models are summarized in Table 1. For detailed information on
these models, see Vavrycuk (2008).

Figure 1 shows the directional variations of the exact and approxi-
mate velocities, attenuations A, and Q-factors for
models A2 (left-hand plots) and B2 (right-hand
plots), respectively. Figure 2 shows the same
quantities for models A4 and B4. The angles
range from 0° to 90°. The exact phase quantities

Elastic parameters

Attenuation parameters

(black solid line) are calculated according to
equations 40, 41, and 44 of Vavrycuk (2008). The

R

a a, R

ay a

exact stationary slowness vector is calculated by
a procedure described in Vavrycuk (2007b). The

Model (km21 }Sz) (km¥/s)  (km?/s?) (kmé‘; 9D 0, 0n  0n  Ou approximate velocities, attenuations A, and
- Q-factors are calculated using equations 31 and
A2 14.4 4.50 9.00 295 15 3 10 8 32 (blue dashed line). The reference quantities
Ad 14.4 4.50 9.00 205 60 32 40 3 262(]163 in the approximate equations are listed in
able 2.
B2 10.8 3.53 2.00 225 15 8 10 8 In the approximations, I do not distinguish be-
B4 10.8 3.35 9.00 2.25 60 32 40 32 tween the ray and phase quantities because they
are identical in the first-order perturbation theory.
34 The figures show that the highest accuracy is achieved for the veloci-
= ) ty having errors less than 2% for A models and less than 1% for B
€ models. This result is satisfactory, considering that the strength of
e
z
3 3.3
(0] L
= 32
34l
0.018 - 3.0f
3 i 29 ‘ :
< 0016 A\ 0 30 60 EY
g 0.014 -
'~§ ootk g 0.0048
FC.’. [ > [ N\ o
T 0008 3% e e %% Tz e oo 5
Phase angle (°) kS
5 < 00020, 5 60 90
K Phase angle (°)
2
©
& s
L L L L L L L L L L L g
8 30 60 90 & 30 60 90 bSS
Phase angle (°) S
=}
Figure 1. Exact and approximate velocities, attenuations, and c sl
0 30 60 90

Q-factors in models A2 (left-hand plots) and B2 (right-hand plots).
Black solid lines show exact phase quantities. Blue dashed lines
show approximate quantities calculated using equations 31 and 32.
Red dashed lines show approximate quantities calculated using
equations 41 and 42. The phase angle denotes the deviation of the
real part of the complex slowness vector from the symmetry axis.

Phase angle (°)

Figure 2. Exact and approximate velocities, attenuations, and
Q-factors in models A4 (left-hand plots) and B4 (right-hand plots).
For details, see Figure 1.
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the velocity anisotropy is 23% for A models and 10% for B models.
However, the accuracies of A and Q are considerably lower — ap-
proximately 12—-15% for models A2 and A4 and 7-8% for models
B2 and B4 (see Tables 3 and 4).

To assess the effectiveness and accuracy of perturbation equations
31 and 32, Figures 1 and 2 show the approximate velocities, attenua-
tions, and Q-factors calculated using alternative equations derived
for the P-wave propagating in TI media (red dashed lines) and ex-
ploiting the Thomsen parameters (Thomsen, 1986; Tsvankin, 2005;
Zhu and Tsvankin, 2006),

VI = V(1 + 6NIN; + &NY), (40)
Th _ A_gh 2a72

ATh = VTh(l + 3 NIN; + £oN7), (41)

oM = 42)
2ATthh’

where superscript Th denotes Thomsen’s quantities. V" is the verti-
cal velocity in the elastic reference VTI medium and € and 6 are Th-
omsen parameters (equations 8a and 17 in Thomsen, 1986), A" is
the reference attenuation (Zhu and Tsvankin, 2006; their equation
22), and €, and &, are the attenuation parameters (Zhu and Ts-
vankin, 2006; their equations 28 and 31). Because my definition of A
differs slightly from that in Zhu and Tsvankin (2006), equation 41 is
not identical to the original equation 36 of Zhu and Tsvankin (2006).
The values of the Thomsen parameters used in numerical modeling
are summarized in Table 2 of Vavry&uk (2008).

Figures 1 and 2 show that the accuracy of equations 41 and 42 for
attenuation and Q-factor in models A2 and A4 is almost two times
higher than first-order perturbations 31 and 32. For models B2 and
B4, accuracy is approximately the same for both approaches. This
demonstrates that equations 41 and 42 are preferable in models with
stronger velocity anisotropy. The higher accuracy is achieved be-
cause d in equations 41 and 42 depends not only on the attenuation
of the medium but also on its velocity anisotropy. This property is
lost in real-valued WA A parameters (equations 26 and 27), in which
the effects of the velocity anisotropy and attenuation anisotropy are
separated fully. Therefore, equations 41 and 42 can be viewed as per-
turbation equations that incorporate some higher-order terms.

Interestingly, the accuracy of approximate A and Q in Figures 1
and 2 does not depend on the strength of attenua-
tion, even though one would expect the perturba-
tions to work better for less-attenuating media
(models A4 and B4). This observation is reported
by Zhu and Tsvankin (2006) and is explained by
the fact that the accuracy of attenuation is not
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is summarized in Tables 3 and 4. The figure and tables also show er-
rors of approximate equations 41 and 42 derived by Zhu and Ts-
vankin (2006). Both approaches incorporate some of the higher-or-
der perturbations and yield higher accuracy than first-order pertur-
bations. The accuracy of equations 41 and 42 is almost two times
higher than standard first-order perturbations. The accuracy of equa-
tions 31, 38, and 39 is almost three to four times higher than standard
first-order perturbations. Obviously, more complicated approxima-
tions (e.g., Zhu and Tsvankin, 2006; their equation 19) can yield
even higher accuracy.

Table 2. Values of the isotropic viscoelastic reference
medium.

a B
Model (km/s) (km/s) ob o5
A2 3.40 1.50 10.5 8.0
A4 3.40 1.50 42.0 32.0
B2 3.15 1.50 10.5 8.0
B4 3.15 1.50 42.0 32.0

Table 3. Maximum errors of the perturbations of the
attenuation. The error for a particular ray is calculated as E
— 100| exact — Uapprnxl /Uexact, where U2t and U2prrox gre the
exact and approximate values of the respective quantity. The
presented values are the maxima over all rays. ZT is from
equations 41 and 42. V1 is from equations 31 and 32. V2 is
from equations 31, 38, and 39.

Error-ZT Error-V1 Error-V2

Aphase Ay Aphase ATy Aphase Ay

Model %) () (%) (%) (%) (%)
A2 63 107 116 147 29 31
A4 66 110 118 149 27 33
B2 5.0 6.3 6.8 80 04 1.6
B4 53 6.6 6.9 83 05 1.8

Table 4. Maximum errors of the perturbations of the Q-factor. The error for a
particular ray is calculated as E = 100|U®t — U2prrox|/ U2t where U®* and
U#rrrex are the exact and approximate values of the respective quantity. The
presented values are the maxima over all rays. ZT is from equations 41 and
42. V1 is from equations 31 and 32. V2 is from equations 31, 38, and 39.

only affected by the strength of attenuation but

also by the strength of the velocity anisotropy. Error-ZT Error-V1 Error-V2

The velocity anisotropy and attenuation are de-

scribed by perturbations, and their effects cannot phase o™ phase o™ Qphase o™

be separated easily. Hence, the accuracy of A and Model (%) (%) (%) (%) (%) (%)

Q in the models studied is affected more by the

strength of anisotropy than by the strength of at- A2 7.6 8.0 15.0 14.2 5.1 4.0

tenuation. A4 7.3 7.8 14.9 14.3 5.1 4.1
If we use the modified perturbation equation 10 B2 6.1 6.1 3.0 8.0 20 21

for AG', the accuracy of A and Q improves. This B4 59 6.0 3.0 3.1 20 29

is indicated in Figure 3 for models A2 and B2 and
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valued or real-valued quantities. The use of com-
plex-valued WAA parameters seems to be mathe-
matically more elegant and less laborious when
writing computer code, but real-valued WAA pa-

rameters are probably more comprehensible and
' their physical meaning is more understandable.
For example, the velocity anisotropy parameters

Phase angle (°)

‘ \
60 90 are very similar to linearized versions of Thom-
sen parameters used widely in seismic processing

and inversion in TI media. Thomsen parameters

use a fixed reference medium, whereas velocity
anisotropy parameters use a reference medium
that can be adjusted. Because first-order perturba-
tion equations of the wave quantities depend lin-
early on WAA parameters, the WAA parameters
can be calculated easily in inverse problems.

1 The perturbation approach also has its limita-
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Figure 3. Exact and approximate attenuations and Q-factors in models A2 (left-hand
plots) and B2 (right-hand plots). Black solid lines show exact phase quantities. Blue
dashed lines show approximate quantities of the improved accuracy calculated using
equations 31, 38, and 39. Red dashed lines show approximate quantities calculated using
equations 41 and 42. The phase angle denotes the deviation of the real part of the complex

slowness vector from the symmetry axis.

DISCUSSION

Numerical modeling shows that perturbation equations differ in
accuracy for different wave quantities. The propagation velocity
usually is calculated with high accuracy. However, the attenuation
and Q-factor might be reproduced with appreciably lower accuracy.
This happens mostly when the anisotropy strength is higher than
10% and the attenuation is moderate or weak (Q > 20). In this case,
first-order perturbations might appear to be an approximation that is
too inaccurate, so a modified approach would be required. To over-
come this difficulty, it is possible to introduce real weak attenuation
parameters in a slightly more complicated form than defined in this
paper. This is done by Zhu and Tsvankin (2006, 2007) for TI and
orthorhombic anisotropy. These definitions automatically include
some effects of the velocity anisotropy (i.e., weak attenuation pa-
rameters depend on weak velocity parameters).

Alternatively, we can incorporate some higher-order perturba-
tions into equations for attenuation and the Q-factor by calculating
the slowness direction in an actual anisotropic medium but not in an
isotropic reference medium (see equation 10). The numerical exam-
ples prove that this approach is more accurate than the linearized ap-
proach by Zhu and Tsvankin (2006).

Finally, it is possible to use perturbations for evaluating the slow-
ness vector (equations A-8—A-10) and possibly the polarization vec-
tor (equations B-7-B-9). All other calculations can be performed ex-
actly. Obviously, this approach yields the most accurate results
(Vavryguk, 2008). Another highly accurate nonlinear approximation
for the attenuation coefficient in TI media is given by Zhu and Ts-
vankin (2006; their equation 19).

CONCLUSIONS

WA A parameters are an effective tool for calculating wave quanti-
ties in weakly anisotropic attenuating media of arbitrary symmetry.
The WAA parameters can be introduced alternatively as complex-

€0 % tions. First, it is limited by the strength of aniso-
tropy and attenuation. Perturbations work well in
anisotropic media where the phase and ray quan-
tities are not very different because first-order
perturbations do not distinguish between phase
and ray quantities. Obviously, perturbations are
not applicable to media with strong anisotropy or
anisotropy displaying triplications. Standard per-
turbation equations do not work near singularities
(acoustic axes) where the Christoffel tensor becomes nearly degen-
erate. In this case, perturbation equations must be modified.
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APPENDIX A

PERTURBATION OF THE SLOWNESS VECTOR

The slowness vector is taken at a stationary point on the slowness
surface and calculated using first-order perturbations. The stationary
point is a point for which energy velocity vector v is homogeneous
and its direction is parallel to the ray. The approach is basically the
same as that presented in Vavrycuk (2008). However, instead of an
anisotropic elastic medium assumed in Vavry¢uk (2008), an isotro-
pic viscoelastic medium is considered.

The perturbation of the P-wave stationary slowness vector for the
anisotropic viscoelastic reference medium reads (see equation 38 in
Vavrycuk, 2008)

o(1)
1 Dy-1] Yi 0(1)_0(1) 0(1) 0(1 1
i = 1 U 0050~ a0,

(A-1)

where
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00(12)0?(12) UO(B)U?(B) (3),003) _ (3)(,03)_03) _ 0 0
1 o(1)_o(1 i ] _ :
Hy" = alue Ve + 0@ T o 03)° A &m Aa,jk,n,gj (878 = nimy),
kIS j G()_G() GO _ oG cq
(A-2)
A¢lv£3 g9n(2) _ _Aa”kln()gj) 3)g2(3 80(2)7 (A-7)
0(12)._0(1) _0(2)
1 0(1) 0(1 n, v P g
Ao ( )= Aa ]kpl( )g]( )[5lmgk( ) 4 A o0 m 00 and finally
1
m_ _ - 0.0 0 0.0
0(13)p311)g0(3) Ap'D = — 2(CP)3Aa,»jk,n,njnk(45,-m —3n;n,,),
+ 0 00 |’ (A-3) 0
(A-8)
0(12 0(1), . 0(1)_0(2 0(2), 01
l( )_al]lp( (g]() ()+g1<) ()) (A-4) o 1 0 o o)
Ap = - 2(65)3Aaijk]nlgj [gk (251m - I’l )
2003 = 0(1) 0(1) 0 3) 0(3) 0(1) )
U; alj P ( + 8; ), (A 5) — 21 ngg%Z)] (A-9)
and & ;is the Kronecker delta. The superscript (1, 2, and 3) in paren-
theses meansthetypeofwave (P,Sl,andSZ).QuanntyH?l(”lstheP- Apd = _ 1 Adoan®e? 3)[ 0(3)(25 2000
wave metric tensor of the reference medium (Vavry¢uk, 2003). The Pm 2(03)3 ik 8 18k im — Ty,
equations for the S1- and S2-wave stationary slowness vectors are 03)
analogous. Taking into account that in isotropic media —2n} nkg ]. (A-10)
H?l = 6%51‘1’ [H?I] [ <o 2511, It follows from equations A-8—A-10 that if perturbations Aa;j,
) 5 are real valued, the perturbations of the slowness vectors Ap‘",
0(12) ,0(1) _ ¢ 0(12) ,02) _ (Co) (CO) Ap®@, and Ap® are likewise real valued. This means a weakly aniso-
! ¢ ’ i 8 o tropic medium with isotropic attenuation and a weakly anisotropic
0 (12,06) _ elastic medium generates a homogeneous stationary slowness vec-
& =Y tor.
()(13 gO(l) =0 0(13) go(z) -0, For the perturbation of the slowness direction, we readily obtain
1 4 1
2
UQ(B)gQB) — M Ai’l’(;) = ( P)QAaUklnln nk(alm - I’l ) (A'l 1)
l 1 ?
Co
0(23) _0(1 0(23) _0(2 0(23) _0(3
Ui( )gi()zo’ Ui( )gi():O’ Ui( )gi()zo’ An® = 1 A 0 ,02)( 5. 0_0(2)
(A—6) m - _( 3)2 aljklnlgj [gk ( im nl m) - n nkgm ]
where ¢ stands for ¢} or ¢§, depending on the wave studied, we ob- (A-12)
tain
I A = = =5 Aagun} gy (g (8, — nimy) — ninfg, 1.
Ay, )821(1 = _pAaijkln?”?”?”g, " (c 3)2 B it "
c
0 (A-13)
A U(l) g0(2) _ = A al]klno n?no gg(z)’
APPENDIX B
1,06) _ = 0.0 0 _0(3)
A gm Aalﬂdn mn;8i s PERTURBATION OF THE
POLARIZATION VECTOR
A g)ggfl) = —Aa, jk,non?g?(z)go(z), Perturbation of the P-wave eigenvector g'V of the Christoffel ten-
o sor I, is expressed as a sum of perturbations projected into the di-
2 0e 1 0 o) 0(2 o) 0 0 rections of the S-wave polarization vectors g°® and g*®:
AvPen® = <Aaynfg?? (g —n;ny), (12) (13)
< m___AG 0@, _AGT )
| Agi" = con _ @8 T g _ qom8i
(2),03) _ - 0,_0(2) 0(2) 0(3
A vm gm - CSA l]kln g] g g (B—l)

h
A @0 = — A PN CHC) where
m ijkl’ 18] AG (rs) _ AF gO(r O(s)’ (B-2)

Downloaded 16 Oct 2009 to 147.231.72.222. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



wB212

AT = Aa;jk!P?P? + ag‘kz(P?APl +piAp).  (B-3)

Taking into account equation A-8, we can write

1
(1) 0(1)__ 0000
Ap,,'g 2(c8)3Aaijklni nyn;ny,
Apg)g?n(z) ( )Aauklnon?”ogg(z)s
S = — bl (50
0

Consequently, from equations B-2 and B-3, we obtain

2(C(§)2 (Co)2
(co)*

0000(2

AT -kg(-’“)gg(z) = Aaz}kl OO

JKS ]

(B-5)

S\2 2
AT g0(1)go(3) _ 2(cp)” — (Co) A in®n0n0 03

& = NN R
jk&j 8k (C(I)’)4 ijkiMi ;8 g
(B-6)
and finally
1 2(cp)”* = (cp)?
= 0 0 Aa;unn°n(8,, — nn°).
Em (Cg)z (Cg)z_ (C(S))2 ijki™t k( im i"m
(B-7)

The perturbation of the S-wave polarization vectors g and g® pro-
jected into the direction of the P-wave polarization vectors g’V can
be found in an analogous way. We obtain

2 0(2), _0(2 02 0
Agt(n) = {( )2Aaljkln[gj( )(g ( ) @ — n; nk)
Co

0,00 024 0
- (cg)z — (Cg)zAaijklninlnjgk( )}nm (B-8)

and

3 0(3 3 03 00
Ag()—{( )zAa,,kznzg”(g, 1¢¥® — n¥nd)
0

1 003)
; n,. (B-9
(C())2 _ ( S)Z Jkln nln gk } ( )

Because the isotropic reference medium is degenerate for the
S-waves, the perturbation of polarization vectors g and g pro-
jected into the g°® — g°® plane is calculated in a more complicated
way (see Farra, 2001; Appendix A of Vavry¢uk, 2003) and is not pre-
sented here. For a TI medium, the projections of the SH- and SV-
waves are identically zero.

Vavryéuk

APPENDIX C

PERTURBATION OF THE POLARIZATION
VECTOR, SLOWNESS VECTOR, AND
SLOWNESS DIRECTION IN TI MEDIA

Perturbation equations for stationary slowness vector Ap (Ap-
pendix A), its direction An (Appendix A), and polarization vector
Ag (Appendix B) are simplified in TI media. Substituting Aa;;, for
TI and taking into account that the S1- and S2-waves become the
SH- and SV-waves in TI media, we obtain for the P-wave

Apll) = N1C5[3A1Ng + 2A2N§ + Aa”],
Aps = N3C[3A N3 + 2(A; — 2A,)N; — 44,
+ Aa”], (C-l)

An} = N\ CP[A NS + A,N3],
An = NsCITANG + (A, — AN — A,], (C-2)
Ag} = N,CJTAN] + AN3],
Agh = NyCI[AN + (A, — A)DN3 — A,), (C-3)

where
1 2
CP = 2 CE = - s
P 2(ceg)? (c0)?
P_ 1 2(03)2 - (Cg g

= @@ (€4)

For the SV-wave,
ApYY = N,CV[AN;(1 = 3N3) + Aay,),
Ap3Y = NsCoV[AN3(5 — 3N3) — 24, + Aay],
(C-5)

AnSY = N,C3VAN3(N; — N3),
AnjY = —N3C3VANT(NT — N3), (C-6)

AgS = AnSY + Ny
X [A|N + (A; — A)N; — A,],
AgSY = —AnY —N,C3V[A N+ AN3), (C-T)
where

SV = ! sv_ 1 SV _ 1

2 T T S T @@
(C-8)

Using WA A parameters, the equations for constants A; and A, are ex-
pressed in terms of perturbations Aa;;, as

= —Aa” + 2Aa]3 - Aa33 + 4Aa44,
AZ = Aa” - Adl3 - 2Aa44. (C—9)

In terms of WAA parameters, they are expressed as
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A= 2(05)2(5x —&,—¢g), A= (Cg)z(_ S5,+2¢,).

(C-10)

z
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