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ABSTRACT

We have developed and numerically tested a method for de-
termining parameters of homogeneous viscoelastic anisotropy
from measurements of wavefields generated by point sources.
The method is based on complex algebra and consists of several
steps. First, a complex energy velocity surface is constructed
from the directionally dependent velocity and attenuation mea-
sured along a set of ray directions. Second, a complex slowness
surface is computed using the relation of polar reciprocity be-
tween the energy velocity and slowness vectors. The energy
velocity vectors are homogeneous, but the corresponding slow-
ness vectors are inhomogeneous. Finally, the complex phase
velocity surface is calculated and inverted using the Christoffel

equation. The inversion is nonlinear and can be performed in
iterations. Numerical tests for the P-wave in transversely iso-
tropic media showed that the method performed well for a
wide range of models covering strong as well as weak velocity
anisotropy and various levels of attenuation. The method was
compared with a simplified approximate inversion when the
inhomogeneity of the complex slowness vector is neglected.
The neglect of the slowness vector inhomogeneity results in
a significantly lower accuracy of the retrieved attenuation pa-
rameters. Accuracy with errors less than 10% is achieved only
if the attenuation anisotropy is weak. This condition is, how-
ever, strongly restrictive because attenuation anisotropy is usu-
ally significant being more pronounced than the velocity
anisotropy for most of rocks.

INTRODUCTION

Seismic observations confirm that most rocks are anisotropic and
attenuating (Burton, 2007; Carcione, 2007). Seismic anisotropy can
be intrinsic if produced by anisotropic mineral grains (Babuška and
Cara, 1991; Karato, 2008), but also effective if produced by the
presence of layers (Backus, 1962; Picotti et al., 2010), preferentially
oriented small-scale inhomogeneities or joints, cracks, and micro-
cracks (Hudson, 1981; Schoenberg and Douma, 1988). The pres-
ence of structure complexities in rocks affects not only velocities
of seismic waves but also their amplitudes. The seismic waves
are scattered, and their energy is dissipated. Hence, anisotropy
and attenuation are inherently bound and jointly affect the seismic
waves.
In anisotropic attenuating media, we distinguish between velocity

and attenuation anisotropy. Velocity anisotropy characterizes a
directionally dependent propagation velocity of seismic waves,
whereas attenuation anisotropy controls directionally dependent

dissipation of seismic energy and, consequently, a decay of wave
amplitudes along a ray. Both wave phenomena are studied using a
model of an anisotropic viscoelastic medium described by complex-
valued, frequency-dependent, viscoelastic parameters (Auld, 1973;
Carcione, 2007). The real part of these parameters controls the
propagation of waves and their imaginary part controls the wave
attenuation. The equations for the propagation of wavefields in vis-
coelastic anisotropic media are formally the same as in elastic media
except for being complex. Involving the complex algebra into equa-
tions is not an essential complication, but still it means taking some
care for understanding properly the physical meaning of all com-
plex-valued quantities standing in the equations and for elaborating
correctly with them.
In studies of wave propagation in viscoelastic anisotropy, the

focus has been mostly put on plane waves (Carcione and Cav-
allini, 1993; Deschamps et al., 1997; Shuvalov and Scott, 1999;
Deschamps and Assouline, 2000, Červený and Pšenčík, 2005;
Zhu and Tsvankin, 2006, 2007; Picotti et al., 2010; Rasolofosaon,
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2010). Less attention has been paid to the more complicated topic of
waves generated by point sources. The first works were devoted to
theoretical analysis of wavefronts (Carcione, 1994), modeling of
high-frequency wavefields by the ray method (Hearn and Krebes,
1990; Gajewski and Pšenčík, 1992; Zhu and Chun, 1994), and mod-
eling of complete wavefields by directly solving the wave equation
(Carcione, 1990, 1993; Carcione et al., 1996). Later, exact and
asymptotic Green’s functions for a homogeneous medium are de-
rived (Vavryčuk, 2007a), and exact and approximate solutions of
the complex eikonal equation special type of an inhomogeneous
medium are reported (Vavryčuk, 2012). It is first recognized by
Vavryčuk (2007a, 2007b) that the phase and group quantities de-
scribing attenuation anisotropy should be distinguished, similar
to how we distinguish between the phase and group velocities in
elastic anisotropy.
In this paper, we study properties of wavefields generated by

point sources and propagating in anisotropic viscoelastic media.
We focus on developing a method for determining parameters of
viscoelastic anisotropy from measurements of the velocity and at-
tenuation of waves along a ray. The method is suitable for the far-
field measurements in situ or in labs when the sensors are at a dis-
tance larger than 10 wavelengths from the source. This condition is
equivalent to the so-called high-frequency approximation com-
monly used in ray theory. An experimental setup suitable for such
measurements is described, for example, in Svitek et al. (2014). Be-
cause attenuating media are inherently dispersive, we do not use the
terms group velocity and group attenuation for quantities measured
along a ray. The “group” quantities in dispersive media describe the
propagation of wave packets with a broad spectrum of frequencies
but not the propagation of monochromatic waves. Therefore, the
terms ray velocity and ray attenuation are consistently used in this
paper. We show how to solve the inverse problem using complex
algebra. On numerical examples of P-waves propagating in trans-
versely isotropic media, we demonstrate the effectiveness and ac-
curacy of the developed methods.

WAVE PROPAGATION IN ANISOTROPIC
VISCOELASTIC MEDIA

In this section, basic formulas for waves propagating in aniso-
tropic viscoelastic media are reviewed. In the formulas, real and
imaginary parts of complex-valued quantities are denoted by super-
scripts R and I, respectively. A complex-conjugate quantity is de-
noted by an asterisk. The direction of a complex-valued vector v is
calculated as v∕

ffiffiffiffiffiffiffiffiffi
v · v

p
, where the dot means the scalar product (the

normalization condition v∕
ffiffiffiffiffiffiffiffiffiffiffi
v · v�

p
is not used because it compli-

cates generalizing some of real equations to complex ones). The
magnitude of complex-valued vector v is

ffiffiffiffiffiffiffiffiffi
v · v

p
. If any com-

plex-valued vector is defined by a real-valued direction, it is called
homogeneous, and if it is defined by a complex-valued direction, it
is called inhomogeneous. The terms homogeneous and inhomo-
geneous are also used for characterizing spatially independent or
spatially dependent viscoelastic parameters of a medium and for
characterizing wavefronts of plane waves with a constant or expo-
nentially decaying amplitude. The specific meaning of the terms
homogeneous and inhomogeneous is clear from the context. In for-
mulas, the Einstein summation convention is used for repeated sub-
scripts.

Basic formulas

A viscoelastic anisotropic medium is defined by density-normal-
ized stiffness parameters aijkl ¼ cijkl∕ρ, which are, in general,
frequency dependent and complex valued. The real and imaginary
parts of aijkl,

aijklðωÞ ¼ aRijkl þ iaIijkl; (1)

define the elastic and viscous properties of the medium. Conse-
quently, the Christoffel tensor Γjk, defined alternatively in terms
of slowness direction n,

ΓjkðnÞ ¼ aijklninl; (2)

or slowness vector p,

ΓjkðpÞ ¼ aijklpipl; (3)

is frequency dependent and complex. Slowness direction n is real
for homogeneous plane waves but complex for inhomogeneous
plane waves. The eigenvalues of the Christoffel tensor G are calcu-
lated using the following equation:

detðΓjk − GδjkÞ ¼ 0; (4)

which yields the cubic equation in G

G3 − PG2 þQG − R ¼ 0; (5)

where P, Q, and R are defined as

P ¼ Γ11 þ Γ22 þ Γ33;

Q ¼ Γ11Γ22 þ Γ11Γ33 þ Γ22Γ33 − Γ2
12 − Γ2

13 − Γ2
23;

R ¼ Γ11Γ22Γ33 þ 2Γ12Γ13Γ23 − Γ11Γ
2
23 − Γ22Γ

2
13 − Γ33Γ

2
12:

(6)

Alternatively, the eigenvalues can be expressed as

GðnÞ ¼ aijklninlgjgk ¼ c2 (7)

and

GðpÞ ¼ aijklpiplgjgk ¼ 1: (8)

Equations 7 and 8 define phase velocity c and slowness vector p ¼
n∕c as a function of slowness direction n. The eigenvectors define
polarization vectors g. The polarization vectors are normalized, so
that g · g ¼ 1. We emphasize that a more common normalization in
complex algebra g · g� ¼ 1 is not used because it leads to incon-
sistencies between equations in elastic and viscoelastic media.
Differentiating eigenvalue GðpÞ, we define the energy velocity

vector as

vi ¼
1

2

∂G
∂pi

¼ aijklplgjgk; (9)

which is called the group velocity vector in elastic media. Vectors v
and p are related by the equation
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v · p ¼ 1; (10)

expressing their polar reciprocity (Helbig, 1994). The slowness vec-
tor, phase velocity, energy velocity, and the polarization vectors are,
in general, complex.

Phase velocity, attenuation, and Q-factor

Phase quantities describe the propagation of plane waves. De-
composing the complex slowness vector p as follows (see Vavryčuk
[2007b], equation 2):

p ¼
�

1

Vphase
þ iAphase

�
sþ iDphase t; (11)

and inserting it into the exponential term expðiω p · xÞ describing
the propagation of harmonic waves, we obtain

expðiωp · xÞ ¼ expð−ωAphases · xÞ expð−ωDphaset · xÞ

× exp

�
iω

s · x
Vphase

�
; (12)

where ω is the circular frequency; x is the position vector of the
receiver; and quantities Vphase, Aphase, and Dphase are the real phase
velocity, phase attenuation, and phase inhomogeneity. Vectors s and
t are real, mutually perpendicular unit vectors; s is normal to the
wavefront (called the wave normal); and t lies in the wavefront
(called the wave tangent). Hence, the phase velocity, attenuation,
and inhomogeneity are calculated from p as

Vphase ¼ 1

jpRj ; Aphase ¼ pI · s; Dphase ¼ pI · t; (13)

where

s ¼ pR

jpRj ; t ¼ pI − ðpI · sÞs
jpI − ðpI · sÞsj ; (14)

and symbol jaj ¼ ffiffiffiffiffiffiffiffiffi
a · a

p ¼ ffiffiffiffiffiffiffiffiffiajaj
p denotes the magnitude of real

vector a.
For a homogeneous plane wave (Dphase ¼ 0), the phase velocity

and attenuation can be calculated from the complex phase velocity
using the following formulas:

Vphase ¼ cRcR þ cIcI

cR
; Aphase ¼ −

cI

cRcR þ cIcI
: (15)

The phase velocity Vphase and phase attenuation Aphase are intrinsic
properties of the medium for homogeneous waves because they de-
pend on viscoelastic parameters of the medium and on the wave
normal only. The phase inhomogeneity Dphase is a free parameter
that depends on the specification of boundary conditions of each
wave propagation problem.
Similar to the phase attenuation Aphase, the phase quality factor

(hereinafter the Qphase-factor) is also an intrinsic property of the
medium. It is defined for homogeneous plane waves only and takes
the following form (Carcione [2000], his equation 14; Carcione
[2007], his equation 4.92; Chichinina et al. [2006], their equa-
tion 27):

Qphase ¼ −
ðc2ÞR
ðc2ÞI ; (16)

where c is the complex phase velocity, c ¼ 1∕ ffiffiffiffiffiffiffiffiffi
pipi

p
.

Ray velocity, attenuation, and Q-factor

Decomposing the exponential term describing the propagation of
high-frequency harmonic waves from a point source, we obtain

expðiωp · xÞ ¼ expðiω r
v
Þ ¼ expð−ωArayrÞ exp

�
iω

r
Vray

�
;

(17)

where ω is the circular frequency, r is the distance between the
source and the receiver, and v is the complex energy velocity.
Ray velocity Vray and ray attenuation Aray in equation 17 are ex-
pressed as (see Vavryčuk [2007b], his equations 21 and 22)

Vray ¼ vRvR þ vIvI

vR
; Aray ¼ −

vI

vRvR þ vIvI
: (18)

The ray velocity controls the propagation velocity along a ray,
and the ray attenuation controls the amplitude decay along a ray.
The ray velocity and ray attenuation are real and can be observed
and measured in wavefields along a ray. In analogy to the phase
quality factor defined in equation 16 using the complex phase veloc-
ity, we can also introduce the ray quality factor using the complex
energy velocity (see Vavryčuk [2007b], his equation 24):

Qray ¼ −
ðv2ÞR
ðv2ÞI : (19)

Introducing ray inhomogeneity Dray is unnecessary because the
complex energy velocity vector v is homogeneous and Dray is iden-
tically zero in homogeneous anisotropic viscoelastic media. In inho-
mogeneous media, the ray inhomogeneity Dray can be nonzero.
Calculating the complex energy velocity vector v needed in equa-

tions 17–19 is not straightforward. It requires computing the so-
called stationary slowness vector p0 introduced in ray theory (Vav-
ryčuk, 2007a). The stationary slowness vector is generally inhomo-
geneous being uniquely constrained by the point-source boundary
conditions. To satisfy these conditions, we have to solve for each
ray coming out of the source either a system of polynomial equa-
tions for unknown components of p0 or an inverse problem for p0
using iterations (for details, see Vavryčuk, 2007a, 2007b;
Grechka, 2015).

Relation between the attenuation and the Q-factor

The relations among the complex velocity, real velocity, and at-
tenuation are for the intrinsic phase quantities and for the ray quan-
tities symmetrical:

1

c
¼ 1

Vphase
þ iAphase;

1

v
¼ 1

Vray
þ iAray: (20)

Taking into account equations 16 and 19, we also obtain fully sym-
metrical relations between the complex velocity and Q-factor:
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c2 ¼ ðc2ÞR
�
1 −

i
Qphase

�
; v2 ¼ ðv2ÞR

�
1 −

i
Qray

�
:

(21)

Equations 20 and 21 yield

Qphase ¼ 1 − ðAphaseVphaseÞ2
2AphaseVphase

; Qray ¼ 1 − ðArayVrayÞ2
2ArayVray

:

(22)

Assuming weak attenuation, ArayVray ≪ 1, or equivalently, Aphase

Vphase ≪ 1, and neglecting the terms of the second order, we get
the equations consistent with equations 51 and 59 of Vavryčuk
(2008):

Qphase ¼ 1

2AphaseVphase
; Qray ¼ 1

2ArayVray
; (23)

and the equations

c ¼ Vphase

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

i
Qphase

s
; v ¼ Vray

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

i
Qray

r
; (24)

useful for constructing the complex velocity from the real velocity
and Q-factor. Note that the condition of weak attenuation is differ-
ent from the condition of weak attenuation anisotropy. Weak attenu-
ation anisotropy requires that the directional dependence of
attenuation is weak. Hence, rocks can be weakly attenuating but
displaying strong attenuation anisotropy.

DETERMINATION OF PARAMETERS OF
GENERAL VISCOELASTIC ANISOTROPY

The goal of this section is to present a procedure for determining
parameters of homogeneous anisotropic attenuating media from a
directionally dependent propagation velocity and attenuation mea-
sured along a ray.

Calculation of complex phase velocity

First, we calculate the complex energy velocity v from the mea-
sured real ray velocity Vray and real ray attenuation Aray using equa-
tion 20. Subsequently, we obtain vector v ¼ vN, where N is the real
ray direction, and construct the complex energy velocity sur-
face v ¼ vðNÞ.
Second, we calculate slowness direction n from the energy veloc-

ity surface v ¼ vðNÞ. Because the slowness vector p and energy
velocity vector v are polar reciprocal (Helbig, 1994), v is normal
to the slowness surface and p is normal to the energy velocity sur-
face. Hence, slowness direction n can be calculated as normal to
the energy velocity surface using standard formulas of differential
geometry (Lipschutz, 1969). Consequently, phase velocity surface
c ¼ cðnÞ is calculated from energy velocity v, ray direction N, and
slowness direction n as follows:

c ¼ vNini; (25)

where N is real but c, v, and n are complex. Because the slowness
direction n is complex, the slowness vector p is inhomogeneous.

Inversion scheme

Once the complex phase velocity surface c ¼ cðnÞ is determined,
equation 5 defines the inverse problem for calculating complex vis-
coelastic parameters aijkl. Because equation 5 is the cubic equation
for 21 unknown parameters, the inversion is nonlinear. It can be
solved quite analogously to the inversion for real elastic parameters.
The most common approach is to linearize the problem using per-
turbation theory (Thomsen, 1986; Mensch and Rasolofosaon, 1997;
Vavryčuk, 1997; Pšenčík and Gajewski, 1998; Farra and Pšenčík,
2008) and to find the solution in iterations.
In perturbation theory, we assume that the anisotropic medium

defined by unknown parameters aijkl can be obtained by a small
perturbation of a known reference medium:

aijkl ¼ a0ijkl þ Δaijkl; (26)

where a0ijkl defines the viscoelastic reference medium and Δaijkl is
its viscoelastic perturbation. Under this assumption, cubic equa-
tion 5 for phase velocity c can be linearized as follows (Pšenčík
and Vavryčuk, 2002; Svitek et al., 2014):

Δc2 ¼ c2 − c20 ¼ Δaijklninlg0jg0k; (27)

where c0 and g0 define the complex phase velocity and complex
polarization vector in the reference medium and Δc2 is the misfit
between the squares of the phase velocity calculated from measure-
ments and in the reference medium. The reference medium can be
isotropic or anisotropic and elastic or viscoelastic.
Equation 27 represents a system of linear equations for unknown

complex perturbations Δaijkl, which can be solved in iterations. If
the P-wave velocity and attenuation are inverted and the reference
medium is isotropic and viscoelastic in the first iteration, its P-wave
velocity α0 and quality factor Q0 can be obtained by averaging ob-
served velocities and quality factors over all directions. The com-
plex phase velocity is then calculated as

c0 ¼ α0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

i
Q0

s
: (28)

Similarly, the complex S-wave velocity in the isotropic reference
medium can be supplied. If the mean S-wave velocity and Q-factor
are not known, we can use the standard model with ratios between
the P- and S-wave velocities and Q-factors, VS ¼ VP∕

ffiffiffi
3

p
and

QS ¼ QP∕2. In higher iterations, the reference medium is the result
of the previous iteration and the estimates of the S-wave velocity
and attenuation are no longer needed.
Using the above approach, we can invert for all 21 viscoelastic

parameters. However, if we invert P-wave quantities only, six
parameters related to the S-waves (hereafter the S-wave-related
parameters) a44, a55, a66, a45, a46, and a56 will not be well resolved.
Under weak velocity and attenuation anisotropy, these six param-
eters cannot be determined from the P-waves at all. Hence, to de-
termine the complete elastic tensor accurately, measurements of the
S-wave velocity and attenuation must be included in the inversion.
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DETERMINATION OF VISCOELASTIC
TRANSVERSE ISOTROPY FROM P-WAVE

VELOCITY AND ATTENUATION

Christoffel equation

In transverse isotropy, the procedure is simplified because all di-
rectionally dependent quantities are axially symmetric. For simplic-
ity, we use a local coordinate system in which the symmetry axis is
along the vertical axis. The medium is described by the following
density-normalized stiffness parameters in the Voigt notation: a11,
a22 ¼ a11, a33, a44, a55 ¼ a44, a66, a13, a23 ¼ a13, and
a12 ¼ a11 − 2a66. All other parameters are zero. The parameters
aij are complex. Because the wave quantities are axially symmetric,
it is sufficient to study them in the x1 − x3 plane.
Cubic equation 5 forG splits in transverse isotropy into the quad-

ratic equation for G describing the P- and SV-waves,

G2 − ðΓ11 þ Γ33ÞGþ Γ11Γ33 − Γ2
13 ¼ 0; (29)

and the linear equation for G describing the SH-wave,

G − Γ22 ¼ 0: (30)

Inserting equations 2 and 7 into equations 29 and 30, we obtain
for the P- or SV-waves

a11a44n41 þ a33a44n43 þ ða11a33 − a213 − 2a13a44Þn21n23
− ða11 þ a44Þn21c2 − ða33 þ a44Þn23c2 þ c4 ¼ 0; (31)

and for the SH-wave

a66n21 þ a44n23 − c2 ¼ 0; (32)

or equivalently, for the P- or SV-waves,

a11a44sin4ϑþa33a44 cos4ϑ

þða11a33−a213−2a13a44Þsin2ϑcos2ϑ−ða11þa44Þc2 sin2ϑ
−ða33þa44Þc2 cos2ϑþc4¼0; (33)

and for the SH-wave

a66 sin2 ϑþ a44 cos2 ϑ − c2 ¼ 0; (34)

where slowness direction n is expressed by slowness angle
ϑ, n ¼ ðsin ϑ; 0; cos ϑÞT .

Calculation of complex phase velocity

For determining parameters a11, a33, a44, and a13 from measure-
ments of the P-wave using equation 33, we need complex phase
velocity c ¼ cðϑÞ evaluated for a set of slowness angles ϑ. Similarly
as for general anisotropy, we calculate complex energy velocity v ¼
vðθÞ from the measured ray velocity and ray attenuation using equa-
tion 20. Then, we calculate the complex slowness direction n as the
normal to the energy velocity surface v ¼ vðθÞ. Hence, n is
perpendicular to the tangent of surface v ¼ vðθÞ:

n ⊥
dv
dθ

: (35)

Consequently, the slowness angle ϑ is expressed as follows:

ϑ ¼ a cos

�
dv1
dθ

��
dv1
dθ

�
2

þ
�
dv3
dθ

�
2
�
−1
�
: (36)

The slowness angle is generally complex except for real values of
0° and 90°. In these directions, vectors n and N must coincide for
symmetry reasons. Because ray direction N is always real in homo-
geneous media (Vavryčuk, 2007a), the slowness direction nmust be
real if it coincides with N. Finally, the complex phase velocity sur-
face c ¼ cðnÞ is calculated using equation 25.

Inversion scheme in strong transverse isotropy

When determining parameters of strong transverse isotropy using
the P-wave, we proceed in the following way: First, we readily ob-
tain from equation 33,

a11 ¼ c2ðϑ ¼ 90°Þ; a33 ¼ c2ðϑ ¼ 0°Þ: (37)

Subsequently, we evaluate parameter a44 and term a13ða13 þ 2a44Þ
using the generalized linear inversion (Menke, 1989):

�
a44

a13ða13 þ 2a44Þ
�
¼ M−gd; (38)

where M is the N × 2 matrix, and d is the N-vector:

Table 1. Viscoelastic parameters. The two-index Voigt notation is used for density-normalized elastic parameters aRijkl and
quality-factor matrix qijkl.

Model

Elastic parameters Attenuation parameters

aR11 (km2∕s2) aR13(km
2∕s2) aR33(km

2∕s2) aR44(km
2∕s2) Q11 Q13 Q33 Q44

1 26.54 15.49 16.23 4.41 29.7 52.8 18.2 20.3

2 14.40 4.50 9.00 2.25 30 15 20 15

3 10.80 3.53 9.00 2.25 60 30 40 30

4 10.80 3.53 9.00 2.25 240 120 160 120
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Figure 1. (a and b) Polar plots of the P-wave
velocities, (c and d) attenuations, and (e and
f) Q-factors in model 1. Full dots, the true quan-
tities; solid line, the correct inversion; and dashed
line, the approximate inversion. The quantities are
inverted from values sampled with a step of 1º.
The true quantities are displayed with a step of
3°. For the parameters of the model, see Table 1.

Table 2. P-wave velocity and attenuation anisotropy, where �Vray, �Aray, and �Qray are the mean P-wave ray velocity, attenuation,
and Q-factor; arayV , arayA , and arayQ are the P-wave ray velocity anisotropy, attenuation anisotropy, and Q-factor anisotropy. The
anisotropy is calculated as a � 2 �UMAX − UMIN�∕�UMAX � UMIN�, where UMAX and UMIN are the maximum and minimum
values of the respective quantity.

Model V̄ray (km∕s) arayV (%) Āray (s∕km) arayA (%) Q̄ray arayQ (%)

1 4.64 24.4 46.6 × 10−4 71.0 24.7 49.9

2 3.28 23.3 75.2 × 10−4 67.7 21.1 48.1

3 3.06 10.5 39.5 × 10−4 58.0 42.6 48.3

4 3.06 10.5 9.9 × 10−4 58.0 170.5 48.3
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Mi1 ¼ a11 sin4 ϑi þ a33 cos4 ϑi − c2ðϑiÞ;
Mi2 ¼ −sin2 ϑi cos2 ϑi; (39)

di ¼ −a11a33 sin2 ϑi cos2 ϑi
þ c2ðϑiÞða11 sin2 ϑi þ a33 cos2 ϑiÞ − c4ðϑiÞ; (40)

and subscript i, i ¼ 1; : : : ; N, is the sequential number of the
measurement. Symbol M−g in equation 38 means the generalized
inverse of matrix M. Finally, parameter a13 is calculated from
a13ða13 þ 2a44Þ as a root of the quadratic equation.
Hence, we are able to determine parameters a11, a33, a44, and a13

using measurements of the P-wave in strong transverse isotropy. We
cannot determine parameter a66, which controls propagation of the
SH-wave. For weak transverse isotropy, retrieving parameter a44
using equation 38 becomes unstable and measurements of the
SV- or SH-waves should also be used.

Inversion scheme in weak transverse isotropy

If we assume a weakly anisotropic and attenuating medium, the
complex phase velocity c can be linearized as follows (Vavryčuk,
2008, 2009):

c2 ¼ c20 þ Δc2 ¼ c20ð1þ ΔεÞ; (41)

where c0 is the complex phase velocity in the isotropic reference
medium calculated from the mean ray velocity α0 and ray quality
factor Q0 using equation 28. Taking into account equations 26 and
33, we can write it as (Vavryčuk [2009], equation 29)

Δc2 ¼ Δa11 sin4 ϑþ Δa33 cos4 ϑ

þ 2ðΔa13 þ 2Δa44Þsin2 ϑ cos2 ϑ; (42)

or equivalently

Δε ¼ 2ðεx sin4 ϑþ εz cos
4 ϑþ δx sin

2 ϑ cos2 ϑÞ; (43)

where the following complex weak anisotropy-attenuation (WAA)
parameters describing the weak viscoelastic transverse isotropy
were used (Vavryčuk, 2009):

εx ¼
a11 − c20
2c20

; εz ¼
a33 − c20
2c20

; δx ¼
a13 þ 2a44 − c20

c20
:

(44)

Finally, the WAA parameters are obtained using the following
equation:

2
64
εx

εz

δx

3
75 ¼ 1

2

2
66664
sin4 ϑ1 cos4 ϑ1 sin2 ϑ1 cos

2 ϑ1

sin4 ϑ2 cos4 ϑ2 sin2 ϑ2 cos
2 ϑ2

: : : : : : : : :

sin4 ϑN cos4 ϑN sin2 ϑN cos2 ϑN

3
77775
−g

·

2
66664
Δε1
Δε2
: : :

ΔεN

3
77775; (45)

where exponent −g means the generalized inversion (Menke, 1989)
and N is the number of measurements.

Table 3. Maximum errors of the correct and approximate inversions. The error for a particular ray is calculated as
E � jUexact − Uapproxj∕Uexact, where Uexact and Uapprox are exact and approximate values of the respective quantity. The presented
values are maxima over all rays.

Model

Error Vray (%) Error Aray (%) Error Qray (%) Error Vray (%) Error Aray (%) Error Qray (%)

Correct inversion Approximate inversion

Noise-free data, step of 1°

1 5.6 × 10−3 1.7 × 10−2 1.1 × 10−2 4.7 × 10−2 21.0 17.3

2 2.1 × 10−2 1.7 × 10−1 1.5 × 10−1 7.5 × 10−2 25.0 20.0

3 1.1 × 10−2 8.3 × 10−2 7.3 × 10−2 1.1 × 10−2 13.7 12.1

4 1.1 × 10−2 9.6 × 10−2 8.4 × 10−2 1.1 × 10−2 13.7 12.1

Noise-free data, step of 5°

1 1.4 × 10−1 4.1 × 10−1 2.7 × 10−1 1.4 × 10−1 21.1 17.3

2 5.3 × 10−1 4.1 3.5 5.3 × 10−1 24.9 19.9

3 2.9 × 10−1 2.3 2.0 2.9 × 10−1 13.6 12.0

4 2.9 × 10−1 2.3 2.0 2.9 × 10−1 13.6 12.0

Noisy data, step of 1°

1 5.9 × 10−3 1.3 1.3 4.6 × 10−2 19.7 16.5

2 2.1 × 10−2 1.2 1.2 6.8 × 10−2 23.2 18.9

3 1.1 × 10−2 1.1 1.1 1.1 × 10−2 13.6 12.0

4 1.1 × 10−2 1.1 1.1 1.1 × 10−2 13.6 12.0
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NUMERICAL EXAMPLES

In this section, the inversion for viscoelastic anisotropy is dem-
onstrated on numerical examples performed for the P-wave propa-
gating in four models of a transversely isotropic viscoelastic
medium. The models display different strengths of velocity aniso-
tropy and attenuation (see Table 1). Model 1 is taken from Carcione
and Cavallini (1995) and describes properties of the clay shale.
Models 2 and 3 are synthetic models taken from Vavryčuk’s
(2007b) models A and D with values close to observations for sedi-
mentary rocks. Model 4 is a modification of model 3 having attenu-
ation four times weaker. The P-wave ray velocity anisotropy of the
four models is 24%, 23%, 11%, and 11%, respectively. The mean
ray Q-factor of the P-wave is 25, 21, 43, and 171, respectively. The

ray Q-factor anisotropy of the P-wave is approximately 50% for all
models. Hence, the models cover a broad range of strengths of
velocity anisotropy with various levels of attenuation (see Table 2).
Figure 1 shows directional variations in phase and ray velocities,

attenuations, and Q-factors in the x1 − x3 plane for model 1. The
angles ϑ (for the phase quantities) and θ (for the ray quantities) are
real and range in calculations from 0° to 90° with a step of 1°. The
velocities, attenuations, and Q-factors are calculated using the fol-
lowing three approaches.
First, the quantities are calculated from true viscoelastic param-

eters using forward modeling (full dots in Figure 1). The complex
phase velocity c is calculated using equation 33 for real angle ϑ.
Because the slowness direction is real, the complex slowness vector
is homogeneous. The intrinsic phase quantities Vphase, Aphase, and

Figure 2. (a and b) Polar plots of the P-wave
velocities, (c and d) attenuations, and (e and
f) Q-factors in model 2. Full dots, the true quan-
tities; solid line, the correct inversion; and dashed
line, the approximate inversion. The true quan-
tities are displayed with a step of 3°. For the
parameters of the model, see Table 1.
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Qphase are calculated using equations 15 and 16. The ray quantities
Vray, Aray, and Qray are calculated from the homogeneous complex
energy velocity vector v (i.e., angle θ is real) using equations 18 and
19. However, calculating the energy velocity vector v is not straight-
forward. First, we have to calculate the corresponding stationary
slowness vector p0 (Vavryčuk, 2007a, 2008). This vector is gener-
ally inhomogeneous (i.e., angle ϑ is complex), and it is calculated
using iterations. We start with some guess of the slowness direction
(e.g., with real angle ϑ), and we calculate the complex energy veloc-
ity vector v and its direction using equation 9. During iterations, we
seek complex slowness vector p0 (and complex angle ϑ) for which
vector v is homogeneous (i.e., angle θ is real) and directed along
real ray direction N. The procedure is quite similar to the shooting
method in ray-tracing techniques, but it is generalized to complex
algebra. Alternatively, we can calculate the stationary slowness vec-
tor p0 by solving the system of two algebraic equations of the fourth

order in two unknown components p1 and p3 (Vavryčuk [2006], his
equation 5.3).
Second, the quantities are inverted from true ray velocity and ray

attenuation calculated in forward modeling. The inversion is per-
formed using formulas presented in the section “Inversion scheme
in strong transverse isotropy.” The complex energy velocity surface
is computed from the ray velocity and attenuation using equation 20.
Differentiating this surface and using equation 25 for the polar reci-
procity, we calculate the complex phase velocity surface c ¼ cðϑÞ,
where ϑ is complex. This surface is inverted for viscoelastic param-
eters using equations 37–40. The predicted quantities (solid lines in
Figure 1) are calculated from the retrieved parameters.
Third, the quantities are inverted from the true ray velocity and

ray attenuation but the inversion is simplified and thus only approxi-
mate. The complex energy velocity surface is computed from the
ray velocity and attenuation using equation 20. According to the

Figure 3. (a and b) Polar plots of the P-wave
velocities, (c and d) attenuations, and (e and
f) Q-factors in model 3. Full dots, the true quan-
tities; solid line, the correct inversion; and dashed
line, the approximate inversion. The true quan-
tities are displayed with a step of 3°. For the
parameters of the model, see Table 1.
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section “Calculation of complex phase velocity,” this surface is
transformed to the complex phase velocity surface c ¼ cðϑÞ, where
ϑ is complex and inverted for viscoelastic parameters using equa-
tions 37–40. However, the imaginary part of angle ϑ is neglected in
equations 39 and 40. Hence, the slowness vector p is assumed to be
homogeneous in the inversion. The predicted quantities (dashed
lines in Figure 1) are calculated from the retrieved parameters.
Hence, the first approach yields the true quantities that serve as

the reference accurate solution. The second approach demonstrates
the effectiveness and robustness of the correctly performed inver-
sion. This inversion should yield true quantities if noise-free data
in a dense grid of directions are inverted. The third approach dem-
onstrates the effectiveness and accuracy of the simplified inversion
when the inhomogeneity of the slowness vector p is neglected and
the difference between the phase and ray attenuations is partially
ignored. A similar inversion is often used in weak elastic anisotropy,
in which the group and phase velocities are approximately equal
(Vavryčuk, 1997; Pšenčík and Vavryčuk, 2002). This approach is
popular in studies of elastic anisotropy, and it produces accurate
results for a broad range of real rocks.
The comparison of true and predicted quantities for model 1 (see

Figure 1) shows that correct and approximate inversions yield ac-
curate ray and phase velocities. With regard to attenuations and Q-
factors, the correct inversion produces results that are almost iden-
tical with the true quantities, when the noise-free data are inverted
(for errors, see Table 3). The reason for a slight discrepancy lies in
the fact that the input data were sampled with a step of 1°. In the
case of a denser sampling, the errors would decrease. But high-den-
sity sampling would probably be difficult to achieve in practice. The

approximate inversion performs, however, much worse than the cor-
rect inversion. This result shows that the inhomogeneity of the sta-
tionary slowness direction cannot be neglected in the inversion.
The results of the inversion for models 2 and 3 are shown in Fig-

ures 2 and 3. These models display the same attenuation anisotropy,
but the mean attenuation of model 3 is twice lower than that of
model 2. Also, the velocity anisotropy of model 3 is twice lower
than that of model 2. As a result, the accuracy of the simplified
inversion is twice higher for model 3 than for model 2. Never-
theless, the errors in attenuations and Q-factors produced by the
approximate inversion are still clearly visible (see Figure 3c–3f) at-
taining values of 13.7% and 12.1% for the ray attenuation and the
ray Q-factor, respectively (see Table 3). For model 4, the phase and
ray velocities are identical with those shown in Figure 3a and 3b for
model 3. The phase and ray attenuations and Q-factors for model 4
are also identical with those shown in Figure 3c–3f for model 3, but
the scale is four times lower for attenuations and four times higher
for Q-factors. The errors of the approximate inversion are equal for
models 3 and 4. Hence, decreasing the attenuation does not result in
improving the accuracy of the approximate inversion.
The above inversions were performed for noise-free and densely

sampled input data. The performance of the inversions for a less
favorable configuration and for data with noise is summarized in
Table 3 and demonstrated for model 2 in Figures 4–6. Figure 4
shows the inversion when the input data are sampled with a step
of 5°. As expected, the accuracy is lower for the correct inversion
but the decrease in the accuracy is not significant. The accuracy for
the approximate inversion is unchanged. Figure 5 shows noisy ray
velocities and ray attenuations used in the last numerical experi-

Figure 4. (a and b) Polar plots of the P-wave at-
tenuations and (c and d)Q-factors in model 2. Full
dots, the true quantities; solid line, the correct in-
version; and dashed line, the approximate inver-
sion. The quantities are inverted from values
sampled with a step of 5°. For parameters of the
model, see Table 1. The P-wave velocities are
not displayed because they are identical to Fig-
ure 2a and 2b.
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ment. The noise is random with a uniform distribution with maxi-
mum levels of �3% and �6% for the velocity and attenuation,
respectively. The higher level of noise in attenuation reflects
the fact that the wave amplitudes are usually measured with higher
uncertainties than the arrival times. The noisy data were smoothed
by the moving average method (solid line in Figure 5) and then
inverted using the correct and approximate inversions. The results
shown in Figure 6 indicate that the inversions are stable even for
noisy input data. Obviously, the accuracy of the inversions would
decrease for increasing noise. The key step in the inversion is
smoothing the complex energy velocity surface and thus eliminat-
ing its roughness produced by noise. Because the energy velocity

surface is differentiated using equation 36 before the inversion,
this surface must be sufficiently smooth. Otherwise, the errors
in input data are amplified by the differentiation and the inversion
can fail.

DISCUSSION

In anisotropic media, we strictly distinguish between phase and
ray velocities. The phase velocity describes the propagation of plane
waves, whereas the ray velocity describes the propagation of a sig-
nal and energy transport. The difference between the phase and ray
quantities is appropriately treated in most studies of velocity

Figure 6. (a and b) Polar plots of the P-wave at-
tenuations and (c and d) Q-factors in model 2 ob-
tained by the inversion of noisy data. Full dots, the
true quantities; solid line, the correct inversion;
and dashed line, the approximate inversion. The
true quantities are displayed with a step of 3°.
For the parameters of the model, see Table 1.
The P-wave velocities are not displayed because
they are almost identical with Figure 2a and 2b.

Figure 5. (a) Polar plots of the P-wave ray veloc-
ity and (b) ray attenuation in model 2 contami-
nated by noise. Full dots, the noisy values; solid
lines, the smoothed values. The noisy values are
displayed with a step of 3°. For parameters of
the model, see Table 1.
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anisotropy and can be neglected only if anisotropy is weak (Thom-
sen, 1986).
However, the difference between the phase and ray quantities is

so far mostly ignored in studies of attenuation anisotropy. Usually,
the propagation of plane waves is studied and only the phase quan-
tities are evaluated. The inhomogeneity of the slowness vector is
either assumed to be zero (Červený and Pšenčík, 2008) or taken
as a free parameter. Applicability of this approach is, however, lim-
ited. Most commonly, wavefields observed in field experiments or
in lab measurements are generated by point sources, and the ray
velocity and attenuation are measured and used when inverting
for viscoelastic parameters. Consequently, the propagating wave-
fronts are nonplanar and the corresponding slowness vectors are
inhomogeneous.
The proper inversion producing accurate results for elastic and

attenuation parameters is performed as follows: First, the complex
energy velocity surface is constructed from the real ray velocity and
real attenuation measured for a set of ray directions. Second, the
complex slowness surface is computed using the relation of polar
reciprocity between the energy velocity and slowness vectors.
Although the energy velocity vectors are homogeneous, the corre-
sponding slowness vectors are inhomogeneous. Finally, the com-
plex phase velocity surface is calculated and inverted using the
Christoffel equation.
Importantly, the applicability of weak anisotropy approximation

in viscoelastic inversions is limited. This approximation works well
if the velocity anisotropy as well as the attenuation anisotropy are
weak. However, the assumption of weak attenuation anisotropy and
of the homogeneous slowness vector is rather restrictive. Attenua-
tion itself is not decisive for the accuracy of the approximate inver-
sion, but the directional variations of the velocity and attenuation
are essential and must be weak. This applies even to very weakly
attenuating media (e.g., with the mean Q-factor 170, as in model 4,
or higher). Unfortunately, the directional variation of attenuation for
rocks is usually much more pronounced than that of the velocity.
So, most rocks that satisfy the standard weak velocity anisotropy
condition probably violate the condition of weak attenuation aniso-
tropy. As a consequence, the differences between the ray and phase
attenuations and Q-factors are not negligible and the inversion for
attenuation should be performed using the correctly computed com-
plex phase velocity. The inhomogeneity of the complex slowness
vector cannot be neglected in the inversion.
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