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S U M M A R Y  
An analytical approach to the calculation of higher-order ray approximations for 
wavefields generated by point sources in homogeneous isotropic media is presented. 
I t  is shown that the near-field waves neglected by the zeroth-order ray approxima- 
tion can be incorporated by considering higher-order terms of the ray series. 
Assuming the point source to be a unit single force, we calculate the complete 
ray-theoretical Green’s function. The ray series of the Green’s function consists 
only of three non-zero terms and the ray 5olution coincides with an exact solution. 
Wavefields radiated by general multipolar sources are also exactly expressed by the 
ray theory. Simple algebraic formulae for the spherical harmonics coefficients of all 
higher-order ray approximations are established. 

Key words: Green’s function, higher-order ray approximations, multipolar sources. 
near-field waves, singular wavefield. 

1 INTRODUCTION 

Kay theory was first developed for solving the elastodynamic 
equation by Babich (1956), Babich & Alekseyev (1958) and 
Karal & Keller (1959), The ray series includes, in general, 
an infinite number of higher-order terms, but only the 
leading (zeroth-order) term is in standard use. The 
higher-order terms are usually neglected, since their 
calculations are  more complicated and in most cases their 
contribution is rather weak. Therefore, including the 
higher-order terms in numerical calculations is still rare, 
even in problems for which they cannot be neglected. Thus 
the accuracy of results may be considerably distorted. The 
effects produced by the higher-order terms are  often 
referred as ‘non-geometrical’ to  emphasize that they cannot 
be explained by the classical ray theory known from 
geometrical optics. A frequently discussed problem studied 
by many authors numerically as well as analytically (e.g. 
Daley & Hron 1987; Koslov & Yanovskaya 1988; Kiselev & 
Roslov 1991: Hron & Zheng 1993; Santos & PSenhi 1993) is 
the reflection of a spherical P wave at a free surface or at a 
plane interface. For this case. remarkable effects caused by 

* On leave from: Geophysical Institutc, Czech Academy o f  
Sciences, Botnni 11/1401, 141 31 Praha 4. G e c h  Republic. 

the higher-order ray approximations are reported, 
particularly for PS reflections. 

In this study, we shall take a different approach to  the 
higher-order ray approximations. We consider a simple 
problem: a spherical wave propagating in an elastic, 
homogeneous and isotropic medium. Since we deal only 
with a spherical wave, we are able to  solve the basic 
equations of ray theory analytically and to give explicit 
formulae for the higher-order terms. Moreover, the exact 
solution for this problem is well known, so we can compare 
the ray-theoretical formulae with the exact ones. In 
particular, we will examine the relation between the 
higher-order ray approximations and the near-field waves, 
which are present in exact solutions but intractable by the 
zeroth-order ray approximation. First, we will study the 
ray-theoretical Green’s function, and then wavefields 
radiated by multipolar sources. We will show that the 
near-field waves are perfectly described by the higher-order 
ray approximations and that the ray-theoretical Green’s 
function coincides with an exact solution. Likewise, for the 
multipolar sources the ray theory gives the exact solution, 
We will show that the higher-order ray approximations can 
easily be computed using a spherical harmonics expansion of 
the ray amplitudes. Simple algebraic formulae for the 
spherical harmonics coefficients of the higher-order terms 
from coefficients of the leading term will be derived. 
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926 V .  Vavrvhtk and K .  Yomogida 

2 HIGHER-ORDER A P P R O X I M A T I O N S  OF 
RAY THEORY 

2.1 

For a perfectly elastic, homogeneous, isotropic, and 
unbounded medium without any external forces, the 
elastodynamic equation is 

(1)  

Basic equations of ray theory 

pii, - ( A  + I* )u,,,, - w,.,, = 0, 

where u ( x , t )  is the displacement vector, A and p are the 
Lame constants and p is the density of the medium. Dots 
over quantities mean the time derivative: indices after the 
comma denote the spatial derivative. The Einstein 
summation convention of pairs of equal indices is applied. 
We seek a solution in the form of a ray series (Cerveng, 
Molotkov & PSenEk 1977): 

K denotes the order of the ray approximation, U ' k ' ( ~ )  is the 
ray-amplitude vector and r (x )  is the traveltime. Inserting (2) 
into ( 1 )  leads to the following equations for the ray 
amplitudes U'": 

N,(  U?') - M,( U i A  - I ) )  + L,( Uih  'I) = 0, ( 3 )  

which are called the basic equations o f  ruv theory. 
Differential vector operators, N,M and L are defined as 
follows: 

N , ( u l )  = -put + ( A  + P ) P , P , ~ ,  + PPJPJU,, 

(4) 

where p ,  = ds/ax, is the slowness vector. The basic 
ray-theoretical equations (3) are recursive equations: each 
term of the ray series is calculated from the lower-order 
terms. The leading term (i.e. the zeroth-order ray 
approximation) is calculated by assuming terms of negative 
order to  be equal to  zero (U'K'=O for K < O ) .  
Consequently, the first-order term and then the other 
higher-order terms of the ray series can be determined. For 
this determination, it is convenient to  introduce the so-called 
additional and principal components U".)' and U'K'll of the 
ray amplitude U'"' as follows: 

u.S'K'll + U . S ( K )  L 
7 U Y ' =  I I (  

U , P ' K )  = [/,P' K )I1 + Uj)' K ) 1 

(Sa) 

where 
Ut"K)/I = UP'" )I1 f' 

u;v'K'II = uSL"K)ll s r ' +  u.';f/'K)II Sff I = I P 

R, 9 

(5b) u , P ( K )  1 = U P ( " )  l.Sl'g.SL + U P ( h )  1 S f /  F f i  
g; 9 

g, g; 7 g, . 

Vectors g p ,  g"" and gSH are called the polurizution vectors. 
They form an orthogonal system of unit vectors: g p  is 
parallel to  the slowness vector p; g."' and g"" are 
perpendicular to  p. For point sources in homogeneous 
isotropic media we will choose g p ,  g"' and g.'" in the 
following way: 

sin 6 cos cp 

cos 6 

where angles 6 and cp are the standard take-off angles of a 
ray. 

The determination of each term of the ray series is 
performed in two steps: first, the additional component 
U'K)l is calculated by the differentiation of the lower-order 
terms, and second, the principal component U'"'ll is 
calculated by solving an ordinary differential equation called 
the transport equation. 

2.2 Additional components 

Solving eqs ( 3 ) ,  we obtain the formulae for additional 
components of the higher-order ray approximations 
( te rveng et a/ .  1977, eqs 2.16, 2.19): 

for the P wave, and 

for the S wave. 
Obviously, the additional components of the zeroth-order 

terms UP'"' .  and US'")' equal zero, and thus the 
zeroth-order term consists only of principal components. 

2.3 Principal components 
The principal components U'"h) l l  and can be found 
by solving the transport equations ( te rven?  et al. 1077, eqs 
2.24, 2.26). Specifying them for a homogeneous isotropic 
medium, we obtain 

+-- 
dt 21 d r  

= - {L,( u y  - I )) - M,,( u y  ) )}g;T', 

dl/P'"'ll uP'K)II dJ 

1 
(gal 

2P 
duSL"K)ll uSL"")II dJ +-- 

d s  21 dt 

I )k?', (Xb) 
= ___ 1 {L,( uy- I ) ) - M ( U y ' I  

2P 
dUSH'K'lI U"H'K)II rtJ 

+-- 
d r  21 d7 

1 
= - {L,,( uy- ' ) )  - M,!( u y  ) )}g7f/. (8c) 

2P 
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Midtipolar elastic fields 927 

Since the equations for S waves (8b.c) are essentially the 
same as for P waves (Xa), we will consider only P waves in 
the following derivation. For S waves we will present just 
final formulae. 

Assuming waves to  be generated by a point source located 
at the origin of coordinates, the wavefront becomes 
spherical and the ray coordinates coincide with the spherical 
coordinates 19, cp, r .  Inserting the ray Jacobian J ,  

into (8a) and using as the variable the distance r from the 
source to a receiver instead o f  the traveltime T ,  the transport 
equation for P waves reads 

(10) 

Eq. (10) is an ordinary differential inhomogeneous equation 
of the first order. The zeroth-order ray approximation is a 
solution of the homogeneous equation 

dr r 

taking the form 

r 

&"'o)ll( 6. cp) denotes the radiation pattern of the P waves in 
the zeroth-order ray approximation. The form of this 
function is not predicted by the ray theory and depends on  
the type of source. In fact, this function represents the 
far-field radiation pattern of a source and we will assume it 
to be known before calculations of the higher-order ray 
approximations. Inserting (12) into (7a) and ( l o ) ,  we find 
the transport equation for the first-order ray approximation: 

where /"(if, c p )  depends on the form of 9Pco)ii( 6, cp). The 
solution can formally be written as 

where @( I (6, c p )  is the radiation pattern of the principal 
P-wave component in the first-order ray approximation. The 
function C p c I ) ( 6 ,  cp )  is an arbitrary integration constant, 
since a general solution should involve any solution of the 
homogeneous equation. It implies that any arbitrarily 
chosen far-field term in (14) is also a solution of (13). A s  we 
mentioned, we will assume the far-field term to be known 
and it will be identified with the zeroth-order ray 
approximation. Therefore, no other far-field terms can be 
included in solution (14), and thus the integration constant 
C P ' ' ) ( 6 ,  c p )  is identically zero. Analogously, we can write 
for the Kth-order ray approximation 

and we can again conclude that the integration constant 
C p ' K ' ( 6 ,  c p )  is zero. Finally, we arrive at an explicit formula 
for the principal component of the k'th-order ray 
approximation for P waves ( K  > 0): 

Similarly, we find for S waves that 

From (7a.b) and (1ha.b) we can see that all the higher-order 
ray approximations can be obtained only by the 
differentiation of the zeroth-order term, which is a 
mathematically elementary procedure. It should be noted. 
however, that this procedure is numerically unstable and 
analytically tends to  produce rather extensive formulae. 

The vector equations (3) can also be generalized to 
tensor fields which are represented, for example. by the 
Green's function. In this case, the ray-amplitude vector U, is 
replaced by the ray-amplitude tensor U,,, and vector 
differential operators N,.  M ,  and L,  defined in (4) become 
tensor operators N,,, MI, and A,,. Since the reformulation of 
eqs (2), (3) and (4). and consequently (7a,b) and (16a,b), to 
tensor notation is simple. we will not give it explicitly, and 
we will refer to  the vector equations even in the case when 
we will actually calculate tensor fields. 

3 GREEN'S FUNCTION FOR ISOTROPIC 
MEDIA 

The elastodynamic Green's function for homogeneous, 
isotropic and unbounded media was first found by Stokes in 
1849 and Love in 1903. A detailed derivation using Lame's 
potentials is given, for example, in Aki & Richards (1980) 
and in Ben-Menahem & Singh (1981). The Green's function 
consists of three terms: the far-field P wave, the far-field S 
wave and the near-field wave. The amplitude of the far-field 
waves decreases with distance as l / r .  while the amplitude of 
the near-field waves decreases faster. The near- and far-field 
waves differ also in waveforms: the waveform in the far field 
reproduces the source-time function, but in the near field it 
is more complicated, containing more frequencies that are 
lower. 

The geometrical ray method can be used to compute a 
solution in the far field only. The near-field wave is a typical 
wave that is intractable by this method. Next, we will show, 
however, that by taking the higher-order ray approximations 
into account, the near-field wave can be also reproduced. 
Moreover, we show that even the exact elastodynamic 
Green's function can be obtained by the higher-order ray 
theory. 

3.1 P wave 

The far-field P wave of the Green's function is (see Aki & 
Richards 1980, eq. 4.24) 
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928 V. Vavrv&k and K .  Yomogidn 

where 6 ( r )  denotes the Dirac delta function, r is the distance 
of an observation point from the source and a is the P-wave 
velocity. Formula (17) can easily be recognized to  be the 
zeroth-order ray approximation (eq. 17) with the ray 
amplit ude 

Inserting (18) into (7a)  and (16a) we can calculate the 
first-order ray approximation and then each higher-order 
term recurrently. Following this procedure, we obtain, for 
the first-order ray approximation. 

Then we finally obtain 

where H ( r )  denotes the Heaviside step function and a,, is 
the Kronecker delta. In (19) we use the identity 

(20) 

Consequently. for the second-order ray approximation we 
have 

5 L '  S I  Y t i  S t l  = x:k:'+xi g /  'X ' i  K; a h / .  

which leads to  

Calculating the third- and higher-order ray approximations, 
we arrive at the interesting result that these approximations 
equal Lero. 

3.2 S wave 

Analogously to the P wave, we can apply the above 
procedure to the S wave. The far-field S wave is (Aki  & 
Richards 1980, eq. 3.25) 

(77)  

where p is the S-wave velocity. For the first-order ray 
approximation we obtain 

then we get 

and for the second-order ray approximation 

which leads to  

Similarly to the P wave, all the other higher-order terms 
equal zero. 

3.3 Complete Green's function 

Summing eqs (17). (IS). (21)  for the P wave and (22 ) .  (731 
and (24) for the S wave. we have 

where we used 

j l l jr  - f) nr - j H ( r  -k, dr + fH( [  - ;) -; " j r  2) 

Formula (25) expresss  the complete ray-theoretical Green's 
function and fully coincides with an exact formula (see Aki 
& Richards lY80, eq. 3.23).  It has, for both P and S waves, 
only three non-zero terms. The zeroth-order term 
corresponds to  the far-field wave, the first- and second-order 
terms correspond to the near-field wave. The near-field 
wave in (25) is expressed only by one integral. and thus it is 
not obvious how to separate it formally into P and S waves. 
Therefore, it is not well known that the Green's function has 
the form of a ray series with a finite number o f  terms. To the 
authors' knowledge. this fact is explicitly reported only by 
Goldin & Ashkarin (1991). 

Comparing (19) and (21) with (23) and (24), we can see 
that the formulae for the first- and second-order ray 
approximations for P and S waves are  very similar. For the 
second-order ray approximation, the ray amplitudes for P 
and S waves are even the same, but with a reverse polarity. 
This fact has a well-founded physical reason: the first-order 
term for P and S waves considered separately produces a 
static offset, and the second-order term a divergence in time, 
but their mutual combination leads to the cancelling of these 
unphysical effects. The final solution does not diverge and it 
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Multipolar elastic fields 929 

is free from the static offset. The mutual cancellation of P 
and S motions in the near field is also reported by Wu & 
Ben-Menahem ( 1985). Convolving the complete ray- 
theoretical Green’s function with the unit constant in time, 
we obtain the elastostatic Green’s function Gzp‘ in the 
following form (Hirth & Lothe 1968. eq. 2-79; Mura 1982, 
eq. 5.8): 

where we used a’=(/\ + 1 p ) / p  and P 2 = p / p .  Thus, by 
calculating the higher-order terms of the ray series from the 
zeroth-order ray approximation, we can even obtain an 
exact solution for the sturic case. 

4 MULTIPOLAR FIELDS FROM POINT 
SOURCES 

In this section, we will study waves generated by multipolar 
point sources. By the multipolar poini s o ~ ~ r c e  we mean a 
source generating a displacement field in the form 

L i # ( x * f )  = G i h l . h ~ k , . . - h \ . * M h I h . h ; .  h , > ,  (28) 

where G,/(x, t )  is the Green’s tensor, M h l k ? A ? .  . h , ( i )  is the 
multipolar moment tensor, N is the order of a multipolar 
source and * denotes the time convolution operator. For 
N = 1. formula (28) reduces to 

it((x, I )  = G,/ *$, 
and for N = 7, to 

(19a) 

u, (x ,  f )  G , / , h  * M / k .  (2Yb) 

where $ ( t )  is the single force vector and M,A(r)  is the 
second-order moment tensor. As in Section 3, we will 
assume that we know the far-field waves generated by a 
source, but here the source will be of a general multipolar 
order. We will try to derive a formula for the complete 
wavefield, including the near-field waves. by using the 
higher-order ray approximations. We will confine oursleves 
to P waves. The theory for multipolar S waves can be 
developed in an analogous way. First of all we will study an 
axially symmetric P -wave radiation, which is simpler and 
more comprehensible. After that. we will briefly repeat our 
derivation for a general case. 

4.1 Axially symmetric radiation pattern 

Let us assume a spherical far-tield P wave in the following 
form: 

u / ’ ( O J j  
( x . t ) = O .  

where R”“”II is the zeroth-order radiation function. In this 
section. we will assume the axially symmetric case: 
R‘’(o)ll = R”“”ll( S ) ,  where 6 denotes the angle between the 
position vector of an observer and the axis of symmetry. 
Without loss of generality, we will identify the symmetry 
axis with the x,-axis. From axial symmetry, an  additional 

component of each higher-order term can he assumed to he 
polarized in the gs’ direction only. Thus we can write 

(x, I )  = q x .  t )  + UP(A ! (x. I ) ,  K ) 

where RP‘A)” and R“’” will be called the principal and 
additional P -wave radiation functions of the k’th-order. 
Note that the definition (15) of radiation patterns 
differs from the definition of R”‘” by a scaling factor ah,  

explicitly written in (31). where a is the P-wave velocity. We 
introduced this definition just for the reason o f  simplification 
of the next formulae. Using eqs (7a) and (16a). we obtain 
for the tirst-, second- and third-order radiation functions the 
following: 

( 3 2 )  

We obtain the higher-order radiation functions similarly: 
they can be expressed as 

where the brackets ( ) denote the differential operator 
defined as follows: 

ri’R cos 6 d R  
c i A  sin 6 11-9 

( R )  = 7 + - - 

In contrast to  (7a)  and (Iha) ,  we managed to express 
additional as well as principal components of each higher- 
order term by differentiation of only lower principal compon- 
en& as shown in ( 3 3 ) .  However, the recursive multiple 
differentiation in ( 3 3 )  still complicates the calculation of 
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the higher-order ray approximations considerably. In the 
following. we will try to  simplify formulae (33) by avoiding 
differentiation completely. 

By expanding the radiation functions in a series of 
Legendre polynomials P,,(cos 6) and the associated 
Legendre polynomials of the first order. P i (cos  8), 

(34) 

( 3 5 )  

where we used the following identities for the Legendre 
polynomials: 

dP,, ( cos 8 ) 
Pf,(cos 19) = 

t i  8 

In ( 3 5 )  and ( 3 6 )  we adopted Hobson's definition of the 
associated Legendre polynomials, which yields Pt(cos 8) = 
-sin 8, but not another definition by Ferrer: 
Pl(cos 79)  =sin 8. 

Inserting (34) and (35) into (33 ) .  we obtain algebraic 
formulae for the coefficients of the Legendre expansion for 
the higher-order radiation functions expressed only by the 
zeroth-order coefficients: 

r;z'( I )I1 = L( 2 + + 2)r;,'(w, f'( 1 ) 1 = - r ; ( o ) ,  
7 n  r,r 

(37) 

or generally for the Kth-order ray approximation, for K 5 n 

and for K > n  

r , I rn 

r;'") denotes the coefficient of the principal zeroth-order 
radiation function. Since the additional component is zero in 
this case, we omit a superscript denoting the principal 
component explicitly. 

= 0. / ' ( K + l ) l l =  f ' ( k + l )  

Formulae (38)  represent simple algebraic forms for all the 
higher-order ray approximations. These approximations are 
expressed in terms of expansion coefficients of the 
zeroth-order ray approximation into a series of Legendre 
polynomials. It follows that from a known far-field radiation, 
we can easily calculate all higher-order ray approximations, 
physically representing the near-field waves. The degree of a 
multipolar source is simply related to  the number of 
non-zero higher-order ray approximations. If the source is 
isotropic, only the first-order ray approximation is non-zero: 
if the source is a single force, the first- and the second-order 
approximations are non-zero. In general, we have the 
relation 

K = N + I ,  

where N denotes the order of a multipolar source and K is 
the order of the highest non-zero ray approximation. This 
fact also implies from (38)  that, if the Legendre expansion 
of the far-field radiation has only one non-zero coefficient 
r c ) ,  the expansion of the respective Kth-order near-field 
wave will also consist of only one non-zero coefficient r r ) .  

4.2 General radiation pattern 

Next, we assume a general directional dependence of the 
zeroth-order radiation function 

9 cp) 
R'((I)ll = RP(())II( 6 

In this case. the additional component of higher-order 
radiation functions will be polarized in a general direction 
perpendicular to  g p ,  thus having a component in the 
direction of S V -  as well as SH-wave polarization vectors: 

(39) 

Higher-order ray approximations are calculated in a similar 
way to  in the previous section. Therefore, we will not give 
the details, but only the final formulae. 

Inserting (39) into (7a) and (16a). we obtain for the 
higher-order radiation functions 

8 p K - l ) l l  
R p ( K ) L S V -  - - - (K-1 )Rp(K- f ) l , sb  

a 8  
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where the brackets ( )  denote the Beltrami operator (see 
Ben-Menahem & Singh 1981, eq. 1.5) defined as follows: 

d2R cos 8 d R  1 d2R 
( R )  = 7 + 7- +-- 

i ) i f "  sin 6 a19 sin' itdcp" 

Expanding the radiation functions into the vector spherical 
harmonics (Aki  & Richards 1890, eq. 8.13; Ben-Menahem 
& Singh 1981, eq. 2.71): 

R 3  8, c p )  = l':( if, Cp)g', 

(43) 

n.,n=O 

Taking the following identity into account (Ben-Menahem 
& Singh 1981, eq. 1.8). 

I d  1 d'Y::'(if, 9) 

+ n ( n  + l)Y:y(I9, q ) = O ,  (44) 

~ - (sin 9 +- 
sin 19 dI9 sin'19 dcp' 

we obtain 

, 2 . m = o  

Finally, the coefficients of the spherical harmonics expansion 
of the Kth-order radiation functions are expressed, for 
K d n ,  by 

and, for K > n ,  by 

r n v ,  rm,r 

We again omit a superscript denoting the principal 
component explicitly for the zeroth-order coefficient. 

P(K+l) I l= P ( K + I ) I  = O  

5 E X A M P L E S  

5.1 Isotropic source 

Let us assume an isotropic source at the origin of 
coordinates with an impulse-like source-time function. The 
generated wavefield consists only of the spherically 
symmetric P wave, which can be expressed in the far field as 

(47) 

Expanding RJ"O'll into a series of Legendre polynomials 
according to (34). we find that the only non-zero term of the 
expansion is r{(')): 

According t o  (38) ,  the non-zero coefficients of the principal 
and additional components of higher-order approximations 
are 

(49) 

Since Pb(cos 0) is identically equal to zero, the additional 
component up(' )'(x, f) vanishes, and the complete wavefield 
is 

and ,.{(I)l = - P ( 0 )  ro ' 
)I1 = r P ( o )  

(SO) 

Formula (SO) is well known and it can be found in, for 
example, Ben-Menahem & Singh (1981, eq. 4.208). The 
wavefield for a general form of the source-time function can 
be obtained from (SO) by applying the time convolution 
operator. 

5.2 Double-couple source 

Next, we will examine a wavefield generated by the 
double-couple source at the origin of coordinates with the 
moment tensor M,,( t ): 

A s  for the isotropic source, we assume in (51) that the 
source-time function M ( t )  is the Dirac delta function. 
Obviously, any other form of M ( t )  (for example the step 
function frequently used in source modelling studies) can 
easily be incorporated in all the following formulae by the 
time convolution. The far-field P-wave displacement 
U ~ ( ~ ) ) ( X ,  t )  is expressed (Aki & Richards 1980, eq. 4.29) by 

and thus the zeroth-order radiation function is 

Expanding Rp(")ilgJ' into the vector spherical harmonics 
(43), we find that the only non-zero term of the expansion is 

J'( (1). 
r'l ' 

According to  (46), we have, for the coefficients of the 
principal and additional components of higher-order 
approximations, 
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all other coefficients of the expansion being zero. Taking the 
following equations into account: 

where e‘ = ( 1.0, and e’ = (0, 0, l )r ,  we obtain, for 
higher-order radiation functions, 

( 5 7 )  

For the complete P wave, we can finally write 

Formula (58)  coincides with the exactly calculated P wave 
generated by the double-couple source (Aki & Richards 
1980, eq. 4.30). The formula for the S wave can be obtained 
in an analogous way. 

6 CONCLUSION 

In our paper, we show that an exact formula for the Green’s 
function for a homogeneous isotropic and unbounded 
medium can be obtained by the ray method. The ray series 
of the Green’s function can be calculated by using the basic 
equations of ray theory and it consists only of three 
non-zero terms. The zeroth-order term corresponds to  the 
far-field wave. The higher-order ray approximations 
correspond to  the near-field waves, which are neglected by 
the geometrical ray method. 

By analytical calculations of the higher-order ray 
approximations of the wavefields generated by multipolar 
point sources, we found a simple algebraic relation between 
the coefficients of the spherical harmonics expansion of the 
far-field radiation function and the radiation of the 
near-held waves. We show that a multipolar source of the 
Nth order generates a wavefield aact/-v expressed by the ray 
series with N + 2 non-zero terms (including the zeroth-order 
term): all higher-order ray approximations equal zero. We 
found that the form of the principal component of the 

radiation function for the near-field waves follows the form 
of the far-field radiation function: meaning that it consists of 
the same spherical harmonics functions. The higher-order 
ray approximations are expressed by the higher-order 
spherical harmonics, the low-order coefficients of the 
expansion being zero. 
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