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SUMMARY 
An explicit analytical formula for the complete elastodynamic Green tensor for 
homogeneous unbounded weak transversely isotropic media is presented. The formula 
was derived by analytical calculations of higher-order approximations of the ray series. 
The ray series is finite and  consists of seven non-zero terms. The formula for the Green 
tensor is complete and correct for the whole frequency range, thus it describes correctly 
the wavefield at  all distances and at all directions including the shear-wave singularity 
direction. The Green tensor consists of P, SV and SH far-field waves and four coupling 
waves. Three of them couple P and SV waves, and  the fourth wave couples the SV 
and SH waves. The P-SV coupling waves behave similarly to  the near-field waves in 
isotropy. However, the SV-SH coupling wave, which is called 'shear-wave coupling', 
behaves exceptionally and  it has no analogy in the Green tensor for isotropy. The 
formula for the elastostatic Green tensor is also derived. 

Key words: anisotropy, Green tensor, perturbation methods, ray theory, shear-wave 
coupling, shear-wave splitting. 

1 INTRODUCTION 

The point-force solution of the elastodynamic equation for 
homogeneous isotropic media was found by Stokes (1849). 
This well-known solution, known as the elastodynamic Green 
tensor for homogeneous isotropic and unbounded media, plays 
a fundamental role in elastodynamics. For anisotropic media, 
however, the problem is much more complex. Christoffel(l877) 
solved for plane-wave propagation in anisotropic media, but 
the point-force solution was unsolved. More than 100 years 
after the original Stokes paper, Lighthill (1960) and Buchwald 
(1959) found an integral form of the Green tensor for homo- 
geneous anisotropic media: Lighthill ( 1960) for magnetohydro- 
dynamics and Buchwald (1959) for elastodynamics. The Green 
tensor is expressed by the Fourier integral, and the integral 
can be solved by the stationary phase method under the far- 
field approximation. We will call this solution the far-field or 
high-frequency approximation of the Green tensor. The point- 
force solutions for anisotropic media were also studied by Duff 
(1960), Burridge (1967), Yeatts (1984), Kazi-Aoual, Bonnet & 
Jouanna (1988), Tverdokhlebov & Rose (1988) and Wang & 
Achenbach (1993, 1994), among others. The solutions in those 
papers were obtained by the Fourier, Laplace or Radon trans- 
forms. Unfortunately, the solutions in the above-mentioned 
papers are either far-field approximations, or they are obtained 
by numerical application of the inverse transform. In order 
to obtain an explicit analytical form for the complete elasto- 
dynamic Green tensor including near-field waves, the inverse 

transform was also solved analytically, but under very limited 
conditions only: for 2-D transverse isotropy (Payton 1971, 
1983), for 3-D transverse isotropy for a ray parallel to the 
symmetry axis (Payton 1977, 1983), and for 3-D transverse 
isotropy for the general direction of a ray (Ben-Menahem & 
Sena 1990). Except for the SH-wave part of the 3-D Green 
tensor for transversely isotropic media, the above-mentioned 
analytical solutions are, however, complicated, and they do 
not give a simple physical insight as, for example, the Stokes 
solution into waves in isotropic media. 

The formula for the SH-wave Green tensor in transverse 
isotropy was also derived by VavryCuk & Yomogida (1996) 
but by another method, analytical calculation of higher-order 
approximations of the ray series. Assuming that the Green 
tensor can be expressed by the ray expansion, we can calculate 
higher-order terms of the expansion from the far-field approxi- 
mation of the Green tensor. Recurrent formulae for the calcu- 
lation of higher-order terms of the ray series are known as the 
basic equations of the ray theory. For anisotropic media they 
were derived by Babich (1961), and subsequently studied by 
cerveny (1972). VavryCuk & Yomogida (1995, 1996) solved 
these equations for point sources in homogeneous media and 
showed that the Green tensor can be expressed exactly by the 
ray expansion with a finite number of terms, at least for some 
special cases (isotropy, SH waves in transverse isotropy). In 
this paper, we use this approach to set up the formula for the 
elastodynamic and consequently the elastostatic Green tensor 
for weak transverse isotropy. Weak transverse isotropy is chosen 
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since wave propagation is much simpler in this case, and all 
basic quantities of wavefields can be simply calculated by the 
perturbation method (Cerveny 1982; Farra 1989; Jech & 
PSenEik 1989; Nowack & PSenEik 1991; Kiselev 1994; Sayers 
1994). Moreover, weak anisotropy and, in particular, weak 
transverse isotropy are frequently encountered in exploration 
seismics (Thomsen 1986), thus our calculations are not only 
of theoretical relevance, but they are also relevant for practical 
applications. 

2 METHOD 

The elastodynamic Green tensor for homogeneous anisotropic 
media satisfies the equation 

pG,n - C i j k l  G k n , l j  = s i n s ( x ) s ( t ) ,  (1) 
where Gin = Gi,(x, t )  is the symmetric tensor of the second 
rank, p is the density, cijkl is the elasticity tensor, sin is the 
Kronecker delta, and 6 ( t )  is the Dirac delta function. Einstein 
summation convention is applied, where repeated indices mean 
summation. Solving eq. (1) by the Fourier method (e.g. Lighthill 
1960; Buchwald 1959; Burridge 1967) leads to the solution in 
the form of a sum of three symmetric tensors: 

G&, t )  = G;(X, t )  + G ~ : ( x ,  t )  + G ~ : ( x ,  t ) ,  (2) 
corresponding to three waves, P, S1 and S2. We assume 
that each of these tensors can be expressed in a form of 
the ray series (Cerveny 1972; Cervenk, Molotkov & PSenEik 
1977): 

m 

G ~ ( x ,  t )  = 1 U r ( K ) ( x ) f ( K ) (  t - ~ " ( x ) ) ,  
K = O  

(3) 

where 

K denotes the order of the approximation, W denotes the 
wavetype (P, S1 or S2), U K ( K ) ( ~ )  is the ray amplitude tensor, 
and 7W(x) is the traveltime. Eq. (3) is the ray expansion of the 
Green tensor GE(x,  t ) .  Since the next formulae are analogous 
for all three waves, P, S1 and S2, the superscript W will be 
omitted unless it causes confusion. Inserting formula (3) into 
( 1 )  leads to a system of equations for the amplitude tensors 
U p :  

Ni,(Ui:')-Mi,(UL:-1))+Li,(Uif-2))=0, (4) 

referred to as the basic equations of the ray theory. The right- 
hand side of eq. (4) is zero, because we eliminated the source 
term present in eq.(l). Later, we will discuss a way of 
incorporating an effect of the source into the solution of eq. (4). 

Differential tensor operators N,,, M j n  and L,, in (4) are 
defined for homogeneous anisotropic media as follows: 

( K )  - r, u'K) - u(F) 
Nj??(ukn 1- j k  kn jn 3 

M j n ( U f ? )  = a i j k l ( P i  u!!?l +PI  ui!?i + pi,l u!?) > 

Ljn(u!$) = aijkl uif!il > ( 5 )  

aijkl is the density normalized elasticity tensor, p i  is the slowness 
vector, p is the slowness, ni is the unit phase normal vector, c 
is the phase velocity and rj, is the Christoffel tensor. Instead 

of the Christoffel tensor rjk= aijklP;Pl, we will sometimes use 
a scaled Christoffel tensor r j k  = aijklninl.  Both tensors, rjk and 
rjk, are symmetric. The ray amplitudes Ui:) for K < 0 are 
equal to zero. 

Formula (4) is a recurrent system of equations for all terms 
UL:), K 2 0 of the ray expansion (3). For the calculation of 
Uif), it is convenient to introduce the so-called additional and 
principal components Ui:)' and Ui:)ll of the ray amplitude 
U g ) :  U ( K )  kn - - U ( K ) L  kn + UL:)I1 (see Cerveny 1972, eqs 18a and b; 
Cerveny et al. 1977, eqs 5.11 and 5.12). The calculation of 
each term of the ray series U i f )  ( K  2 0) is performed in two 
steps. First, the additional component Ui:)L is calculated by a 
differentiation of the lower-order terms. For P waves, U;jK) l  
is expressed as follows (see cerveny et al. 1977, eqs 5.13 and 
5.14; VavryEuk & Yomogida 1996, eq. 6): 

Second, the principal component Ug)I1 is calculated by solving 
an ordinary differential equation called the transport equation. 
For P waves generated by point sources in homogeneous 
anisotropic media, the transport equation reads (VavryEuk & 
Yomogida 1996, eq. 8)  
dU;;O)l' u;;o'l' 

+--0. for K = O .  
a7 7 

d~;;K)ll u P ( K ) I I  
kn +- 

dz 7 

= T { L , ( U ; ~ ~ - ~ ' ) - M , ( U ; ; ~ ) ~ ) } ~ ~ ~ ; ,  1 for K > O .  (6c) 

The transport equations (6b and c) can be solved explicitly, 
and integration constants appearing in the solution can be 
determined (VavryCuk & Yomogida 1996, eq. 16). Finally, we 
can summarize the formulae for all terms U;LK) of the P-wave 
ray expansion: 
u;P&K) = u P ( K ) I  + ~ f " K ) l l  

for K < 0 : 
kn kn 3 

U;;K)L = U;AK)l1 = 0, 

for K=O:  

(7) for K > 0 :  

A;" = Afn(N) is the P-wave zeroth-order radiation function 
defined as the amplitude distribution on a sphere (but not on 
a wave surface), N is the ray direction, 1/47tp is a normalization 
constant, r is the distance of an observation point from the 
source, GW is an eigenvalue of the Christoffel tensor rj, and 
g"' is the corresponding unit polarization vector. The eigenvalue 
G P  is equal to 1. 

Forms of the function f ( ' ) ( t )  in eq. (3) and of the radiation 
function A;" in eq. (7)  are not predicted by the theory presented 
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because we eliminated a source term in eq.(4). Thus, the 
functions f ( ' ) ( t )  and A;" must be found by another method. 
Taking into account that the zeroth-order ray approximation is 
equivalent to the far-jield approximation, we can determine 
f ( ' ) ( t )  and A:,, from the far-field Green tensor for homogeneous 
anisotropic media (Ben-Menahem, Gibson & Sena 1991, eq. 12; 
Kendall, Guest & Thomson 1992, eq. 1; Ben-Menahem & 
Gibson 1995, eq. 51): 

1 1 dd 
G;~(x,  t )  = - - 6( t - ZP(X)) 

47.v (UP),@ T P  

where u is the group velocity, K ,  and K ,  are the Gaussian 
curvatures of the slowness and wave surfaces, respectively, and 
6 ( t )  is the Dirac delta function. Formula (8) was obtained 
by solving the exact integral form of the Green tensor by 
the stationary-phase method. G:p is also known as the ray- 
theoretical Green tensor. In fact, it is the zeroth-order ray- 
theoretical Green tensor in our terminology. Comparing eq. (8) 
with eqs (3) and (7), we obtain the following: 

f " ) ( t ) = 6 ( t ) ,  A P - A -  k'- UP@ g'g' - UP(PP)2*dd. (9) 

Eqs ( 3 ) ,  (7) and (9) define a recurrent system of equations 
that allows us to find from the P-wave zeroth-order ray 
approximation, G::), all higher-order terms of the P-wave ray 
expansion, G:AK), K > 0. We can see that all the higher-order 
ray approximations can be obtained only by a spatial differen- 
tiation of the zeroth-order amplitude, U;;'), and by a time 
integration of I(')( t ) ,  which are mathematically elementary 
procedures. We should mention, however, that the multiple 
recursive differentiation tends to producing rather extensive 
formulae. Analogous formulae to eqs (7)  and (9) can also be 
written for S1 and S2 waves. 

3 WEAK T R A N S V E R S E  ISOTROPY ( W T I )  

3.1 Definition of WTI 

We shall consider a weak transversely isotropic medium 
(hereafter called the WTI medium) with a vertical axis of 
rotation symmetry, defined as follows: 

all = , a44 = 4 4  9 a13 = 4 3  + Aa13 > 

(10) 
a33 = + A ~ 3 3 ,  Us6 = a24 + Aa66, 

where a& = = 8,. a:" denotes the 
parameters of the unperturbed isotropic background medium 
with P and S velocities tl and /I, am" denotes the parameters 
of the WTI medium, and Aa,,, Au,, and are small 
perturbations satisfying conditions for weak anisotropy: 

- 2a:,, ayl = t12 and 

In (10) we do not perturb the parameters a,, and a44, since 
perturbations Aall and Aa44 do not cause anisotropy, but 
produce only perturbations of P and S velocities Atl and AD of 
an isotropic background medium. Thus, without any loss of 
generality, any WTI medium with a vertical axis of symmetry 
can be described by five parameters: P and S velocities in the 

isotropic background tl and p, and perturbations Aa13, A u , ~  
and AU66. Instead of the perturbations Aa,,, Aa,, and h6,, 
however, we will mainly use the anisotropy parameters E , ,  E~ 

and E,, defined as follows: 

A ~ 3 3  - 2Aa13 Aa6fi and E , = -  
2 2 '  E l  = A ~ 1 3 ,  E2 = 

thus 

'11 + '33 - 2a13 - 4a44 

2 = a13 - + 2~44,  ~2 = 

and 

E3 = ___ 
a66 - a44 

2 '  

The reason for using the parameters E ~ ,  E~ and E, is the 
simplification of formulae presented later. The relations between 
parameters tl, fl, E ~ ,  E~ and E~ and Thomsen's parameters aT,  
PT, y, 6 and E (Thomsen 1986, eqs 8a,b, 9a,b and 17) are 

tl=X,(l+E), p = f l ~ ,  E 1 = & $ ( 6 - 2 E ) ,  

E 2  = W $ ( E  - 6), 
(134 

E3 = p$Y, 

From (13) we can see that our isotropic background differs 
from that used by Thomsen (1986). The reason is that during 
the perturbation process we fixed the horizontal P-wave 
velocity (parameter a,,), but not the vertical P-wave velocity 
(parameter a,,), as done by Thomsen. Using eqs (13), we can 
readily express all the following formulae using Thomsen's 
parameters. 

3.2 Perturbation formulae for WTI 

The perturbation theory is a well-known method in theoretical 
physics (Morse & Feshbach 1953; Madelung 1964), in particular 
in quantum mechanics (Landau & Lifshitz 1974). We shall use 
it for calculating basic elastodynamic quantities for WTI media. 
Since the perturbation formulae for WTI are known (see e.g. 
Backus 1965; Thomsen 1986; Jech & PSenEik 1989; Kiselev 
1994; Sayers 1994) or can be found without difficulty, we 
shall review them without any derivation. We shall present 
formulae for traveltimes, polarization vectors, eigenvalues 
of the Christoffel tensor, slowness vectors and Gaussian 
curvatures of the wave surface. All perturbed quantities will 
be expressed for a fixed ray direction specified by the unit 
vector N = (N, ,  N,, N,)T  and by angle 0 between a ray and 
the symmetry axis. 

(1) Phase velocities: 

cP=tl 
a11 

csv = p( 1 + - N ; -  E2 " N : ) ,  
a44 a44 
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(2) Traveltimes: (7) Gaussian curvatures of wave surfaces: 

(3) P-wave polarization vector: 

(4) Eigenvalues of the Christoffel tensor rkf: 

a44 

a44 a44 

(5) Slowness vectors: 

a44 

(6) Angles between the ray and a phase normal: 

E 6" = -2 sin 0 cos 0 2 (  1 - 2N:), 
a44 

E3 

a44 
hSH = 2 sin e cos e- . 

4 THE ZEROTH-ORDER RAY 
APPROXIMATION OF THE GREEN 
TENSOR 

Inserting perturbation formulae from the previous section into 
eq. (9), we obtain for the zeroth-order ray-theoretical Green 
tensor GLY)(x, t )  in WTI media the following formula: 

(16) 

The zeroth-order radiation functions Aff, A:,'' and A:? are 
defined as follows: 

N:+ 1 
+ & 3  2 INkNf - N3(N16k3 + N k 6 f 3 )  

a44( 1 - N:) 

+6k3613-(1  - N:)6kf} > ( 224 
where 6,, is the Kronecker delta. These formulae describe a 
linearized zeroth-order approximation of the Green tensor, 
valid only for weak anisotropy. The weaker the anisotropy, 
the better the formulae work. The Green tensor consists of 
three waves: P, SV and SH.  All waves propagate with different 
velocities and have different polarizations. Velocities of P, SV 

( 19) 

0 1997 RAS, GJI 130, 786-800 



790 V Vaury&k 

and S H  waves differ only slightly from the P- and S-wave 
velocities z and p of the isotropic background. Polarization of 
P waves also deviates slightly from the P-wave polarization 
in the background medium, which is parallel to the ray 
direction N. Polarizations of S waves in WTI, however, can 
differ from the S-wave polarization in the background medium 
quite distinctly. Instead of one S wave in isotropy, two S waves 
with mutually perpendicular polarizations propagate in WTI, 
SH-wave polarization being perpendicular to the axis of sym- 
metry, and SV-wave polarization lying in the plane specified 
by the symmetry axis and a ray. The reason why the S-wave 
polarization in weakly anisotropic media is quite different from 
isotropy lies in the fact that anisotropy, in general, removes 
the degeneracy of S waves in isotropic media (see Jech & 
PSenEik 1989). The degeneracy of S waves is removed, even 
with weak anisotropy. The result is the well-known S-waoe 
splitting effect. Limits of the applicability of formulae (21) and 
(22) will be discussed later. 

5 HIGHER-ORDER RAY 
APPROXIMATIONS OF THE GREEN 
TENSOR 

Using formulae (21) and (22) for the zeroth-order ray-theoretical 
Green tensor for WTI and formulae (7)  for higher-order terms 
of the ray expansion, we can recursively calculate the whole 
ray series of the WTI Green tensor for each P, S V  and S H  
wave. This procedure is mathematically elementary since it 
involves only the partial derivatives of eq. (21). Nevertheless, 
since the differentiation is recursive, an extensive manipulation 
with rather complex formulae is needed. For this reason, we 
performed the calculations by using the symbolic manipulation 
software REDUCE (Hearn 1991). In this section, we will not 
present a detailed derivation, but will only summarize the 
basic formulae and general results. The final formula for the 
Green tensor including all higher-order ray approximations 
will be presented in the next section. 

Calculating higher-order amplitude tensors U i . )  of the ray 
expansion for P, SV and SH waves, we arrive at the following 
results. 

(1) For S H  waves, the only non-zero higher-order term is 
the first-order term U;,"(l). All higher-order terms are equal to 
zero. For P and SV waves, six higher-order terms are non- 
zero and all the others are zero. A finite number of non-zero 
terms of the ray expansion of the P, SV and SH waves implies 
that the ray series is finite and convergent for all the three 
waves. Therefore, we can conclude that the Green tensor is 
expressed exactly by the ray series in the homogeneous WTI 
medium. This finding is very interesting and important, because 
the ray method is usually assumed to be only an approximate 
method, and the ray series is commonly assumed to be 
divergent. 

(2) The first-order term for S H  waves, U;,"(') contains none 
of the anisotropy parameters E~ or E ~ ,  and fully coincides 
with the first-order term, even for strong TI (see VavryEuk & 
Yomogida 1996, eq. 28). The first- and higher-order terms for 
P and SV waves contain no parameter E ~ .  Moreover, the fifth- 
and sixth-order terms for P and SV waves do not contain the 
parameter E, .  

(3) The third- and higher-order terms for P and SV waves 
are small perturbation quantities. This is obvious, since 

amplitude tensors for the isotropic background medium 
UEl") are zero for K 2 3 (see VavryEuk & Yomogida 1995). 
Furthermore, calculation of the fifth- and sixth-order terms for 
P and SV waves simplifies considerably, because these terms 
are calculated from amplitude tensors, which are small pertur- 
bation quantities. In this case, the differential operators 
M,(ULf)) and L,(Uk.)) in eq. (7) reduce to operators for an 
isotropic background. 

Formulae for the higher-order amplitude tensors U;fK) ,  
Ufy;Y'K) and U;Fp'K) are rather extensive, thus we do not present 
them here. If we insert these tensors into the ray expansion 
(3), and take into account that the recursive integration of 
f " ) (  t )  yields 

f'Q( t )  = 6( t )  , f'"( t )  = H (  t )  , 
+ K - 1  

f ' K ' ( t )  = L H ( t )  for K > 1 ,  
(K  - l)! 

we can express formulae for the Green tensors G:[(x, t ) ,  
G;;(x, t )  and GfF(x ,  t ) ,  and subsequently, for the complete 
Green tensor Gkl(x, t). 

6 COMPLETE ELASTODYNAMIC GREEN 
TENSOR 

The final form of the elastodynamic Green tensor for 
homogeneous WTI with the vertical axis of symmetry can be 
expressed as follows: 

4," Bkf + ~ 6( t - Z S H )  -I- - [H( t - Ts") - H (  t - T S H ) ]  
r r2 

(234 

H ( t )  denotes the Heaviside step function, 6( t )  denotes the 
Dirac delta function, t is time, t = t(r, N) is the traveltime, r is 
the distance from an observation point to the source, and N 
is the ray direction. Using the time integrals instead of the 
Heaviside step function H ( t )  in eq. (23a), we get 

123w 

The zeroth-order radiation functions A;,, A:; and A:? are 
defined by eqs (22a-c). The higher-order radiation functions 
Bkl, C k l ,  Dk, and Ekl are defined as follows: 

1 
B -  

Irf - /J'( 1 - N:)' 
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where a,, = a2 and a44 = B2. 
The correctness of the elastodynamic Green tensor was 

verified by directly inserting (23) into the elastodynamic 
equation (1). For WTI with an arbitrarily oriented axis of 
symmetry, the Green tensor can be obtained from (23) by 
applying standard rules for the rotation of tensors. 

For wavefield u(x, t )  generated by a generally oriented and 
time-dependent point force F(t), eq. (23b) yields 

A;: A?? 
- 7') + -F,(t - 7s") + ---F,(t - P) 

471P r r 

For c1 = c2 = E~ = 0, eq. (23b) reduces to the exact formula 
for the elastodynamic Green tensor for homogeneous isotropic 
media: 

7 PROPERTIES OF THE COMPLETE 
ELASTODYNAMIC GREEN TENSOR 

Formulae (23) and (24) represent an explicit analytical form 
of the complete elastodynamic Green tensor for homogeneous 
WTI media. In contrast to the solution for general anisotropy 
(see e.g. Ben-Menahem & Gibson 1995, eq. 16) or for TI media 

(see Ben-Menahem & Sena 1990), which are complicated, 
solution (23) is mathematically and computationally quite 
elementary. Moreover, it is very similar to the Stokes solurion 
for isotropic media. This enables us to understand the structure 
of the Green tensor for weak anisotropy and to obtain a 
physical insight into the differences between the Green tensor 
for isotropy and for weak anisotropy. We can study the 
properties of the different waves present in the Green tensor 
and understand which waves are dominant at different rays 
and at different distances from the source. 

The Green tensor (23) consists of seven terms. The first 
three terms are the P, SV and SH waves in the zeroth-order 
ray approximation (hereafter the 'zeroth-order waves'), and the 
others are waves described by higher-order ray approximations 
(hereafter the 'higher-order waves'). The time dependence of 
the zeroth-order waves is the Dirac delta function, thus the 
amplitude of the waves is non-zero only at the instants of their 
arrivals. The amplitudes of the higher-order waves are non- 
zero at all times between the arrivals of the zeroth-order 
waves. The zeroth-order waves are high frequency, while the 
higher-order waves are rather low frequency. The amplitude 
of the zeroth-order waves decreases with distance as l/r; the 
amplitude of the higher-order waves decreases faster. 

Radiation functions of the zeroth-order waves A:,, A:: and 
A:? consist of isotropic and anisotropic parts. The isotropic 
part is identical to the radiation functions of the Green tensor 
for isotropic media, and the anisotropic part is a linear function 
of the anisotropy parameter E,, E~ or E ~ .  Since the anisotropy 
parameters must be small compared to elastic parameters of 
the isotropic background, anisotropic parts of the radiation 
functions represent only a small perturbation of the isotropic 
radiation functions. The higher-order radiation function C,, 
also consists of isotropic and anisotropic parts. However, 
the higher-order radiation functions &, and Ekl have 
no isotropic parts, thus they are zero for isotropic media. 
Functions Dk, and E,, are linear functions of the anisotropy 
parameters el and c2, but function Bk, does not depend on 
anisotropy parameters at all. For illustration, the isotropic 
and anisotropic parts of the zeroth-order and higher-order 
radiation functions in the x-z plane for vertical and horizontal 
single forces are shown in Figs 1 and 2. As expected, the 
anisotropic parts have, in general, more complicated forms 
than the isotropic parts, and are of a smaller amplitude than 
isotropic radiation functions. The exceptions are the radiation 
functions Dk, and E,,, which have relatively high amplitudes. 
This is due to scaling to the isotropic part of the radiation 
function C,,. However, functions D,, and Ek, stand at integrals 
which produce a function of lower frequencies and of a smaller 
amplitude than the integral standing at function Ckl. Thus 
these functions do not affect the amplitude of the Green tensor 
more significantly than the radiation function ckl. The most 
significant higher-order radiation function is function B,, , 
because this function is singular for a ray parallel to the 
symmetry axis. Exceptional properties of function B,, will be 
discussed in detail later. 

As mentioned above, the higher-order waves occur only at 
times between the arrivals of the zeroth-order waves. We say 
that the higher-order waves couple the zeroth-order waves. 
This is mathematically displayed in eq. (23b) by the fact that 
the higher-order waves are expressed by integrals which couple 
terms of different ray expansions of P, SV and SH waves. 
Therefore, we can also call the higher-order waves coupling 
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Zeroth-order radiation functions 

AiSO .-- . .  A&, 

. *  - _ -  
s = 0.03 

s = 0.03 

P-SV higher-order radiation functions 

C is0 %I ,-_ cE* 

s = 0.03 

1 ,  

'-' s = O . l  s = 0.1 
I - $  

.- , -  E&2 I 3 D&, ! ' 

, '  . _ *  
s =  1 

' ,  
' I  ,. s = 8  

~ horizontal force - - - - - - - - - - -  vertical force 

Figure I. Radiation functions for waves generated by the horizontal point single force F = (1,0, O)T (full line) and by the vertical point single 
force F = (0,0,1)= (dashed line). The magnitudes of the vector radiation functions are shown in the x-z plane. Parameters of the background 
medium: ul,  = 22.36, u44 = 6.61. Ai,: the radiation function for far-field waves in the isotropic background; AC1 and AE2: parts of the radiation 
function A standing at anisotropy parameters zl and E ~ ;  and analogously for functions C, D and E .  Function ASH is zero for both forces. For the 
vertical force, function B is zero; for the horizontal force, B has the same form as shown in Fig. 2. Parameter s denotes the relative scale of 
anisotropic radiation functions with respect to the scale of the isotropic radiation function. Functions D and E have no isotropic parts Disa and 
Ei,,, thus D,,, D,,, E,, and E,, are scaled to the function CiJo. Function B is scaled to A::. 

waves. For WTI media, we observe the coupling between P 
and SV waves and between SV and S H  waves. Interestingly, 
no coupling between P and SH waves is observed. For general 
anisotropy, however, the coupling between all waves, P-S1, 
P-S2 and SlLS2, can be expected. The wave coupling is a 
typical phenomenon ignored by the zeroth-order ray theory, 
incorporated only by higher-order ray approximations. The 
coupling of higher-order waves is physically very important 
because it makes the Green tensor free from any static offset 
and divergence in time. Thus we can conclude that the higher- 
order waves in the Green tensor of any type of anisotropy 

must be expressed only by coupling integrals similar to those 
in eq. (23b). 

In the Green tensor for isotropic media (26), the zeroth- 
order waves describe the P and S waves in the far field, and 
the P-S coupling wave the wave in the near field (VavryEuk 
& Yomogida 1995). The far-field waves are dominant at 
distances greater than about 10 wavelengths from the source 
(see VavryEuk 1992), but for shorter distances the near-field 
waves should also be considered. Analogously in the Green 
tensor for WTI media (23b), the zeroth-order waves describe 
the P, SV and SH far-field waves, and the P-SV coupling 
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Zeroth-order and SV-SH higher-order radiation functions 

A is0 A E3 

SH 0 
s = 0.2 

P-SV higher-order radiation functions 

Cis0 C&l 

8 s = 0.1 

B*(l-N(3)**2) 

0 
s = 3  

CE2 

s = 0.05 

Figure 2. Radiation functions for waves generated by the horizontal single-point force F = (0, 1, O ) T .  Radiation functions A' and As" are zero in 
the x-z plane. Function B is multiplied by the factor ( 1  - N g )  since B diverges for the ray direction N = (0, 0, l)T. 

waves the near-field waves. However, the SV-SH coupling 
wave is exceptional in its properties. First, this wave is absent 
in the isotropic Green tensor because of the degeneracy of S 
waves in isotropic media. Second, its radiation function con- 
tains none of the anisotropy parameters c l ,  c2 or c 3 .  The 
independence of radiation function BkI on strength of aniso- 
tropy indicates that the form of this wave will be preserved 
even for  strong transverse isotropy. Third, since a time difference 
between the arrivals of shear waves (or, more exactly, quasi- 
shear waves) in weak anisotropy can be very small, the SV-SH 
coupling wave can be of relatively high frequency even at large 
distances from the source. Fourth, the radiation function B,, 
diverges for a ray parallel to the symmetry axis. For this reason, 
Fig. 2 does not show the SV-SH radiation function itself, but 
the function multiplied by a factor sin2 8, where 8 is the angle 
between a ray and the symmetry axis. For a direction parallel 
to the symmetry axis, velocities of SV and SH waves coincide, 
thus forming the shear-wave singularity. Although the amplitude 
of the SV-SH coupling wave decreases with distance generally 
as 1/r2, for the symmetry axis direction the dependence is 
changed into l / r  due to the divergence of the radiation function 
for this direction. Moreover, the waveform of the coupling wave 
for this direction becomes the Dirac delta function, typical for 
waves in the far field. Thus, the complete Green tensor for the 
symmetry axis direction attains the following form: 

+ 1 2 ~ ~ a , ~ a ~ ~ I )  r [ H  ( t  - r) - H ( t  - ;)I, 
1 a,, + 2 c 2  1 1 

-6  t - -  + G - ~ _ _  
4np a:, r ( :) 4np(a11 - a441 

33 - 

-24c2a11a44<}[H( r t - i) -H(  t - ;)I. (27) 

The other components of the Green tensor are zero. Formulae 
( 2 7 )  are identical to Payton's analytical solution (Payton 1977) 
specified under weak anisotropy conditions ( 1 0 )  and ( 1 1 ) .  
It indicates that our approach gives correct results even for 
shear-wave singularity directions. 

The term 'shear-wave coupling' or 'quasi-shear-wave 
coupling' was introduced and the phenomenon was first 
described by Chapman & Shearer (1989) and Coates & 
Chapman (1990),  where an extensive discussion about the 
shear-wave coupling in inhomogeneous weakly anisotropic 
media can be found. In those papers, a method for calculating 
the shear-wave coupling due to gradients in weakly anisotropic 
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media is presented. In our paper, we found the S-wave coupling 
even in the Green tensor for homogeneous weakly anisotropic 
media. For a special case of weak anisotropy, we derived a 
very simple analytical formula for the S-wave coupling. We 
proved that the S-wave coupling in homogeneous media can 
be described by the ray theory correctly, if higher-order ray 
approximations are considered. 

Limits of the applicability of the solution 

In contrast to the exact solution of the Green tensor (see e.g. 
Ben-Menahem & Gibson 1995, eq. 16) valid for homogeneous 
general anisotropy (including strong anisotropy), formulae (23) 
are valid only for homogeneous weak transverse isotropy. By 
weak anisotropy we mean anisotropy that is free of caustics 
and that produces spatial variation of phase velocities up to 
10 per cent. Some authors show that for some basic quantities 
(e.g. phase velocities) the weak anisotropy approximation 
works very well, even above the mentioned limit (see Jech & 
PSenCik 1989). However, the accuracy is reduced if the approxi- 
mated quantities are more complicated (e.g. polarization 
vectors, Gaussian curvatures, radiation functions). Except for 

Phase velocities 

Exact values 

5.0 I I t 

4.2 
0 30 60 90 

angle [degrees] 

the weak anisotropy condition, no other approximation is used 
in the solution. Thus the solution describes correctly the 
wavefield at all distances from the source, including its close 
vicinity, and at all directions, including directions with shear- 
wave singularities. Note that directions with caustics are 
automatically excluded in weak anisotropy. The solution 
describes correctly the wavefield even in the limit of injinitely 
weak anisotropy, also called quasi-isotropy (Kravtsov & 
Orlov 1990). 

8 NUMERICAL EXAMPLE 

Next, we will exemplify properties of the elastodynamic 
Green tensor numerically. As a weakly anisotropic medium 
we will use Mesaverde immature sandstone with the following 
Thomsen's parameters (Thomsen 1986): aT = 4.349 km s-', 
bT=2.571 kms-', c=0.091, 6=0.148, y=0.105 and p =  
2.460 g cm-3. The corresponding elasticity parameters aij  and 
anisotropy parameters cl, E~ and E~ are as follows: a,, = 22.36, 

c2 = - 1.078 and c3 = 0.694. For a background isotropic 
medium we use P- and S-wave velocities a =  4.73 km s-' and 

a13 =z 8.49, a33 = 18.91, a44 = 6.61, a66 = 8.00, E l  = -0.643, 

2.6 

2.4 
0 30 60 90 

angle [degrees] 

Relative errors [%I 

-0.2 
0 30 60 90 

angle [degrees] 

0.0 I /  7 - , 1 4 
0 30 60 90 

angle [degrees] 

Figure 3. Phase velocities as a function of the angle between the phase normal and the symmetry axis for Mesaverde immature sandstone (for 
parameters, see text). Upper row: exact values; lower row: relative errors of approximate perturbation formulae (14). c( and p are the P and S 
velocities of the isotropic background. 
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j = 2 . 5 7  km s-’. Anisotropies of P, SV and S H  waves reach 
8.3, 4.6 and 9.5 per cent, respectively. Fig. 3 shows the phase 
velocities of P, SV and SH waves, together with errors produced 
by approximate perturbation formulae (14). The figure shows 
that the perturbation formulae for phase velocities are of a 
high xcuracy, having a maximum value of the relative error 
of only 0.6 per cent. The accuracy of perturbation formulae 
for a P-wave polarization angle (16) and for a deviation 
between the ray and a phase normal of P, SV and SH waves 
(19) is examined in Fig. 4. In these cases, the approximate 
formulae display a lower accuracy, but they are still acceptable. 

For calculating the wavefield in the medium, we use 
the single point force F(t) = F - f ( t ) ,  where F is the force 
vector, and f(t) is the source time function, which is defined 
as follows: 

for the other times f( t )  is zero. The source time function has 
been chosen so that the wave has the form of a one-sided 
pulse in the far-field approximation. For parameter T specifying 
the pulse width, the value T =  1 s was used. The force vector 
was chosen as F = (1, 1, 0.5)T. 

Fig. 5 shows waveforms and particle motions of a complete 
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P-wave polarization 
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1 .o 
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wavefield at  three observation points that lie in the x-z plane 
at a ray deviating by 40” from the symmetry axis. The distances 
from the source are: r l l ,  = 2.0, r/& = 3.4 and r/& = 6.8, where 
1, = 4.59 km. We expect that a t  these distances the contribution 
of near-field waves cannot be neglected (see VavryEuk 1992). 
For comparison, the figure shows a wavefield propagating 
in a weakly anisotropic medium, together with a wavefield 
propagating in a n  isotropic background. Differences between 
both wavefields are visible in waveforms as well as in particle 
motions. In the waveforms, we can see a clear time shift 
between ‘isotropic’ and ‘anisotropic’ waves. The time shift is 
most prominent in the case of SV and S H  waves. In addition, 
the amplitude of the S H  wave differs distinctly from the 
amplitude of the ‘isotropic’ S wave. In particle motions, we 
observe quasi-elliptically polarized waves. The ellipticity of 
waves is caused by near-field waves (VavryEuk 1992), and 
for large distances should vanish. The decrease of ellipticity 
with increasing r / l  is clearly visible in Fig. 5.  Nevertheless, in 
contrast to  almost linear P-wave polarization at a distance 
r / l ,  = 6.8, the ellipticity of the S wave is still very pronounced. 
Moreover, the shear-wave particle motion in the x-y plane 
shows that the shear wave in WTI splits into SV and SH 
waves. The delay time between the SH and SV arrivals is 
sufficient to  fully separate both quasi-shear waves in time at 

6.0 

5.0 

4.0 

3.0 

2.0 

1 .o 

0.0 

P-wave group velocity 

t----‘----”---t 

0 30 60 90 0 30 60 90 
angle [degrees] angle [degrees] 

SV-wave group velocity SH-wave group velocity 
6.0 

4.0 
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-4.0 

-6.0 
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Figure 4. Polarization direction of P waves and ray directions of P, SV and SH waves for Mesaverde immature sandstone. Full line: exact values; 
dashed line: approximate values calculated by perturbation formulae (16) and (19); x-axis: angle between the phase normal and the symmetry axis; 
y-axis: deviation from directions in the isotropic background. 

0 1997 RAS, GJI 130, 786-800 



796 V. Vauryc'uk 

Waveforms 

rlb = 2.0 , A! = 0.3 s 

2 4 6 
time [s] 

Particle motions 

r lb  = 2.0, A t  = 0.3 s 

r/j = 3.4 , A! = 0.5 s 

2 4  6 8 
time [s] 

rlb = 3.4 A t  = 0.5 s 

X 

. . .  
6 8 10 12 14 

time [s] 

r l h = 6 . 8 ,  h t = l . O s  

Figure 5.  Waveforms and particle motions of waves in the WTI medium (full line) and in the isotropic background (dashed line). Diagrams are 
shown for three receivers lying in the x-z plane at the ray deviating from the z-axis by a = 40" at distances r/A, = 2.0, 3.4 and 6.8. Parameter At 
represents the delay time between SH- and SV-wave arrivals. 

this distance. Although the split S waves are fully separated, 
they still exhibit an elliptical polarization. The ellipticity of 
split quasi-shear waves is controlled in this case predominantly 
by the SV-SH coupling wave. The S-wave splitting and 
coupling effects are also displayed in Figs 6 and 7. Fig. 6 shows 
waveforms and particle motions of quasi-shear waves for the 
complete solution (23) and for the far-field approximation (21) 
at observation points situated in the x-z plane at a ray 
deviating by 40" from the symmetry axis. The distances from 
the source are: I l l S H  = 8.7, rJAsH = 17 and rJlsH = 40, where 
ASH = 2.69 km. The corresponding separation times between the 
split SH and S V  waves are: At = 0.75 s, At = 1.5 s and At = 
3.5 s. For the first observation point the S H  and SV waves are 
not yet fully separated, but for the other observation points 
they do not interfere. From the particle motions, we can see 
that the standard far-field approximation fails if the separation 
time between the SV and S H  waves is not sufficiently high. 
Even in the case that the split S waves do not interfere, the 

standard far-field approximation can give erroneous results. 
For insufficiently large separation times, we observe that the 
split S waves are not linearly polarized as is predicted by the 
far-field approximation, but they display a significant ellipticity. 
The ellipticity of split S waves decreases with increasing 
separation time. The same effect is shown in Fig. 7, but for 
observation points situated at a ray deviating from the sym- 
metry axis by only 10". Since the observation points are near 
the S-wave singularity in this case, values of the SH- and 
SV-wave velocities are very close to each other, and the S 
waves split at very large distances from the source. The 
observation points for the same separation times as in Fig. 6 
now have the following distances: rJAsH = 94, rJAsH = 188 and 
rJAsH = 440, where ASH = 2.58 km. Even at such enormously 
large distances the split S waves are still elliptical. It means 
that the shear-wave coupling is detected well and the difference 
between the complete solution and the standard far-field 
approximation is still remarkable. 
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Shear-wave coupling 

Waveforms 
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Figure 6. Waveforms and particle motions of shear waves for the complete solution (full line) and for the far-field approximation (dashed line) in 
the WTI medium. Three receivers lie in the x-z plane at the ray deviating from the z-axis by a = 40” at distances r/ASH = 8.7, 17 and 40. Component 
Q lies in the x-z plane and is perpendicular to the ray. 

9 ELASTOSTATIC GREEN TENSOR 

Convolving the elastodynamic Green tensor Gkl(x,  t )  with the 
unit constant in time we obtain the elastostatic Green tensor 
GI (4: 

m 

G;i(X) = Gk,(X, t )*1 Gkl(X, t ) d t ,  J-, 
where * is the time convolution operator. Using the equations 

OD 

6 ( t ) d t  = 1, 

[H( t - tsy)  - H (  t - ?“)I  dt  = tSH - tsv , 

[ H ( t  - tp) - H ( t  - tsv) l tndt  = 1 [(P)”+’- ( z ~ y + l l ,  

Im 
1-1 

m 1: m n + l  

( 2 8 )  

and specifying tP, 7’“ and zSH by applying eq. (19, we arrive at 
the final form of the elastostatic Green tensor for homogeneous 

WTI: 

where a , , = I + 2 p = u Z ,  a, ,=p=p’ and ~ = a ~ , / a , , = a ’ / ~ ’ =  

The correctness of the elastostatic Green tensor was verified 
by directly inserting ( 2 9 )  into the elastostatic equation (Mura 
1982, eq. 5.2). The elastostatic Green tensor for WTI with 
an arbitrarily oriented symmetry axis can be obtained from 
eq. ( 2 9 )  by applying standard rules for a rotation of tensors. 

(2  + 2P)IP. 
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Shear-wave coupling 
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Figure 7. Waveforms and particle motions of the complete solution (full line) and of the far-field approximation (dashed line) for shear waves in 
the WTI medium for receivers lying near the shear-wave singularity. Three receivers lie in the x-z plane at the ray deviating from the z-axis by 
u = 10" at distances r/LsH = 94, 188 and 440. Component Q lies in the x-z plane and is perpendicular to the ray. 

For E~ = E~ = c3 = 0, eq. (29) yields an exact formula for the 
elastostatic Green tensor for isotropic media (Mura 1982, 
eq. 5.8): 

1 1  
8npu r G?(X) = 7 - { N , N [ ( K  ~ 1) + &(IC + 1)) .  (30) 

10 CONCLUSION 

The analytical formulae for higher-order ray approximations 
of waves generated by point-force sources in homogeneous 
media proposed by VavryEuk & Yomogida (1995, 1996) have 
been used for the calculation of the complete elastodynamic 
and elastostatic Green tensors for weak transversely isotropic 
media. The ray expansion of the elastodynamic Green tensor 
consists of three parts, which correspond to P, S V  and SH 
waves. The complete SH-wave ray expansion consists of two 
non-zero terms (including the zeroth-order term); the complete 
P-wave and SV-wave ray expansions consist of seven non-zero 
terms (including the zeroth-order term). Although the solution 
of the elastodynamic equation has been found by the ray 
method, which is usually assumed to be only a high-frequency 
approximation, the result is complete and correct for the whole 

frequency range because the ray series is exact andjnite in this 
case. It holds in the near field as well as in the far field. The 
only approximation consists of assuming weak transverse iso- 
tropy, which means that the first-order perturbation theory 
has been applied. Under the assumption of weak transverse 
isotropy, the problem becomes much simpler: wave surfaces 
have simple shapes free from triplications and caustics, and 
polarization vectors or other quantities are simple functions 
of a ray direction. These facts were essential for a successful 
application of our method. The correctness of the solution was 
verified by directly inserting the solution into the elastodynamic 
and elastostatic equations. The equations are valid, neglecting 
the second- and higher-order perturbations of the elasticity 
parameters. 

The elastodynamic Green tensor is written in an explicit, 
mathematically very simple analytical form, similar to the Stokes 
solution for isotropic media, but with a higher number of 
terms. The Stokes solution contains P and S far-field waves 
and one coupling integral describing the near-field wave. The 
near-field wave couples P and S waves, and it is non-negligible 
up to about 10 wavelengths from the source (see VavryEuk 
1992). In contrast to the Stokes solution, the WTI solution 
contains P, SV and SH far-field waves and four coupling 
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integrals: three of them couple P and SV waves and the fourth 
couples SV and S H  waves. The P-SV coupling waves behave 
similarly to the P-S coupling wave in isotropy, thus we can 
again call them the near-field waves. However, the SV-SH 
coupling wave, which is called the ‘shear-wave coupling’ or 
‘quasi-shear-wave coupling’ (Chapman & Shearer 1989; Coates 
& Chapman 1990), behaves exceptionally and has no analogy 
in the Green tensor for isotropy. The shear-wave coupling can 
be non-negligible even at quite large distances, thus this wave 
cannot be classified as the near-field wave. The shear-wave 
coupling considerably affects waveforms and polarization of 
quasi-shear waves in regions, where S waves are not well 
separated, and in the vicinity of shear-wave singularities. Even 
if the split shear waves are fully separated in time and thus do 
not mutually interfere, the SV-SH coupling wave can cause 
the polarization of both split waves to be elliptical. It implies 
that the standard far-field approximation (or equivalently the 
zeroth-order ray approximation) can be applied only to regions 
where the separation time between the S-wave arrivals is at 
least several times larger than the width of the split S pulses. 
For some directions, this condition can be fulfilled at distances 
of even hundreds of wavelengths from the source. 

For simplicity, we described the WTI media by two parameters 
of the background isotropic medium, a,, and a44, and by three 
anisotropy parameters, E~ and E ~ .  For this parametrization, 
the formula for the Green tensor seems to be the simplest. We 
stress, however, that the formula can be rewritten without any 
problems for other specifications of the WTI medium. We 
admit that from the viewpoint of numerical errors, other 
parametrizations can appear to be more suitable. In particular, 
a careful selection of an optimum background medium can 
improve the accuracy of perturbation formulae considerably. 
We believe that a more precise formula for the elastodynamic 
Green tensor for WTI can also be found by considering even 
higher-order perturbations of elastic parameters. In that case 
the ray expansion of the Green tensor will be finite again, but 
with a higher number of non-zero terms of the ray series. 
Another promising approach is calculating the Green tensor 
for other types of weak anisotropy or even for a general weak 
anisotropy. Obviously, for a general weak anisotropy, such 
formulae will be more extensive because of the higher number 
of perturbation parameters. 
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