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SUMMARY
We present approximate displacement and energy PP and PS reflection/transmission
coefficients for weak-contrast interfaces in general weakly anisotropic elastic media.
The coefficients were obtained by applying first-order perturbation theory and then
expressed in a compact and relatively simple form. The formulae can be used for
arbitrary orientations of the incidence plane and interface, without the need to transform
the elasticity parameters to a local Cartesian coordinate system. The accuracy of the
approximate formulae is illustrated for the PS reflection coefficient for two synthetic
models. For these models, we also study the possibility of using the approximate PP
reflection coefficient in the inverse problem.
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tropic half-spaces. Zillmer et al. (1998) derived PP reflection
1 INTRODUCTION

coefficients for a horizontal interface in general weakly aniso-

tropic media, and SVSV and SHSH reflection coefficients forThe calculation of the reflection/transmission (R/T) coefficients
of plane waves at a plane interface is more complex in aniso- waves propagating in a symmetry plane. Pšenčı́k & Vavryčuk

(1998) and Vavryčuk & Pšenčı́k (1998) derived PP displace-tropic media than in isotropic media (see Keith & Crampin

1977). Under isotropy, the problem can be separated into the ment R/T coefficients for a horizontal interface in general
weakly anisotropic media. In this paper, we extend the aboveindependent reflection/transmission of P–SV waves and SH

waves. Under anisotropy, the incident wave generates six waves: results by deriving formulae for PP as well as PS R/T
coefficients for arbitrarily oriented weak-contrast interfaces inP, S1 and S2 reflected waves, and P, S1 and S2 transmitted

waves, and thus the problem is represented, in general, by six general weakly anisotropic elastic media. For two models, we

study the accuracy of the derived formulae and the possibilitynon-separable linear algebraic equations in six unknown R/T
coefficients. An explicit analytic solution of such a system is of applying the formulae in the inverse problem.
cumbersome, even if a simple anisotropy such as transverse

isotropy is considered (see Daley & Hron 1977). Therefore, a 2 REFLECTION/TRANSMISSION OF
numerical solution of the system of equations is commonly

PLANE WAVES IN ANISOTROPIC MEDIA
used (see Fryer & Frazer 1984; Gajewski & Pšenčı́k 1987). An

Let us consider two homogeneous anisotropic half-spacesalternative method is to use approximate analytical formulae
separated by a plane interface S specified by normal n. Wederived for a weak-contrast interface in weakly anisotropic
assume that the half-spaces are in welded contact at interfacemedia. Since in many practical applications the anisotropy
S. The half-space, into which normal n points, will be referredand contrast across the interface are not strong (Thomsen
to as half-space (1); the other half-space will be referred to as1986), such formulae are often sufficiently accurate. Moreover,
half-space (2). The half-spaces are characterized by densitiesthe formulae are relatively simple and comprehensible. The
r(I), I=1, 2, and by the density-normalized elasticity tensorsfirst attempt to determine linearized R/T coefficients for weak
a(I)
ijkl

, I=1, 2. The incident harmonic plane wave propagates inanisotropic media was made by Thomsen (1993), who derived
half-space (1) and generates six plane harmonic waves, namelyformulae for transversely isotropic half-spaces with axes of sym-

metry perpendicular to the interface. Rueger (1997) corrected reflected P, S1 and S2, and transmitted P, S1 and S2. The
Thomsen’s results and found linearized R/T coefficients for displacement and traction vectors u(x, t) and T (x, t) of any of
transversely isotropic half-spaces with axes of symmetry parallel the waves can be expressed as follows:
to the interface, but only in the symmetry plane. Haugen &

u(N) (x, t)=c(N)g(N) exp[iv(t−p(N)Ωx)] ,
Ursin (1996) derived PP reflection coefficients for a further
special orientation of the symmetry axes of transversely iso- T(N) (x, t)=c(N)s(N) exp[iv(t−p(N)Ωx)] , (1)
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where c(N) is the scalar amplitude, g(N) is the unit polarization with no summation over N. Vectors v(0)g and v(N)g are the group

velocity vectors of the incident and Nth scattered waves.vector, p(N) is the slowness vector, v is the circular frequency,
and t is time. The superscript N denotes the type of wave: Instead of using the formulation in eq. (6), some authors

(e.g. Chapman 1994) define the energy coefficients by theN=0 corresponds to the incident wave; N=1, 2 and 3 to the

reflected P, S1 and S2; and N=4, 5 and 6 to the transmitted following formulae:
P, S1 and S2, respectively. If the scalar amplitude of the
incident wave, c(0) , is equal to 1, the amplitude c(N) of the Nth

c(N)N =c(N)SKv(N)g Ωy

v(0)g Ωy Kscattered wave represents its displacement R/T coefficient. s(N)
is the amplitude-normalized traction vector of the Nth wave:

for reflected waves (N=1, 2 and 3), and
s(N)
i

=r(I)a(I)
ijkl

n
j
g(N)
k

p(N)
l

. (2)

The superscript I=1, 2 identifies the half-space in which c(N)N =c(N)Sr(2)

r(1)Kv(N)g Ωy

v(0)g Ωy K
the wave propagates. The displacement and traction at the

interface must satisfy the boundary conditions requiring their for transmitted waves (N=4, 5 and 6) . (7)
continuity across the interface. If we introduce a 6-vector d(N)

To avoid confusion, we shall refer to these coefficients as tofor each wave,
the normalized R/T coeYcients. Note that unlike the case for
the displacement coefficients (5), the energy coefficients (6)d(N)=±C g(N)

y(N)D , (3)
and the normalized coefficients (7) are reciprocal.

where the plus sign stands for the reflected and the minus sign
3 P-WAVE INCIDENCE AT A WEAK-for the transmitted and incident waves, we can express the
CONTRAST INTERFACE BETWEENboundary conditions by the following equation:
ARBITRARY ANISOTROPIC MEDIA

Dc=d(0) . (4)
We now consider the P-wave incident at interface S. Moreover,

Subsequently, we obtain
we assume that interface S separates two half-spaces with very

c=D−1d(0) . (5) similar anisotropy. In this case, we can express the elasticity
parameters a(I)

ijkl
and density r(I) in both half-spaces in terms ofD is the 6×6 matrix called the displacement–stress matrix,

the elasticity parameters a0
ijkl

and density r0 of the backgroundd(N) is the displacement–stress vector of the Nth wave, and c
anisotropic medium, which is the same for both half-spaces:

is the 6-vector of the displacement R/T coefficients:

a(I)
ijkl

=a0
ijkl

+Da(I)
ijkl

, r(I)=r0+Dr(I) , I=1, 2 . (8)

D=Cg(1) g(2) g(3) −g(4) −g(5) −g(6)

s(1) s(2) s(3) −s(4) −s(5) −s(6)D The symbols Da(I)
ijkl

and Dr(I) denote the deviations from

the parameters of the background medium. We shall require
=[d(1) d(2) d(3) d(4) d(5) d(6)] , these deviations, or equivalently the elasticity contrasts

Da
ijkl

=a(2)
ijkl

−a(1)
ijkl

and density contrast Dr=r(2)−r(1) at thec= (c(1) c(2) c(3) c(4) c(5) c(6)]T
interface, to be small.

=[RP RS1 RS2 T P T S1 T S2]T . Under the weak-contrast condition, we can linearize the
vector of the displacement R/T coefficients,Instead of the displacement R/T coeYcients, coefficients

normalized to the energy flux normal to S are sometimes used. c= (RPP RPS1 RPS2 T PP T PS1 T PS2)T ,
We call these the energy R/T coeYcients and define them as

as follows:the ratio of the normal component of the energy flux of the
Nth scattered wave to that of the incident wave: c=c0+Dc , (9)

where c0 is the vector of R/T coefficients in the backgroundc(N)E = Kw(N)Ωn

w(0)Ωn K , medium and Dc is its small perturbation. Since the background
medium is homogeneous, vector c0 takes the following simplewhere w(0) and w(N) are the vectors of the energy flux of the
form:incident and Nth scattered waves, and n is the normal to the

interface. Since c0= (0 0 0 1 0 0)T , (10)

expressing the obvious fact that the incident P wave crosses
c(N)E = KT(N)Ωu(N)

T(0)Ωu(0) K= (c(N) )2 Ky(N)Ωg(N)

y(0)Ωg(0) K , the fictitious (non-existent) interface in the background medium
unaffected. For the perturbation

we obtain
Dc= (RPP RPS1 RPS2 T PP−1 T PS1 T PS2)T ,

c(N)E = (c(N) )2 Kv(N)g Ωy

v(0)g Ωy K eq. (5) yields (Thomsen 1993, eq. A-18a; Vavryčuk & Pšenčı́k

1998, eqs 18 and 28)
for reflected waves (N=1, 2 and 3), and

Dc= (D0)−1 (Dd(0)−DDc0 )=−(D0)−1 (Dd(4)−Dd(0) ) . (11)

c(N)E = (c(N) )2
r(2)

r(1) Kv(N)g Ωy

v(0)g Ωy K The inverse matrix (D0)−1 can be expressed explicitly
(Fryer & Frazer 1984, eq. 3.20; Chapman 1994, eq. 22), and
for the perturbation of the R/T coefficient of the Nth wave wefor transmitted waves (N=4, 5 and 6) , (6)
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Anisotropic weak-contrast R/T coeYcients 555

finally obtain this section, we will show that contrasts Dg and Ds are linear

functions of elasticity and density contrasts, Da
ijkl

and Dr, in

first-order perturbation theory. Obviously, the polarization and
Dc(N)=−

d0(N)ΩDs
d0(N)Ωs0(N)

=−
s0(N)ΩDd

d0(N)Ωs0(N)
,

traction vectors g0(N) and s0(N) for unconverted waves do not

depend on the elasticity or density contrasts at all. However,

the problem is more complicated for converted waves, becausewith no summation over N . (12)
in this case polarization and traction vectors g0(N) and s0(N)

Vectors d0(N) and s0(N) are the displacement–stress and stress–
are functions of elasticity contrasts Da

ijkl
. Although these

displacement vectors of the Nth scattered wave in the back-
vectors are specified for the isotropic background medium,

ground medium, and Ds and Dd denote the differences between
they depend on the properties of the perturbed medium (see

the stress–displacement and displacement–stress vectors of the
Jech & Pšenčı́k 1989). Moreover, this dependence is non-linear.

transmitted and incident P waves across the interface:
Consequently, the R/T coefficients for converted waves are

also non-linear functions of elasticity contrasts Da
ijkl

at the
Ds=−CDs

DgD , Dd=−CDg

DsD ,
interface, even in the first-order perturbation theory. In order

to avoid this difficulty, we introduce new quantities called
Dg=Dg(4)−Dg(0) , Ds=Ds(4)−Ds(0) . (13)

vector R/T coeYcients of S waves, which are defined as follows:

In analogy to the terms elasticity and density contrasts, we
call the quantities Ds, Dd, Dg and Ds the stress–displacement, RPS=c(2)g0(2)+c(3)g0(3) , TPS=c(5)g0(5)+c(6)g0(6) . (16)
displacement–stress, polarization and traction contrasts.

Formula (12) is valid for strongly as well as for weakly aniso- RPS is called the vector reflection coeYcient, and TPS the vector
tropic background media and even for isotropic background transmission coeYcient of S waves. Obviously, the scalar R/T
media. Formulae similar to (12) for the P-wave incidence can coefficient is obtained by projecting the vector coefficient into
also be derived for the S1- or S2-wave incidences. However, the direction of polarization of the scattered wave. Later we
the anisotropy of the background medium must then be shall show that the vector R/T coefficients of S waves are
sufficiently strong. Our approach cannot be applied to S waves linear functions of contrasts Da

ijkl
.

incident at a weak-contrast interface in a weakly anisotropic In this section we present the formulae for contrasts Dg and
medium without modification. The reason is the degeneration Ds, and vectors g0(N) and s0(N) ; in the next section we present
of the S waves in isotropic media (see Jech & Pšenčı́k 1989). the final formulae for the R/T coefficients.
For the energy and normalized R/T coefficients, eqs (6) and
(7) immediately yield

4.1 Polarization and traction contrasts Dg and Dsc(N)E = (Dc(N) )2 Kv0(N)g Ωy

v0(0)g Ωy K ,
If we perturb the polarization vectors of the incident and

transmitted P waves, we obtain the contrast Dg in the following
c(N)N =Dc(N)SKv0(N)g Ωy

v0(0)g Ωy K , for N=1, 2, 3, 5, 6, N≠4 , (14)
form:

where v0(0)g and v0(N)g are the group velocities of the incident

and of the Nth scattered waves in the background medium.
The formula for the energy coefficient of the transmitted P wave
(N=4) is more complicated, and it is more convenient to

calculate this coefficient from the energy conservation law for
scattered waves:

Dg=Dg1+Dg2 ,

Dg1m=
DV

a ANP
m
−

1

cos hP
n
mB ,

DV =
1

2a
Da

ijkl
NP
i
NP
j
NP
k
NP
l
,

Dg2m=
DC

kl
a2−b2

NP
k
(d
lm
−NP

l
NP
m
) , DC

kl
=Da

ijkl
NP
i
NP
j
,

cos hP=NPΩn ,

(17)
c(4)E =1−c(1)E −c(2)E −c(3)E −c(5)E −c(6)E . (15)

The normalized coefficient of the transmitted P waves c(4)N , how-
ever, is much simpler than the energy coefficient c(4)E , because
it equals 1 in first-order perturbation theory. Obviously, the

formulae for the energy coefficients are of the order of second
perturbations.

where a and b denote the P- and S-wave velocities in the

background isotropic medium, NP is the phase normal of the
4 P -WAVE INCIDENCE AT A WEAK- incident and transmitted P waves in the isotropic background
CONTRAST INTERFACE IN WEAKLY medium, and n is the normal to the interface. The quantity
ANISOTROPIC MEDIA DV is the P-wave phase-velocity contrast defined as

In the previous section, we presented a formula for R/T
DV =V (4)−V (0)=DV (4)−DV (0) , (18)coefficients at weak-contrast interfaces in general anisotropic

media, including the case of strong anisotropy. In this section,
where V (0) and V (4) are the phase velocities of the incident andwe will confine ourselves to weakly anisotropic media by
transmitted P waves. The quantity Dg1 denotes the polarizationassuming that the background medium is isotropic. Under this
contrast due to the contrast of the phase velocity at theassumption, we can express the formulae for contrasts Dg and
interface and is determined by Snell’s law. For no velocityDs, and vectors g0(N) and s0(N) for all scattered waves that are

necessary to determine the R/T coefficients from eq. (12). In contrast at the interface in weakly anisotropic media, Dg1 is

© 1999 RAS, GJI 138, 553–562
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556 V . Vavryčuk

equal to zero. The quantity Dg2 denotes the polarization
5 R/T COEFFICIENTS IN WEAKLY

contrast due to weak anisotropy. For a weak-contrast interface
ANISOTROPIC MEDIA

in isotropic media, Dg2 is equal to zero.
Analogously to determining Dg, we can perturb the traction We divide the perturbation of the R/T coefficients Dc into

vectors of the incident and transmitted P waves to obtain three parts:
contrast Ds:

Dc=Dc1+Dc2+Dc3 . (22)

The first part, Dc1 , is the perturbation due to the density

contrast Dr, the second part, Dc2 , is caused by the phase-

velocity contrast DV , and the last part, Dc3 , is the part of Dc
that can be non-zero even for no density and no phase-velocity

contrasts at the interface.

Ds=Ds1+Ds2+Ds3 ,

Ds1m=
Dr

r
s0(0)
m

=DrCa2−2b2
a

n
m
+2

b2
a

cos hPNP
mD ,

Ds2m=−DV
r

cos hP

×G2 b2
a2 Ca2+b2

a2−b2
cos2 hP+1DNP

m
+cos hPn

mH ,

Ds3m=DC
kl

r

a Cn
k
d
lm
+

b2
a2−b2

NP
k
(cos hPd

lm
+n

l
NP
m
)D .

(19)

5.1 Displacement coefficients

5.1.1 PP coeYcients

Inserting eqs (17), (19) and (20) into (12), for the PP coefficients
Ds1 denotes the perturbation due to the density contrast, Ds2 we obtain
is the perturbation due to the P-wave phase-velocity contrast

DV at the interface, and Ds3 is that part of Ds that is non- RPP=RPP
1
+RPP

2
+RPP

3
, T PP=1+T PP

1
+T PP

2
+T PP

3
,

zero even for no density and no velocity contrasts Dr and DV
(23)at the interface.

where

4.2 Polarization and traction vectors g0(N) and s0(N)

RPP
1
=

1

2

Dr

r C1−4
b2
a2

sin2 hPD , RPP
2
=

1

2 cos2 hP

DV

a
,For unconverted waves we obtain

g0(1)
m

=NRP
m

, g0(4)
m

=NP
m

,

RPP
3
=

DC
kl

a2
n
kCn

l
−

1

cos hP
NP
l D , (24)

s0(1)
m

=
r

a
[(a2−2b2)n

m
+2b2 cos hRPNRP

m
] ,

T PP
1
=−

1

2

Dr

r
, T PP

2
=

1

2 cos2 hP

DV

a
[1+2 cos2 hP] ,

s0(4)
m

=
r

a
[(a2−2b2)n

m
+2b2 cos hPNP

m
] , (20)

where NRP is the phase normal of the reflected P wave in the
T PP
3
=−

DC
kl

a2
n
k
NP
l

cos hP
, (25)

isotropic background.

As mentioned above, the problem is more complicated for
andconverted waves than for unconverted waves. Both polarization

and traction vectors g0(N) and s0(N) are, for S waves, non-linear

functions of the elasticity contrast Da
ijkl

. Therefore, the R/T
DV =

1

2a
Da

ijkl
NP
i
NP
j
NP
k
NP
l
, DC

kl
=Da

ijkl
NP
i
NP
j
,

coefficients of S waves are also non-linear functions of Da
ijkl

.
However, when we determine the vector R/T coefficients of

cos hP=NPΩn<0 .S waves from (16), we eliminate this non-linear dependence.
The vector R/T coefficients do not depend on vectors g0(N)

NP is the phase normal of the incident wave in the backgroundand s0(N) , but rather on dyadics g0(N)g0(N) and g0(N)s0(N) . For
medium, n is the normal to the interface, hP is the anglereflected S waves we need to express the following terms:
between the normal n and phase normal NP . a, b and r

g0(2)
k

g0(2)
l

+g0(3)
k

g0(3)
l

=d
kl
−NRS

k
NRS
l

, are the P- and S-wave velocities and the density of the iso-

tropic background medium, respectively. Da
ijkl

and Dr are thes0(2)
k

g0(2)
l

+s0(3)
k

g0(3)
l elasticity and density contrasts at the interface. Note that our

=rb(cos hRSd
kl
+NRS

k
n
l
−2 cos hRSNRS

k
NRS
l

) , (21) definition of the orientations of n and NP implies that cos hP
is negative.

where

cos hRS=NRSΩn .

5.1.2 PS coeYcientsNRS is the phase normal of the reflected S waves in the
isotropic background. These formulae are no longer functions The reflection coefficients of converted waves can be calculated
of the polarization vectors of S waves, and consequently do not from vector coefficient RPS in the following way:
depend on the elasticity contrast Da

ijkl
at all. For transmitted

S waves we obtain formulae analogous to (21). Dc(2)=RPSΩg0(2) , Dc(3)=RPSΩg0(3) . (26)

© 1999 RAS, GJI 138, 553–562
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Inserting eqs (17), (19), (21) and (12) into (16), we can express normal NRS . Nevertheless, its scalar product with polarization

vectors g0(2) and g0(3) is unchanged, and thus by calculatingvector coefficient RPS as
the scalar coefficients using eqs (26) and (27) we obtain the

RPS=RPS
1
+RPS

2
+RPS

3
,

correct results. For the determination of the polarization

vectors for the reflected S waves, g0(2) and g0(3) , refer to Jech
RPS
1m
=

Dr

r

1

2 cos hRSGa2−2b2
ab

n
m
+2

b

a
cos hPNP

mH , & Pšenčı́k (989).
The coefficients for the transmitted converted waves can be

calculated in a similar way to those for the reflected waves.
RPS
2m
=−

DV

b

1

2 cos hP cos hRS The formula for TPS can be obtained from the formula for
RPS , if we multiply this formula by −1 and substitute NTS ,
hTS and hPTS for NRS , hRS and hPRS (see Fig. 1).×GC2b2

a2
+

b

a

a2+b2
a2−b2

cos hPA2b

a
cos hP+cos hRSBDNP

m

5.2 Energy and normalized coefficients
+Ccos hP+

b

aAa2+b2
a2−b2

cos hP cos hPRS+2 cos hRSBD n
mH ,

Using eqs (14) and (15), the energy coefficients can be written as

(27) RPPE =(RPP )2 , T PPE =1−RPPE −RPS1E −RPS2E −T PS1E −T PS2E ,

RPS
3m
=

DC
kl

a2−b2
1

2 cos hRSGa2−b2
ab

n
k
d
lm
+NP

k RPS1E =
b

a Kcos hRS

cos hP K (RPS1)2 , RPS2E =
b

a Kcos hRS

cos hP K (RPS2)2 , (28)

×CAb

a
cos hP+cos hRSB d

lm
+

b

a
n
l
NP
m
+NRS

l
n
mDH , T PS1E =

b

a Kcos hTS

cos hP K (T PS1)2 , T PS2E =
b

a Kcos hTS

cos hP K (T PS2 )2 ,

where and the normalized coefficients as

cos hP=NPΩn<0 , cos hRS=NRSΩn>0 , RPPN =RPP , T PPN =1 ,

cos hPRS=NPΩNRS .

RPS1N =Sb

a Kcos hRS

cos hP KRPS1 , RPS2N =Sb

a Kcos hRS

cos hP KRPS2 , (29)NRS is the phase normal of the reflected S waves in the
background medium (see Fig. 1), hRS is the angle between

phase normal NRS and the normal to the interface n, and hPRS
T PS1N =Sb

a Kcos hTS

cos hP K T PS1 , T PS2N =Sb

a Kcos hTS

cos hP KT PS2 .
is the angle between phase normals NP and NRS (see Fig. 1).
Since phase normals NP and NRS are considered for the

background medium, angles hP and hRS are related by Snell’s
5.3 Vertical P-wave incidencelaw:

For strictly vertical P-wave incidence at the horizontal interface
sin hRS=

b

a
sin hP . we obtain

In order to keep the formula for RPS reasonably short, RPP=
1

2

Dr

r
+

1

2

DV

a
,

eq. (27) is only a simplified formula for RPS . This formula is
considerably shorter than the complete formula, because we

RPS
1
=

1

2b

Da35
a+b

, RPS
2
=

1

2b

Da34
a+b

, RPS
3
=0 ,have omitted from (27) all terms that point in the direction of

the phase normal NRS . As a consequence, RPS in (27) is no
T PP=1−RPP ,longer a vector lying in the plane perpendicular to phase

T PS
1
=

1

2b

Da35
a−b

, T PS
2
=

1

2b

Da34
a−b

, T PS
3
=0 , (30)

where

DV =
1

2a
Da33 .

Note that for no density contrast and no P-wave phase-
velocity contrast, we observe no reflected P wave, but we can
observe reflected S waves. The reflected S waves will be

observed even if the half-space in which the incident P wave
propagates is isotropic. This is of particular interest because
such a phenomenon is unknown for interfaces between two

isotropic media. This means, for example, that the detection
of reflected S waves for a vertical incident P wave can serve
as clear evidence for the presence of anisotropic structures

beneath isotropic subsurface layers, because in this case no
contrast between two horizontal isotropic layers could generateFigure 1. Schematic diagram showing definitions of the phase normals

and incidence angles. the reflected S wave.
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The anisotropy of the lower half-space is assumed to be caused
6 NUMERICAL EXAMPLE

by a system of vertical parallel penny-shaped dry cracks
(Hudson 1981). The P- and S-wave velocities and density of

6.1 Forward modelling
the host rock are V

P-ROCK
=4.00 km s−1 , V

S-ROCK
=2.31 km s−1

and r2=2.60 g cm−3 . The crack normal is parallel to theThe accuracy of the perturbation formulae for the PP displace-
ment R/T coefficients in weakly anisotropic media has been x-axis, and the crack density is either e=0.05 (medium C) or

e=0.1 (medium D). The corresponding density-normalizedextensively tested by Pšenčı́k & Vavryčuk (1998) and by

Vavryčuk & Pšenčı́k (1998). The authors show that the pertur- elastic parameters in Voigt notation are a11=11.96, a13=3.99,
a33=15.55, a44=5.33, and a66=4.76 for crack density e=0.05;bation formulae for the PP R/T coefficients are reasonably

accurate not only under weak anisotropy and for weak- and a11=9.43, a13=3.14, a33=15.27, a44=5.33, and a66=4.25

for crack density e=0.1. The phase velocities in the x-z planecontrast interfaces, but also in cases where the contrast at
the interface and/or anisotropy of the half-spaces is fairly as a function of the incidence angle for both models are shown

in Fig. 2. Anisotropies of the P, S1 and S2 waves reach valuesstrong (nearly 20 per cent). Therefore, we shall not repeat the

numerical tests for the PP waves here, but confine ourselves of 13.1, 5.7 and 0.4 per cent for medium C, and 23.9, 11.3 and
0.9 per cent for medium D. To calculate the approximateto numerical tests on the approximate formulae for the PS

coefficients. reflection coefficients we have used the following parameters

of the isotropic background: a=3.97 km s−1 , b=2.25 km s−1We shall examine the behaviour of the PS reflection
coefficient for two models used by Vavryčuk & Pšenčı́k (1998), and r=2.63 g cm−3 for model A/C; and a=3.95 km s−1 ,

b=2.19 km s−1 and r=2.63 g cm−3 for model A/D. Thesereferred to as model A/C and model A/D. The models consist

of homogeneous half-spaces separated by a horizontal inter- values were obtained by averaging the densities and vertical
velocities in both the half-spaces (see Vavryčuk & Pšenčı́kface. The incident P wave propagates in the upper half-space

(medium A), which is isotropic. The P- and S-wave velocities 1998).

Similarly to the reflection coefficients of P waves (Vavryčukand the density of the half-space are V1P=4.00 km s−1 ,
V1S=2.31 km s−1 and r1=2.65 g cm−3 . The lower half-space & Pšenčı́k 1998), approximate reflection coefficients for S

waves start to deviate considerably from exact coefficients foris transversely isotropic with a horizontal axis of symmetry.

Figure 2. P- and S-wave phase velocities in the x-z plane. The incidence angle is defined as the angle between the phase normal of the wave and

the z-axis. a and b are the P- and S-wave velocities of the isotropic background (for values see the text). nP
1

and nS
1

are P- and S-wave velocities in

the upper isotropic half-space; nP
2
, nS1
2

, and nS2
2

are the P- and S-wave velocities in the lower anisotropic half-space.
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Anisotropic weak-contrast R/T coeYcients 559

larger values of the angle of incidence, and hence the angles of displacement coefficient is always less than 8 per cent for

angles of incidence up to 30° in the A/C model and less thanincidence considered have been restricted to the range (0°, 40°).
The reflection coefficients for S waves are displayed for each 13 per cent in the A/D model. Furthermore, the approximate

displacement reflection coefficient for the SH waves displaysmodel in the form of six plots (see Figs 3 and 4). In all the

plots, the horizontal axis corresponds to the angle of incidence an accuracy similar to that of the SV waves, although its
directional dependence is quite different. For azimuths betweenhP , and the vertical axis corresponds to the azimuth Q. Azimuth

Q=0° corresponds to the profile in the x-z plane. The upper 80° and 90° the formula for the SH waves does not work as

well, but the accuracy is still acceptable. Thus we can concludeplots show the exact displacement PSV reflection coefficient
and the relative errors of the approximate displacement and that the numerical test has proved that the performance of the

approximate formulae for the displacement coefficients is good.energy coefficients. The lower plots show the exact displace-

ment PSH reflection coefficient and the relative errors of the However, the approximate formulae for the energy coefficients
are considerably worse: the relative errors of the energyapproximate displacement and energy coefficients. The exact

energy PSV and PSH reflection coefficients are not shown, coefficients are about twice as large as for the displacement

coefficients.since their directional dependence displays a pattern similar
to that of the displacement coefficients.

Figs 3 and 4 indicate that the relative errors of the approxi-
6.2 Inverse modelling

mate displacement reflection coefficient for the SV waves
behave in a way similar to that of the errors of the displacement We now give a simple example of the use of the approximate

formulae for R/T coefficients in the inverse problem. Wereflection coefficient for the P waves (see Vavryčuk & Pšenčı́k

1998, Figs 2 and 3). The errors are very similar in directional assume that the exact values of the displacement PP reflection
coefficient RPP (hP , Q) are known for a range of azimuths anddependence as well as in magnitude. The relative error of the

Figure 3. Exact displacement reflection coefficients for SV and SH waves together with the relative errors of the approximate displacement and

energy coefficients for model A/C.
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560 V . Vavryčuk

Figure 4. Exact displacement reflection coefficients for SV and SH waves together with the relative errors of the approximate displacement and

energy coefficients for model A/D.

incidence angles in the models used in the previous section, ranges of the incidence angle: 0°≤hP≤25°, 0°≤hP≤20° and

0°≤hP≤15°. The RPP coefficient is specified in the above-and we try to invert them for elasticity and density contrasts
Da

ijkl
and Dr at the interface. The inversion is performed with mentioned intervals in steps of 5°. Thus the elasticity and

density contrasts are retrieved from 96, 77 or 58 values of thethe help of formulae (23) and (24) for the approximate PP

reflection coefficient. For simplicity, we assume that the upper exact RPP coefficient, respectively.
Tables 1 and 2 display the results of the inversion for modelshalf-space is isotropic and that the lower half-space is trans-

versely isotropic with a horizontal axis of symmetry. Thus we A/C and A/D. The inversion is successful for both models. As

expected, the inversion produces better results for the A/Cinvert for the following six unknown parameters: Da11 , Da33 ,
Da13 , Da44 , Da66 and Dr. Since the approximate coefficient than for the A/D model. For the A/C model, the weak-contrast

condition is satisfied better, and the linearized formulae (23)RPP (hP , Q) depends on the elasticity and density contrasts
linearly, the partial derivatives of RPP (hP , Q) with respect to and (24) approximate the RPP coefficient better (see Figs 3

and 4). If we compare the results of the inversion for differentthe elasticity and density contrasts, DRPP/Da11 , DRPP/Da33 ,
DRPP/Da13 , DRPP/Da44 , DRPP/Da66 and DRPP/Dr, are mutually data sets, we arrive at a similar conclusion. For both models,

the highest accuracy of the retrieved parameters is obtainedindependent. All these partial derivatives (see Fig. 5) depend
on the azimuth Q and incidence angle hP, except for the function when inverting values of the RPP coefficient from nearly vertical

directions, because in this case the approximate formulae workDRPP/Dr, which depends only on the incidence angle hP .
In the inversion routine, we apply the Levenberg–Marquardt optimally. This can be seen clearly in Fig. 6, which displays

the relative errors of the phase velocities in the lower half-least-squares method (Press et al. 1992). We perform the

inversion with values of coefficient RPP (hP , Q) measured for space calculated from the elastic parameters of the isotropic
upper half-space and from the retrieved contrasts at thethree sets of angles hP and Q. We invert the values of RPP in

the range of azimuths 0°≤Q≤90°, and in three different interface. Note that the accuracy of the retrieved parameters

© 1999 RAS, GJI 138, 553–562
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Anisotropic weak-contrast R/T coeYcients 561

Figure 5. Partial derivatives of the approximate displacement PP reflection coefficient with respect to elasticity and density contrasts. The partial

derivatives are shown as a function of azimuth Q and for selected values of incidence angle hP : hP=10°, 20° and 30°.

Table 1. Inverted elasticity and density contrasts for the A/C model. functions of elasticity and density contrasts Da
ijkl

and Dr at
the interface. The formulae for the PS R/T coefficients are,

Model A/C Da11 Da33 Da13 Da44 Da66 Dr however, non-linear functions of contrasts Da
ijkl

. We therefore
introduced new quantities called the vector R/T coeYcients of

hP≤25° −3.56 −0.44 −1.21 0.00 −0.54 −0.05
S waves or the vector PS R/T coeYcients. These coefficients

hP≤20° −3.62 −0.44 −1.21 0.00 −0.55 −0.05
are linear functions of contrasts Da

ijkl
and Dr, similar to the

hP≤15° −3.66 −0.45 −1.21 −0.01 −0.55 −0.05
R/T coefficients of the PP waves. The scalar PS R/T coefficientsexact values −4.04 −0.45 −1.35 0.00 −0.58 −0.05
can be easily calculated from the vector R/T coefficients and
polarization directions of scattered S waves. The accuracy of

Table 2. Inverted elasticity and density contrasts for the A/D model. the approximate formulae derived has been numerically tested
for the reflection coefficients of S waves for models containing

Model A/D Da11 Da33 Da13 Da44 Da66 Dr a horizontal interface between an isotropic half-space and a
transversely isotropic half-space with the symmetry axis lying

hP≤25° −5.34 −0.70 −1.77 0.00 −1.00 −0.05
in the interface. The transverse isotropy is caused by the

hP≤20° −5.49 −0.71 −1.78 0.00 −1.01 −0.05
presence of cracks with crack density e=0.05 (model A/C), orhP≤15° −5.61 −0.73 −1.78 −0.01 −1.00 −0.05
e=0.1 (model A/D). The comparison of the exact and approxi-exact values −6.57 −0.73 −2.19 0.00 −1.08 −0.05
mate displacement coefficients shows that the approximate
formulae are sufficiently accurate for all azimuths and for

does not increase if the interval of incidence angles hP is incidence angles up to 35°. The formulae for the energy
narrower than 
0°, 15°�, because the number of values of the coefficients display the worst accuracy, being applicable for
RPP coefficient to be inverted is then fairly small and the incidence angles only up to 20°–25°. For the above-mentioned
inversion becomes unstable. models, we have also tested the possibility of using the approxi-

mate formulae in the inverse problem. With knowledge of the
values of the exact displacement PP reflection coefficient for a7 CONCLUSIONS
range of azimuths and incidence angles, and using the approxi-

We have derived the approximate formulae for the displace- mate formula for the PP coefficient in the inversion routine,
ment and energy R/T coefficients of PP and PS plane waves we succeeded in retrieving the elasticity and density contrasts
at weak-contrast interfaces in weakly anisotropic elastic media. at the interface. The error in the phase velocities of the lower
The formulae are expressed in a coordinate system, which is not, half-space was less than 2 per cent for the A/C model and less
in general, connected with the interface and the incidence plane. than 6 per cent for the A/D model. Note that the P-wave
Therefore, the formulae are valid for arbitrary orientations of anisotropy of the lower half-space in the A/C model reaches
the incidence plane and interface without the need to transform 13.1 per cent, and in the A/D model almost 23.9 per cent.
the elasticity parameters into a local Cartesian coordinate Such values of anisotropy are fairly high compared with the

anisotropy detected in real seismic structures (Thomsen 1986).system. The formulae for the PP R/T coefficients are linear
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Figure 6. Relative errors of the P-, S1- and S2-wave phase velocities of the lower half-space retrieved from the inversion of the RPP coefficient.

Haugen, G.U. & Ursin, H., 1996. AVO-A analysis of vertically fracturedTherefore, we expect the formulae to yield relevant results in
reservoir underlaying shale, in 66th Ann. Int. Mtg SEG, Expandedmost practical applications in which near-vertical incidences
Abstracts, pp. 1826–1829, SEG, Tulsa.(hP<30°) are considered.
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astr. Soc., 49, 181–208.

cussions on the subject and for their comments. I thank two
Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P., 1992.

anonymous reviewers for their stimulating reviews. The work
Numerical Recipes. T he Art of Scientific Computing, Cambridge

was supported by the Grant Agency of the Czech Republic, University Press, Cambridge.
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