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SUMMARY
We have studied the properties of S waves generated by a point source in a homo-
geneous, transversely isotropic, elastic medium, propagating in directions close to that
of a kiss singularity, which coincides with the symmetry axis of the medium. We have
proved analytically as well as numerically that the ray solution can describe the S waves
correctly far from the source in all directions, including that of the kiss singularity. We
have found that, in contrast to the far-field P wave, which can be reproduced
satisfactorily by the zeroth-order ray approximation in all directions from the source,
the far-field S waves can be reproduced satisfactorily by the zeroth-order ray approxi-
mation only in directions far from the kiss singularity. In directions near the kiss
singularity, the first-order ray approximation must also be considered, because the zeroth-
order ray approximation yields distorted results. The first-order ray approximation
can be of high frequency and can be detected in the far field.

Key words: anisotropy, Green’s function, kiss singularity, ray theory, S waves.

In this paper we shall focus on modelling S waves using ray
1 INTRODUCTION

theory when the S waves propagate close to a kiss singularity.
We shall study S waves generated by a point source situatedS-wave singularities are very important when S waves are
in a homogeneous, transversely isotropic medium (hereafterbeing modelled in anisotropic media. They are defined as the
TI medium). In TI media, the kiss singularity coincides withdirections where two S waves have coincident phase velocities,
the symmetry axis. If we assume a vertical symmetry axis, theand are very common in all types of anisotropy. In directions
split S waves become the SV and SH waves, with polarizationnear singularities, the polarization of plane S waves can change
vectors near the singularity as shown in Fig. 1. We shallvery rapidly, and the amplitude and polarization of S waves
consider only TI media with no triplications on the SV or SHwith curved wavefronts can behave quite anomalously (Crampin
wavefronts, and compare exact and ray solutions of S waves& Yedlin 1981). We distinguish between kiss, point and line
in the far field. We shall show that zeroth-order ray theorysingularities (Crampin 1991); of these, the point singularity

(also called the ‘conical point’) affects the geometry of the rays

and wavefield in the most complicated and profound way.

It is known that zeroth-order ray theory is inapplicable to

modelling of the wavefield near the point singularity, and thus

other techniques such as the Radon transform (Wang &

Achenbach 1994), reflectivity (Crampin 1991) or Maslov method

(Rümpker & Thomson 1994) must be used. It is not clear, how-

ever, how much the wavefield is affected by a kiss singularity.

This singularity is defined as the direction in which two S-wave

phase-velocity sheets touch tangentially at an isolated point.

Since the group velocities near the kiss singularity behave

quite regularly, it is believed that ‘the waveforms of initial

shear-wave pulse will propagate with little distortion’ and

‘the shear waves will split in a regular manner without any

particular anomaly’ (Crampin 1991). This implies that ray Figure 1. Horizontal projections of polarization vectors of the SV
theory (Červený 1972; Červený et al. 1977) could be used to and SH waves near a kiss singularity in the p

x
-p
y
plane, where p

x
and

p
y
are the horizontal components of the slowness vector.model the wavefield near the kiss singularity.
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582 V. Vavryčuk

yields distorted results near the kiss singularity. If we consider singularity, the asymptotic calculation of (1) requires special

the first-order ray approximation, calculated by Vavryčuk & treatment, because the integrand’s amplitude F
kl
(n) in (1) is

Yomogida (1996) and by Vavryčuk (1997), however, we obtain not continuous, and the standard method of stationary phase
a satisfactory result. The first-order ray approximation has a cannot be applied. At a point singularity, integral (1) has been
simple analytical form and its properties will be discussed calculated asymptotically by Buchwald (1959), Lighthill (1960)
in detail. and Burridge (1967). The asymptotic formula at the kiss

singularity, however, is not mentioned in the literature, even

though the case of the kiss singularity is not as complicated
2 THEORY as that of the point singularity. For the asymptotic calculation

of (1) at the kiss singularity in TI media, see the Appendix.
2.1 Exact integral solution of the Green tensor Now we are faced with the problem of defining the zeroth-

order ray-theory Green tensor G(0)
kl

(x, t) in a medium in whichThe exact elastodynamic Green tensor G
kl
(x, t) for unbounded,

a kiss singularity appears. The most common technique is tohomogeneous, anisotropic, elastic media can be expressed as
define the zeroth-order term of the ray series by eq. (2) infollows (Burridge 1967, eq. 4.6; Wang & Achenbach 1994,
directions far from the kiss singularity, and by another formulaeq. 13):
in directions close to the kiss singularity. From these zeroth-

order terms, we can then construct the whole ray series (see
G
kl
(x, t)=−

H(t)

8p2r
∑
3

m=1 PS(n) Fmkl(n)ḋAt−nΩx

cm B dS(n) , (1)
Vavryčuk & Yomogida 1996). Thus the waves will be described

by two different ray expansions with different and limited regions

where of applicability. Unfortunately, for directions in between (not

close to but also not far from the singularity), we may obtain

a gap with no satisfactory ray solution. It is highly desirable,Fm
kl
(n)=

gm
k
gm
l

(cm )3
.

however, to find one ray solution describing the waves in all

directions, including the singularity direction. For this purpose,
The superscript m=1, 2, 3 denotes the type of wave (P, S1 we use a different approach in this paper. We define the zeroth-

or S2), g=g(n) denotes the unit polarization vector, c=c (n)
order ray-theory Green tensor G(0)

kl
(x, t) by formula (2) not

is the phase velocity, r is the density of the medium, t is time,
only in regular directions, but also in directions close to the

H(t) is the Heaviside step function, ḋ(t) is the time derivative
singularity, or even at the singularity. As a consequence, the

of the Dirac delta function, x is the position vector of the
zeroth-order ray approximation will differ from the far-field

observation point, and n is the phase normal. The integration
approximation in directions close to the singularity. This

is over the unit sphere S(n). Formula (1) represents the exact
inconsistency will be corrected by including higher-order ray

solution for homogeneous, weakly as well as strongly, aniso-
approximations. We shall show that it is really possible to

tropic media, containing far-field as well as near-field waves,
obtain a single ray solution that describes the far-field wavesand is valid at all distances and in all directions, including the
correctly in all directions, including that of the kiss singularity.S-wave singularities. For an isotropic medium, integral (1) can be

evaluated analytically to yield the well-known Stokes solution
(see Mura 1991; pp. 61–63). For a transversely isotropic medium,
integral (1) has also been evaluated analytically, but only for 2.3 The zeroth-order ray-theory Green tensor in the TI
the symmetry axis direction (Payton 1977, 1983). For other medium
directions, the integral should be evaluated either numerically,

Next we assume a homogeneous transversely isotropic mediumor it should be expanded asymptotically.

with a vertical axis of symmetry. In this case, the S1 and S2

waves become SV and SH waves, and all quantities in eq. (2)

can be expressed analytically. For the SH-wave Green tensor,2.2 Far-field approximation versus the zeroth-order ray
we obtain a simple analytical formula (Vavryčuk & Yomogidaapproximation
1996; eq. 25). For the P- and SV -wave Green tensors, the

On evaluating eq. (1) by the stationary phase method, we
formulae are rather cumbersome, because explicit analytical

obtain the far-field approximation of the Green tensor in the
formulae for group velocity v and Gaussian curvature K

p
are

following form (Kendall et al. 1992; eq. 1):
rather long and complicated. The formulae simplify con-

siderably if we assume that the observation point lies in the
Gfar
kl

(x, t)=
1

4pr
∑
3

m=1
1

vm√Km
p

gm
k
gm
l

r
d(t−tm(x)) , (2) direction of the symmetry axis. For the zeroth-order ray-theory

Green tensor at the kiss singularity we obtain

where the superscript m denotes the type of wave, v is
the group velocity, g is the unit polarization vector, r is the
distance of the observation point from the source, d(t) is the

Dirac delta function, t is the traveltime, and K
p
is the Gaussian

curvature of the slowness surface. The slowness surface is

G(0)
11

(z, t)=
1

4pr Ca11− (a
13
+a

44
)2

a
33
−a

44
D−1 1

|z|
dAt− |z|

√a
44
B ,

G(0)
22

(z, t)=
1

4pr

1

a
66

1

|z|
dAt− |z|

√a
44
B ,

G(0)
33

(z, t)=
1

4pr Ca44+ (a
13
+a

44
)2

a
33
−a

44
D−1 1

|z|
dAt− |z|

√a
33
B ,

(3)
assumed to be convex in all directions, and hence no parabolic

points are considered and the Gaussian curvature is always
positive. Formula (2) is valid for all directions from the source,
except those in the close vicinity of a singularity. In the
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S waves near a kiss singularity 583

where we have used the following basis of polarization vectors:
2.4 The first-order ray-theory Green tensor in the TI
medium

gP= (0, 0, 1)T , gSV= (1, 0, 0)T , gSH=(0, −1, 0)T . (4)
The first-order ray approximation of the Green tensor for a
homogeneous TI medium consists of several terms (VavryčukComponent G(0)

33
(z, t) describes the P wave, and components

1997): the first term is significant near the singularity (hereafterG(0)
11

(z, t) and G(0)
22

(z, t) describe the S wave. Other components
the ‘near-singularity’ term), and the other terms are significantof the Green tensor are zero.
in the near field (hereafter the ‘near-field’ terms). Since we are

As expected, formula (3) describes the P wave in the far
dealing with waves in the far field, we shall consider only the

field correctly, but the S wave is incorrect. Formula (3) was
near-singularity term. This term is composed of additional as

derived from (2), which is inapplicable to the S wave at the
well as principal components of the SV - and SH-wave first-

singularity. The incorrectness of (3) can be seen by the
order approximations. It has the following form (Vavryčuk &

following. Yomogida 1996; eq. 28; Vavryčuk 1997; eqs 23a, 24a):

(1) Since the Gaussian curvatures of the SV - and SH-wave
GS(1)
kl

(x, t)=
1

4pr√a
44

gSH
k

gSH
l

−gSH)
k

gSH)
l

R2slowness surfaces in (2) are different at the kiss singularity,

KSV
p
≠KSH

p
, we find that G(0)

11
(z, t)≠G(0)

22
(z, t). Obviously, this is

×[H(t−tSH)−H(t−tSV )] , (5)incorrect, because no direction in the x-y plane is preferential

in the propagation of waves along the symmetry axis, and the where gSH)= (cos Q, sin Q, 0)T is the unit vector perpendicular
components of the Green tensor in the far field Gfar

11
(z, t) and to gSH= (sin Q, −cos Q, 0)T, R=r sin q is the distance of the

observation point from the singularity direction, r is theGfar
22

(z, t) must be equal.
distance of the observation point from the source, and q and(2) Polarization vectors gSV and gSH are non-unique at the
Q are the standard spherical angles of the x vector. It followssingularity. In principle, any two perpendicular vectors lying
from eq. (5) that the amplitude of the near-singularity termin the horizontal plane can be used for gSV and gSH at the
depends on distance as 1/R2. Thus for observation points closesingularity, and must produce the same form of Green tensor
to the singularity (R� 0), this term is prominent (see Fig. 2).in the far field. However, formula (3) depends on the choice
It can be prominent not only in the near field but also in theof vectors gSV and gSH and will be different for vectors other
far field, because in the far field (r�2) the distance R canthan those specified in (4).
also vanish (for q� 0). This is of particular interest, because

In the next section we show that we can overcome the we usually assume that the higher-order ray approximations
difficulties of the ray solution by considering the first-order are negligible in the far field as compared to the zeroth-order

ray approximation.ray approximation.

Figure 2. Geometry of S wavefronts radiated from a point source in the TI medium (left-hand plot), together with schematically shown waveforms

of the near-singularity term for three observation points with rays deviating from the singularity by angles of q1 , q2 and q3 (right-hand plots).
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584 V. Vavryčuk

At the singularity, eq. (5) yields In (8) we assume that the kiss singularity is along the vertical

axis. For a general orientation of the coordinate system, whichGS(1)
11

(z, t)= lim

q�0
GS(1)
11

(x, t)
is not connected to the singularity, formula (8) yields

=
1

4pr√a
44

lim

q�0 CtSH−tSV

r2 sin2 q D GS far
kl

(x, t)=
1

8pr

1

vS A 1

√KS1
p

+
1

√KS2
p
B d

kl
−gP

k
gP
l

r
d(t−tS (x)) ,

× lim

q�0 CH(t−tSV )−H(t−tSH )

tSH−tSV D (9)

where vS is the group (or phase) velocity of the S wave in the
=

1

8pr G 1

a
66
−Ca11− (a

13
+a

44
)2

a
33
−a

44
D−1H singularity direction, tS is the traveltime of the S wave, r=|x|

is the distance of the observation point from the source, gP is

the unit polarization vector of the P wave orientated along
×

1

|z|
dAt− |z|

√a
44
B , (6)

the singularity direction, and KS1
p

and KS2
p

are the Gaussian
curvatures of the S1 and S2 slowness surfaces at the singularity.

GS(1)
22

(z, t)=−GS(1)
11

(z, t) .
The validity of this formula can be verified by comparing it

In eq. (6) we have used the basis of polarization vectors (4). with the asymptotic expansion of integral (1) at the kiss
Notice that the near-singularity term at the singularity behaves singularity (see Appendix, eq. A6).
in the same way as the standard zeroth-order ray approxi-

mation: it has the same waveform and the same decrease of
amplitude with distance from the source. That is why this term 2.5 Waves near a kiss singularity versus waves near a
can be detected in the far field. point source

For the far-field ray-theory Green tensor at the singularity
The wavefield near a kiss singularity has many similarities towe obtain
the wavefield near a point source (see Fig. 3). The similarities

and differences between them can be summarized as follows
(see Vavryčuk & Yomogida 1995; Vavryčuk 1997).

Gfar
11

(z, t)=G(0)
11

(z, t)+GS(1)
11

(z, t)

=
1

8pr G 1

a
66
+Ca11− (a

13
+a

44
)2

a
33
−a

44
D−1H

×
1

|z|
dAt− |z|

√a
44
B ,

Gfar
22

(z, t)=G(0)
22

(z, t)+GS(1)
22

(z, t)

=
1

8pr G 1

a
66
+Ca11− (a

13
+a

44
)2

a
33
−a

44
D−1H

×
1

|z|
dAt− |z|

√a
44
B ,

Gfar
33

(z, t)=GP(0)
33

(z, t)

=
1

4pr Ca44+ (a
13
+a

44
)2

a
33
−a

44
D−1 1

|z|
dAt− |z|

√a
33
B .

(7)

In contrast to formula (3), which describes the S wave in the
far field incorrectly, formula (7) is correct for both P and S
waves. The correctness of (7) at the singularity was verified by

comparing this solution with the exact Payton analytical
solution (Payton 1977; eqs 4.4–4.6). If we specify the Payton
solution for the far field, we obtain an identical result. This

implies that the near-singularity term is the only higher-order
term of the ray expansion that is non-negligible in the far field.
This applies to weak as well as strong transverse isotropy. It

confirms the result of Vavryčuk & Yomogida (1996), who
found that the Green tensor for the SH wave in TI media can
be expressed exactly only by the zeroth- and the first-order

ray approximations.
Comparing formulae (3) and (7) we find that the components

Figure 3. The Green’s function in the near field in a homogeneousof the far-field ray-theory Green tensor Gfar
11

and Gfar
22

can be
isotropic medium (upper plots) and the S-wave Green’s function insimply expressed as an average of the components of the
the far field near a kiss singularity in a homogeneous TI mediumzeroth-order ray-theory Green tensor G(0)

11
and G(0)

22
:

( lower plots). The Green’s functions are divided into parts described

by the zeroth-order ray theory (ZRT, left-hand plots) and by theGfar
11
=Gfar

22
=

1

2
[G(0)

11
+G(0)

22
] . (8)

higher-order ray theory (HRT, right-hand plots).
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S waves near a kiss singularity 585

(1) Neither wavefield is correctly described by the
3 NUMERICAL MODELLING

zeroth-order ray approximation, and hence higher-order ray
approximations must be considered. In this section we demonstrate the properties of the near-

singularity term (5) numerically. We consider S waves excited(2) In both wavefields, the higher-order ray approximations

are non-zero at all times between the arrivals of the zeroth- by a point source and propagating in a TI medium. We model
the S waves by the zeroth-order ray approximation (when theorder waves. Thus the higher-order ray approximations couple

the zeroth-order waves. near-singularity term is neglected) and by the far-field ray

approximation (when the near-singularity term is considered).(3) The amplitude of the near-field terms decreases with
distance from the point source as 1/r2, and thus is negligible Both ray approximations will be compared with the exact

solution calculated by computing formula (1) numerically.far from the source. The amplitude of the near-singularity term

decreases with distance from the singularity as 1/R2, and thus We use two models displaying TI: a medium with cracks and
Mesaverde immature sandstone. The medium with cracks isis negligible far from the singularity.

(4) The near-singularity term can be significant in the near assumed to be formed by an isotropic host rock with P and S

velocities and density a=4.50 km s−1, b=2.53 km s−1 andfield as well as in the far field. In directions far from the
singularity, it behaves like a near-field wave; in directions close r=2.8 g cm−3, respectively. The host rock contains aligned

thin water-filled cracks with crack density e=0.1 and aspectto the singularity, it behaves like a far-field wave.

(5) The frequency content of the near-singularity and near- ratio d=0.001. The resultant density-normalized elastic para-
meters of the cracked medium calculated using the Hudsonfield terms depends on the separation times between the zeroth-

order waves. For a small separation, the terms are of high model (Hudson 1981) are a
11
=a

22
=20.22, a

33
=20.04,

a
13
=7.41, a

44
=a

55
=5.10 and a

66
=6.38. The anisotropy offrequency; for a large separation, the terms are of low frequency.

At the singularity, the waveform of the near-singularity term the P wave is 3.5 per cent, and that of the SV and SH waves
is 11.2 per cent (see Fig. 4). Shearer & Chapman (1989) use ais the Dirac delta function, and hence the near-singularity term

and the zeroth-order waves have the same frequency content. similar cracked model (in their notation Model 1), but they
use a different orientation of the symmetry axis and they(6) The amplitude of the near-singularity term depends on

the strength of anisotropy: for stronger anisotropy this term is also assume a non-zero velocity gradient. The second model,
Mesaverde immature sandstone (Thomsen 1986), has themore pronounced; in the limit from anisotropy to isotropy this

term vanishes. following elastic parameters: a
11
=a

22
=22.36, a

33
=18.91,

Figure 4. Phase velocities of the P, SV and SH waves as a function of the angle between the phase normal and the symmetry axis for the cracked

medium and Mesaverde immature sandstone.
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586 V. Vavryčuk

a
13
=8.49, a

44
=a

55
=6.61, a

66
=8.00 and r=2.46 g cm−3. The S waves separate in different ways at different observation

points. As expected, almost no separation between the SV andanisotropy of the P, SV and SH waves for this model reaches
SH waves is observed for the observation point closest to the8.3, 4.6 and 9.5 per cent, respectively (see Fig. 4).
singularity (q=2°). In contrast, at the point with q=20°, theThe wavefield is generated by the single point force
SV and SH waves are fully separated in time in both media.F(t)=F f (t), where F is the force vector, and f (t) is the

A comparison of the exact and ray solutions shows that thesource-time function, which is defined as follows:
exact solution and the far-field ray solution coincide within
the width of the line. This proves that the ray solution describesf (t)=sin2Apt

T B for tµ
0, T � ,

f (t)=0 for tµ(T , 2) ,

(10) the S waves in the far field correctly, if the near-singularity
term is considered. On comparing the far-field and the zeroth-
order ray solutions, we conclude that the zeroth-order ray

where T =1 s. The parameter T specifies the width of the solution produces significant errors in amplitude as well as in
pulse. The source-time function generates waves in the form polarization of the S waves, particularly in the vicinity of the
of a one-sided pulse in the far field. The force vector was singularity. We emphasize that both media under study can
chosen as F= (1, 1, 0)T. be considered as weakly anisotropic. For materials displaying

Figs 5 and 6 display waveforms and particle motions of stronger anisotropy, these errors can be even larger. Close to
the S waves propagating in the cracked medium and in the the singularity, the S waves do not separate, and the near-
sandstone. The waves are recorded at four observation points singularity term mainly affects the predominant polarization of
that lie in the x-z plane at distances from the source of the S wave. The fact that the actual predominant polarization
r=225.8 km for the cracked medium, and r=257.1 km for the of S waves can be remarkably different from the polarization pre-
sandstone. This distance corresponds to 100 wavelengths of dicted by the zeroth-order ray approximation has already been
the S wave propagating in the direction of the symmetry axis reported (but not explained) by Vavryčuk (1992; Fig. 13b). In
of the medium. We used this very large distance to be sure the directions in which the S waves separate, the zeroth-order
that the far-field condition is well satisfied. The rays to the ray approximation predicts a linear polarization of the split S
four observation points deviate from the symmetry axis by waves. If we consider the near-singularity term, the S-wave

polarization is quasi-elliptical. For an increasing separationangles of q=2°, 8°, 14° and 20°. Figs 5 and 6 show that the

Figure 5. Waveforms and particle motions of S waves propagating in the cracked medium. Diagrams are shown for four receivers lying in the

x-z plane at a distance r=225.8 km from the source. Rays deviate from the kiss singularity by angles q=2°, 8°, 14° and 20°. The parameter dt is

the delay time between SV - and SH-wave arrivals, T =1 s is the width of the pulse. Component Q lies in the x-z plane and is perpendicular to the

ray. Dashed line: zeroth-order ray solution; full line: exact solution and/or far-field ray solution.

© 1999 RAS, GJI 138, 581–589
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S waves near a kiss singularity 587

Figure 6. Waveforms and particle motions of S waves propagating in Mesaverde immature sandstone. Receivers lie at a distance r=257.1 km

from the source. Dashed line: zeroth-order ray solution; full line: exact solution and/or far-field ray solution.

time between the split S waves, the quasi-ellipticity decreases. and must be considered. We therefore call this first-order term
of the ray expansion the near-singularity term. T he near-In directions far from the singularity, the quasi-ellipticity is

negligible, and thus the S waves are successfully reproduced singularity term can be of high frequency and it can be detected
in the far field. At the singularity, this term has the sameby the zeroth-order ray approximation.
waveform and the same frequency content as the zeroth-order
ray approximation. The amplitude of the near-singularity term

4 CONCLUSIONS
decreases in the same way as the zeroth-order term. The near-
singularity term appears at the times between the arrivals ofWe have studied the exact solution and the approximate ray

solutions of S waves generated by a point source in a homo- the split zeroth-order S waves, causing the S waves to become

coupled. This coupling is in many aspects similar to thegeneous, transversely isotropic, elastic medium and propagating
in directions close to a kiss singularity. We have proved that coupling of the P and S waves near a point source. If the

zeroth-order S waves are not well separated, forming only oneit is possible to construct a ray solution that can correctly
describe the S waves far from the source in all directions, S wave, the near-singularity term can change the predominant

direction of the S-wave polarization. If the zeroth-order Sincluding that of the kiss singularity. We have proved this

analytically by comparing the ray solution with the exact waves are separated in time, then the near-singularity term
can cause both S waves to be quasi-elliptically polarized. Theanalytical Payton solution (Payton 1977, 1983), and by com-

paring the ray solution with the far-field solution at the kiss quasi-ellipticity of the split S waves decreases with increasing

separation time. The amplitude of the near-singularity termsingularity (see Appendix). We have also proved this numerically
by comparing the ray solution with the numerically evaluated depends on the strength of anisotropy: for isotropic media this

term vanishes. With the aid of numerical examples we haveexact integral solution (Burridge 1967; Wang & Achenbach

1994). shown that the near-singularity term can strongly affect the S
waves propagating in weakly anisotropic TI media, a commonWe found that in directions far from the kiss singularity, the

S waves are reproduced satisfactorily by the zeroth-order ray scenario in crustal seismology. It can affect the polarization of

the S waves propagating in directions up to 15° from the kissapproximation. In directions near the kiss singularity, the
zeroth-order ray approximation yields distorted results. In singularity, and at distances of up to hundreds of wavelengths

from the source.these directions, the first-order ray approximation is significant,

© 1999 RAS, GJI 138, 581–589
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APPENDIX A: FAR-FIELD S-WAVE GREENACKNOWLEDGMENTS
TENSOR AT THE KISS SINGULARITY IN
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where K
p

is the Gaussian curvature of the slowness surface at where

the singularity, and p=p(q) is the magnitude of the slowness
vector. Taking into account that

A
kl
=C1 0 0

0 1 0

0 0 0D . (A5)

In (A5) we use the local coordinate system with the x3-axis
along the singularity. In a general coordinate system, formula
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0 0 2 sin2 qD ,
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(A5) yields
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0
Ωx) ,

(A6)

we can integrate (A3) over Q and q, and calculate the result where vS is the group (or phase) velocity of the S wave at the
for vanishing q. We then obtain singularity, gP is the unit polarization vector of the P wave

orientated along the singularity, and KS1
p

and KS2
p

are the
Gaussian curvatures of the S1 and S2 slowness surfaces at theGS far

kl
(x, t)=

1

8pr

1
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singularity.
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