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S U M M A R Y
Acoustic axes can exist even under an infinitesimally weak anisotropy, and occur when slowness
surfaces of the S1 and S2 waves touch or intersect. The maximum number of isolated acoustic
axes in weak triclinic anisotropy is 16 as in strong triclinic anisotropy. The directions of acoustic
axes are calculated by solving two coupled polynomial equations in two variables. The order
of the equations is 6 under strong anisotropy and reduces to 5 under weak anisotropy. The
weak anisotropy approximation is particularly useful, when calculating the acoustic axes under
extremely weak anisotropy with anisotropy strength less than 0.1 per cent because the equations
valid for strong anisotropy might become numerically unstable and their modification, which
stabilizes them, is complicated. The weak anisotropy approximation can also find applications
in inversions for anisotropy from the directions of acoustic axes.

Key words: elastic-wave theory, perturbation methods, polarization, seismic anisotropy,
seismic-wave progagation, shear-wave splitting.

1 I N T RO D U C T I O N

Acoustic axes (singularities, degeneracies) are directions in
anisotropic media, in which phase velocities of two or three plane
waves (P, S1 or S2 waves) coincide. We distinguish several types
of acoustic axes (Khatkevich 1963; Fedorov 1968; Khatkevich
1977; Alshits & Lothe 1979a; Crampin & Yedlin 1981; Grechka &
Obolentseva 1993; Helbig 1994): they can form either single iso-
lated points classified as kiss, conical or wedge singularities, or they
can combine into line singularities. The most frequent acoustic axis
in triclinic anisotropy is conical, which is classified as the stable sin-
gularity. On the other hand, the kiss, wedge and line singularities are
called unstable, because they disappear or split into several conical
singularities if the medium is a subject of a small perturbation of
elastic parameters.

Acoustic axes are very important, because they cause singular-
ities in the field of polarization vectors (Alshits & Lothe 1979b;
Alshits et al. 1985). The singular behaviour of the polarization field
near an acoustic axis depends on its type (see Fig. 1) and is quan-
tified by the topological charge of the singularity (Shuvalov 1998).
The acoustic axes can also cause anomalies in the shape of the
slowness and wave surfaces. This is manifested by the existence of
parabolic lines on the slowness surface (Vavryčuk 2003a), which
are mapped onto caustics and anti-caustics on the wave surface (see
Fig. 2). The caustics cause triplications and strong energy focus-
ing (Hurley & Wolfe 1985; Every 1986, 1988; Shuvalov & Every
1997; Wolfe 1998). The acoustic axes also pose complications in
tracing rays (Vavryčuk 2001, 2003b; Farra 2005) and in modelling
wavefields because of the coupling of waves (Chapman & Shearer
1989; Kravtsov & Orlov 1990; Coates & Chapman 1990; Rümpker
& Thomson 1994; Pšenčı́k 1998; Bulant & Klimeš 2004; Klimeš &
Bulant 2004).

The maximum number of isolated acoustic axes is 16 in triclinic
anisotropy (Holm 1992; Darinskii 1994; Alshits & Lothe 2004;
Vavryčuk 2005) similarly as in monoclinic, orthorhombic and trig-
onal symmetry (Khatkevich 1963; Musgrave 1985; Boulanger &
Hayes 1998; Mozhaev et al. 2001). However, the calculation of the
directions of the acoustic axes in triclinic anisotropy is more in-
volved than in anisotropy of higher symmetry. While acoustic axes
in monoclinic symmetry are calculated by solving one polynomial
equation of the sixth order in one variable, the acoustic axes in tri-
clinic anisotropy are calculated by solving two coupled polynomial
equations of the sixth order in two variables. Obviously this im-
plies that the positions of acoustic axes are complicated functions
of anisotropy parameters (Vavryčuk 2005).

In general, anomalies observed in the directions of acoustic axes
and in their vicinities appear, or they are more pronounced, under
strong rather than weak anisotropy. For example, we can observe
acoustic axes of the P and S1 waves or triple acoustic axes of the
P, S1 and S2 waves under strong anisotropy, but only the acoustic
axes of the S1 and S2 waves can be observed under weak anisotropy.
Also triplications of the wave surface appear more frequently un-
der strong rather than weak anisotropy. Under weak anisotropy,
the shapes of slowness and wave surfaces and the behaviour of
waves are usually much simpler and modelling of propagating
waves is much easier (Jech & Pšenčı́k 1989; Farra 2001, 2004,
2005; Vavryčuk 2003a, 2005). Importantly, weak anisotropy is not
only a useful theoretical concept simplifying modelling of waves,
but it is also a reasonable assumption valid for many real mate-
rials including most rocks and geological structures in the Earth
(Thomsen 1986; Babuška & Cara 1991; Savage 1999). Therefore,
I shall focus in this paper on studying the number and proper-
ties of acoustic axes in weak triclinic anisotropy. I shall apply the
perturbation theory (Jech & Pšenčı́k 1989; Farra 2001; Vavryčuk
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Figure 1. The field of polarization vectors on the slowness surfaces near a kiss, conical and wedge acoustic axis for the S1 and S2 waves. The polarization
vectors are projected into the plane perpendicular to the acoustic axis. The field of polarization vectors is singular in the acoustic axis. The topological charge
n of the singularities is +1, −1/2 and 0. The dot marks the position of the singularity.

2003a) to check whether a rather complicated calculation of the
number and directions of acoustic axes in triclinic anisotropy sim-
plifies under weak anisotropy. I shall try to find specific properties
of acoustic axes in weak anisotropy and to resolve whether the max-
imum number of acoustic axes is reduced under weak anisotropy or
not.

2 A C O U S T I C A X E S I N S T RO N G
A N I S O T RO P Y

2.1 System of equations

The Christoffel tensor Γ (n) is defined as (Fedorov 1968; Musgrave
1970; Červený 2001)

Γ jk(n) = ai jklni nl , (1)

where aijkl = cijkl/ρ are the density-normalized elastic parameters,
cijkl are the elastic parameters, ρ is the density of the medium, and n
is the unit vector defining the slowness direction. The Einstein sum-
mation convention over repeated subscripts is applied. For physically
realizable media, the elastic parameters aijkl satisfy the stability con-
ditions (Helbig 1994, eqs 5.5–5.10) and the Christoffel tensor Γ (n)
is positive-definite for all directions n. The Christoffel tensor Γ (n)
has three eigenvalues G(M) and three unit eigenvectors g(M), which
are calculated from

� jk g(M)
k = G(M)g(M)

j , M = 1, 2, 3, (2)

where M denotes the type of wave (P, S1 or S2). The eigenvalue
corresponds to the squared phase velocity, G = c2, and the eigenvec-
tor describes the polarization vector of the wave. Using the spectral
decomposition of Γ (n) and applying the condition for the acoustic

axis, G(2) = G(3), we obtain

� jk = (
G(1) − G(2)

)
g(1)

j g(1)
k + G(2)δ jk, (3)

where δ jk is the Kronecker delta. If G(1) >G(2) = G(3), the S1 and S2
phase velocities coincide at the acoustic axis, if G(1) < G(2) = G(3),
the P and S1 phase velocities coincide at the acoustic axis. Eq. (3)
can be expressed as follows (Darinskii 1994):

ai jkl si sl = g j gk + δ jk, (4)

where s = n/
√

G(2) is the slowness vector of the degenerate wave
and g = g(1)

√
(G(1) − G(2))/G(2) is an eigenvector of the non-

degenerate wave of a generally non-unit length. Vectors s and g
may be real or complex valued. Eq. (4) is a system of six quadratic
equations in six unknowns: s = (s 1, s 2, s 3)T and g = (g1, g2,
g3)T . The number of solutions is 26 = 64. If we take into ac-
count that solutions of different signs: ±s, ±g, correspond to the
same acoustic axis, the maximum number of acoustic axes is re-
duced from 64 to 16. This number comprises the solutions with
real-valued as well as complex-valued slowness vector s. The real-
valued solutions correspond to acoustic axes of homogeneous plane
waves propagating in anisotropic media, the complex-valued solu-
tions correspond to acoustic axes of inhomogeneous plane waves.
Both types of acoustic axes differ mainly in their polarization field.
While the polarization is linear near the real acoustic axis, it be-
comes elliptical near the complex acoustic axis (see Shuvalov 2001;
Vavryčuk 2005).

Eliminating eigenvalues and eigenvectors in eq. (3), we obtain
(Darinskii 1994):

�11 − �12�13

�23
= �22 − �12�23

�13
= �33 − �13�23

�12
, (5)
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Figure 2. Parabolic lines (upper plots) and caustics (lower plots) for the S2 wave near the conical and wedge singularities. The conical singularity lies along
the direction n = 1√

3
( 1, 1, 1)T in cubic anisotropy with parameters (in km2 s−2): a11 = a22 = a33 = 6, a44 = a55 = a66 = 2, a12 = a13 = a23 = 2.3.

The wedge singularity lies along the vertical axis in monoclinic anisotropy arisen from the above cubic anisotropy by considering additional non-zero elastic
parameter a14 = 0.03 km2 s−2. The plus signs in (a) and (b) mark the acoustic axes. Equal area projection is used. The bounding circles correspond to the
deviation of: (a) 4.0◦, (b) 3.0◦, (c) 2.1◦ and (d) 2.0◦ from the singularity. The dashed straight line in (d) marks the anti-caustic generated by the wedge singularity.
The anti-caustic generated by the conical singularity coincides with the bounding circle in (c).

and consequently (Khatkevich 1963):

(�11 − �22) �13�23 − �12

(
�2

13 − �2
23

) = 0, (6a)

(�11 − �33) �12�23 − �13

(
�2

12 − �2
23

) = 0, (6b)

(�22 − �33) �12�13 − �23

(
�2

12 − �2
13

) = 0. (6c)

Eqs (6a–c) are suitable for calculating the acoustic axes numerically.
They represent a system of sixth-order equations in three unknown
components of the unit direction vector n: n1, n2 and n3. The three
eqs (6a–c) are not independent, hence we solve only two of them.
We obtain 72 solutions, which are generally complex valued. Taking
into account that ±n describes the same direction, the number of
directions reduces from 72 to 36.

2.2 Spurious directions

Since eq. (4) yields only 16 acoustic axes, 20 of the 36 directions
calculated from (6) must be spurious and do not describe acoustic
axes. In fact, the spurious directions were incorporated into the

solution, when eq. (5) was multiplied by terms �12�13, �12�23 or
�13�23 in order to derive eq. (6). Therefore, we should eliminate
from the solutions of eqs (6a–c) the directions, for which one of the
following three systems of equations is satisfied

�13 = 0 and �23 = 0, (7a)

�12 = 0 and �23 = 0, (7b)

�12 = 0 and �13 = 0. (7c)

Eqs (7a–c) describe three systems of quadratic equations, each of
them having eight solutions which reduce to four directions, if differ-
ent signs of n are omitted. Hence, we obtained a total of 12 spurious
directions. Furthermore, 8 of the 12 spurious directions appear in
eq. (6) twice. Which eight spurious directions are doubled, depends
on the pair of eqs (6a–c) we actually solve. For example, in solv-
ing eqs (6a–b), the solutions of eqs (7a–b) are doubled; in solving
eqs (6b–c), the solutions of eqs (7b–c) are doubled. Hence, the total
number of spurious directions in eq. (6) is 20. This confirms that
only 16 acoustic axes can exist in triclinic anisotropy.
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3 A C O U S T I C A X E S I N W E A K
A N I S O T RO P Y

3.1 Weak anisotropy expansion

Weak triclinic anisotropy with elastic parameters aijkl is obtained by
perturbing an isotropic medium in the following way:

ai jkl = a0
i jkl + ε bi jkl , (8)

where

a0
i jkl = λδi jδkl + µ(δikδ jl + δilδ jk). (9)

Parametersλ andµdefine the Lamé coefficients of an isotropic back-
ground medium, tensor bijkl defines the perturbations from isotropy
into triclinic anisotropy, and ε is a small quantity which measures
anisotropy strength. In order to keep ε within a reasonable range
of values, it is advantageous to scale tensor bijkl to have a norm
comparable to the norm of a0

ijkl. For any weak triclinic anisotropy
described by tensor aijkl, the two parameters of the isotropic back-
ground medium can be chosen so that the perturbation tensor satis-
fies: b3333 = 0 and b1212 = 0. These constraints are applied in all the
following equations to simplify them. In addition, it would be possi-
ble to impose zeros also to other three parameters of bijkl, supposing
we confine ourselves to a specially oriented coordinate system. This
constraint, however, is not applied here, because it would require
finding this coordinate system for each studied triclinic anisotropy
and evaluate the parameters in this system. Hence, here the weakly
anisotropic triclinic medium is described by 21 elastic parameters,
two of them define the isotropic background and 19 of them define
the perturbation to anisotropy.

For ε = 0 in (8), weak anisotropy reduces to isotropy. The
Christoffel tensor Γ in (1) is degenerate with eigenvalues GP =
λ + 2µ and GS ≡ GS1 = GS2 = µ, which are independent of direc-
tion n. Consequently, the P- and S-wave slowness surfaces are fully
detached, GP > GS , and the S1 and S2 waves have coincident phase
velocities in all directions n, GS1 = GS2. For small non-zero ε, the
P wave remains detached from the S1 and S2 waves, but the global
degeneracy of the S1 and S2 waves is removed, and the phase veloc-
ities of the S1 and S2 waves can coincide only in selected directions
(see Fig. 3). Hence, under weak anisotropy we can observe acous-
tic axes of the S1 and S2 waves, but not the acoustic axes of the
P and S1 waves, or the triple acoustic axes of the P, S1 and S2
waves.

py
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px

P S2

S1 ..

. .
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Figure 3. A sketch of slowness surfaces for P and S waves for isotropic media (a) and for P, S1 and S2 waves for weakly anisotropic media (b). The dots in
(b) mark the positions of the acoustic axes.

3.2 System of equations

Inserting the Christoffel tensor Γ specified under weak anisotropy
(see Appendix A) into eqs (6a–c) we obtain:

ε(λ + µ)2 P1(bi jkl , n1, n2, n3)

+ ε2(λ + µ)P2(bi jkl , n1, n2, n3)

+ ε3 P3(bi jkl , n1, n2, n3) = 0, (10a)

ε(λ + µ)2 Q1(bi jkl , n1, n2, n3)

+ ε2(λ + µ)Q2(bi jkl , n1, n2, n3)

+ ε3 Q3(bi jkl , n1, n2, n3) = 0, (10b)

ε(λ + µ)2 R1(bi jkl , n1, n2, n3)

+ ε2(λ + µ)R2(bi jkl , n1, n2, n3)

+ ε3 R3(bi jkl , n1, n2, n3) = 0, (10c)

where polynomials P 1, Q1 and R1 are of the first order, polynomials
P 2, Q2 and R2 are of the second order, and P 3, Q3 and R3 are
polynomials of the third order in bijkl. Eqs (10a–c) contain only
perturbation terms, because eqs (6a–c) are automatically satisfied
for any isotropic background.

If we assume ε/(λ+µ)→0 (but not equal to zero), we can neglect
the higher-order terms in ε in eqs (10a–c) and retain only the linear
terms in ε. Note that, it is not sufficient to impose only condition
ε → 0, because for λ + µ ≈ ε all three terms in eqs (10a–c) are
significant and none of them can be neglected. Applying condition
ε/(λ + µ) → 0, we obtain:

P1(bi jkl , n1, n2, n3) = 0, (11a)

Q1(bi jkl , n1, n2, n3) = 0, (11b)

R1(bi jkl , n1, n2, n3) = 0. (11c)

Polynomials P 1, Q1 and R1 are homogeneous polynomials of the
sixth order n1, n2 and n3. They can be expressed as follows:

P1 = n3 pi j ni
1n j

2n5−i− j
3 ,

Q1 = n2qi j ni
1n j

2n5−i− j
3 ,

R1 = n1ri j ni
1n j

2n5−i− j
3 ,

(12)
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where summation over repeated indices is applied. Indices i and j
run from 0 to 5, and their sum is less than or equal to 5. Coefficients
pij, qij and rij are presented in Appendix B. If we choose a coordinate
system, in which no acoustic axis lies in the coordinate planes, then
eqs (11a–c) simplify as follows

pi j n
i
1n j

2n5−i− j
3 = 0, (13a)

qi j n
i
1n j

2n5−i− j
3 = 0, (13b)

ri j n
i
1n j

2n5−i− j
3 = 0. (13c)

The equations are homogeneous polynomial equations of the fifth
order in three unknown components of the unit vector n. The equa-
tions can be transformed into inhomogeneous polynomial equations
of the fifth order in two unknowns u and v:

pi j u
iv j = 0, (14a)

qi j u
iv j = 0, (14b)

ri j u
iv j = 0, (14c)

where u = n1/n3 and v = n2/n3. Using this substitution, we reject
all solutions in the x 1−x 2 plane (n3 = 0). Indices i and j run from 0
to 5 and their sum is less than or equal to 5. If some acoustic axes lie
in the x 1−x 2 plane or in the other coordinate planes, the medium
must be rotated to avoid this specific situation.

Eqs (14a–c) are not independent, hence we solve only two of
them. In solving any two equations of (14a–c), we obtain 22 real-
or complex-valued solutions, which comprise the true acoustic axes
as well as the spurious directions.

3.3 Spurious directions

To identify and eliminate the spurious directions from the solutions
of eqs (14a–c), we have to solve complementary equations similar to
eqs (7a–c) designed for strong anisotropy. Expressing the Christoffel
tensor in (7a–c) for weak anisotropy and keeping the leading terms
only, we obtain the following three systems of equations:

(λ + µ) n1n3 = 0 and (λ + µ) n2n3 = 0, (15a)

(λ + µ) n1n2 = 0 and (λ + µ) n2n3 = 0, (15b)

(λ + µ) n1n2 = 0 and (λ + µ) n1n3 = 0. (15c)

The equations imply that the spurious solutions must lie in the co-
ordinate planes. Since eqs (14a–c) yield solutions out of the x 1 −x 2

plane, the spurious directions can lie only in the two other coordi-
nate planes: x 1−x 3 and x 2−x 3. It can be proved that each coordinate
plane contains three spurious solutions, so that a total of six spurious
solutions is obtained in solving eqs (14a–c).

Hence, if we calculate the acoustic axes by solving eqs (14a–c), we
obtain 22 solutions from which we have to eliminate six spurious
directions, which lie in the coordinate planes x 1−x 3 and x 2−x 3.
We thus find that the maximum number of acoustic axes in weak
triclinic anisotropy is 16. This implies that weak triclinic anisotropy
is characterized by the same maximum number of acoustic axes as
strong triclinic anisotropy.

The existence of weak triclinic anisotropy with 16 acoustic axes
can be illustrated on the example of anisotropy defined by the
following perturbation matrix:

B =




−0.35 −0.52 −0.02 −0.01 0.22 −0.01

−0.57 −0.04 −0.02 0.43 −0.01

0 0.01 0.26 −0.01

−0.59 −0.01 0.21

−0.55 0.01

0




, (16)

which expresses tensor bijkl in the two-index notation (see Musgrave
1970, eq. 3.13.4). This anisotropy has 16 acoustic axes not only for
infinitesimally small anisotropy strength (see Fig. 4), but also for
anisotropy with ε up to 0.2 assuming λ = 1 and µ = 1 in eqs (8–9).
For higher values of ε, the number of real acoustic axes is reduced.
Also the positions of the acoustic axes on the sphere can change with
ε (see Vavryčuk 2005). The isotropic background λ = 1 and µ = 1
(with no specified units) was used just for simplicity. Obviously, the
anisotropy example can easily be rescaled to values more appropriate
in geophysics.

3.4 Numerical calculation of acoustic axes

The exact directions of acoustic axes in weak as well as strong tri-
clinic anisotropy can be conveniently calculated by solving modified
eqs (10a–c). The modification lies in dividing (10a–c) by ε. These
are homogeneous polynomial equations of the sixth order in three
unknown components n1, n2 and n3 of the unit direction vector n.
Using the substitutions u = n1/n3 and v = n2/n3, we obtain in-
homogeneous polynomial equations of the sixth order in unknowns
u and v. The roots of the equations can be calculated, for exam-
ple, using Gröbner bases (Fröberg 1997), implemented in symbolic
algebra packages. Solving modified eqs (10a–c) we obtain 36 solu-
tions, from which we have to exclude 20 spurious solutions defined
by eqs (7a–c). To identify and eliminate the spurious solutions, we

Figure 4. A polar plot of positions of acoustic axes for a weak triclinic
anisotropy with 16 acoustic axes. The vertical axis is marked by the plus
sign. The points at the bounding circle correspond to horizontal directions.
For anisotropy parameters bijkl , see (16). Other parameters: λ = 1, µ = 1,
and ε = 0.01. Equal-area projection is used.
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can either solve eqs (7a–c) or we can simply check, at which of the
36 directions calculated from eqs (10a–c) the Christoffel tensor is
non-degenerate. Using this approach, we obtain the exact real as
well as complex acoustic axes in triclinic media with any strength
of anisotropy. On the contrary, eqs (6a–c), which are equivalent to
eqs (10a–c), are suitable for calculating acoustic axes under strong
rather than weak anisotropy. The reason is that eqs (6a–c) can fail
if triclinic anisotropy is extremely weak. In this case, the left-hand
sides of eqs (6a–c) are very close to zero for all directions n, and
the solution can be distorted by numerical errors.

The approximate directions of acoustic axes in weak triclinic
anisotropy can be conveniently calculated using eqs (14a–c). The
spurious directions are eliminated by rejecting all solution lying in
the coordinate planes. As mentioned, eqs (14a–c) are inhomoge-
neous polynomial equations of the fifth order in unknowns u and v.
The roots of the equations can be calculated similarly as for strong
anisotropy using Gröbner bases (Fröberg 1997), implemented in
symbolic algebra packages. The weak anisotropy approximation has
the following advantages: First, the fifth-order equations are solved
faster than the sixth-order equations. Second, eqs (14a–c) are ap-
plicable to extremely weak anisotropy, where eqs (6a–c) become
unstable. Third, eqs (14a–c) are much simpler and more easily to
code than eqs (10a–c), which are also applicable to extremely weak
anisotropy. The simplification originates in neglecting rather long
and complex polynomials P 2, Q2, R2, P 3, Q3 and R3. Fourth,
eqs (14a–c) can be used for inversion for anisotropy from known
directions of acoustic axes.

For media of higher symmetry, it is not convenient to use eqs (6a–
c), (10a–c) or (14a–c) for finding the acoustic axes, because they are
unnecessarily complicated and they may even fail when the true or
spurious solutions are not isolated. Instead, much simpler systems
of algebraic equations designed for each specific symmetry are used
(Boulanger & Hayes 1998).

Finally, it should also be mentioned that the acoustic axes can be
calculated using a direct numerical approach. This approach is based
on minimizing the square of the difference between numerically cal-
culated eigenvalues of the Christoffel tensor. The minimization can
be performed using some standard inversion techniques like the
gradient method. Since the misfit function has several minima, we
have to invert repeatedly for varying initial guesses of the position
of the acoustic axis. Not to skip some solutions, the initial posi-
tions of the acoustic axes should cover the whole hemisphere in
a regular grid and the grid should be sufficiently dense. This ap-
proach is applicable to any type of anisotropy with isolated acoustic
axes. It is also reasonably fast and accurate provided that anisotropy
is not extremely weak. However, it does not yield complex acous-
tic axes and sometimes it may skip some solutions, for example,
in situations, when two acoustic axes are very close each to the
other.

4 A P P L I C A T I O N T O R O C K S

In this section, the proposed algorithm for calculating the acous-
tic axes in weak triclinic anisotropy is applied to observations of
anisotropy on rocks. I consider anisotropy of four rock samples (see
Weiss et al. 1999, Table 1): metapelite I, metapelite II, granulite
and si-ga gneiss, which represent rocks in the lower continental
Earth’s crust. The samples originate from Calabria, Italy and the
anisotropy was determined from texture data (see Siegesmund et al.
1996) using the Voigt average method. The elasticity tensors con-
tain all 21 elastic parameters (see Table 1) and thus describe gen-

Table 1. Elastic parameters of rock samples.

Elastic Metapelite I Metapelite II Granulite Si-ga
parameters gneiss

C11 166.95 141.09 142.05 253.01
C22 188.77 150.57 131.25 256.61
C33 177.96 149.48 135.65 252.81
C44 58.55 46.03 40.88 77.70
C55 51.45 41.24 41.08 75.50
C66 52.65 41.74 40.28 76.80
C12 61.26 55.42 53.88 90.40
C13 62.76 57.32 56.28 91.80
C14 −0.50 −0.40 −1.20 0.30
C15 −1.60 0.70 −0.90 0.00
C16 0.60 1.40 −0.50 0.09
C23 66.36 57.21 50.98 95.80
C24 0.30 0.00 −0.80 −0.30
C25 −0.10 0.50 −0.50 −0.10
C26 0.30 1.90 0.60 −0.30
C34 0.20 0.20 −0.10 −0.10
C35 −0.30 1.80 −1.10 −0.10
C36 0.30 0.60 −0.10 −0.20
C45 −0.30 0.70 0.20 −0.10
C46 −0.30 0.50 0.00 −0.10
C56 0.20 −0.10 −0.10 −0.10

Elastic parameters Cij are in 109 kg m−1s−2. The values of the elastic
parameters were published by Weiss et al. (1999, Table 1).

Table 2. Velocity, anisotropy and acoustic axes of rock samples.

Metapelite I Metapelite II Granulite Si-ga gneiss

vP [km s−1] 7.6 7.1 6.9 8.4
vS [km s−1] 4.2 3.9 3.8 4.7

ρ [103 kg m−3] 3.06 2.88 2.87 3.55
AP [per cent] 6.8 4.8 4.3 1.8
AS1 [per cent] 5.3 5.6 1.2 3.4
AS2 [per cent] 4.9 4.4 1.6 2.0

N 4 6 6 6
�MAX [◦] 2.47 2.04 2.07 0.37
�MEAN [◦] 1.38 1.00 0.94 0.22

vP and vS are the averaged P and S velocities, ρ is the density, AP, AS1 and
AS2 are the values of the P, S1 and S2 anisotropy strength, N is the number
of real acoustic axes, and �MAX and �MEAN are the maximum and mean
deviations between the approximate and exact directions of real acoustic
axes. The anisotropy strength is defined as a = 200 (vMAX − vMIN)/(vMAX

+ vMIN), where vMAX and vMIN are the maximum and minimum phase
velocities of the respective wave.

eral triclinic anisotropy. The strongest anisotropy is displayed by
metapelite I with 6.8, 5.3 and 4.9 per cent for P, S1 and S2 waves,
the weakest anisotropy is displayed by si-ga gneiss with values of
1.8, 3.4 and 2.0 per cent for P, S1 and S2 waves (see Table 2). These
values indicate that the rocks under study display a rather weak
anisotropy.

Figs 5 and 6 show the directional variation of the P-wave phase
velocity and the variation of the difference between the S1- and
S2-wave phase velocities for the rock samples under study. The
figures also show directions of the real acoustic axes: metapelite I
has four real acoustic axes, metapelite II, granulite and si-ga gneiss
have equally six real acoustic axes. All the acoustic axes are coni-
cal. The acoustic axes were calculated using exact eqs (6a–c) and
(7a–c) and also using approximate eqs (14a–c) in order to test the
accuracy of the approximation. Table 2 summarizes the results of
this test. The maximum difference between the exact and approx-
imate directions of the acoustic axes is observed for metapelite I
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Figure 5. Directional variations of the P-wave phase velocity (left-hand plots) and of the difference between the S1- and S2-wave phase velocities (right-hand
plots) for metapelite I and metapelite II. The velocities are in km s−1. Equal area projection is used. The acoustic axes are marked by open white circles. For
elastic parameters of the rock samples, see Table 1.

Figure 6. Directional variations of the P-wave phase velocity (left-hand plots) and of the difference between the S1- and S2-wave phase velocities (right-hand
plots) for granulite and si-ga gneiss. The velocities are in km s−1. Equal area projection is used. The acoustic axes are marked by open white circles. For elastic
parameters of the rock samples, see Table 1.
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and attains a value of about 2.5◦. For other samples, the accuracy of
approximate directions is higher. The best results are achieved for
the si-ga gneiss, where the maximum deviation between the exact
and accurate acoustic axes is only about 0.4◦.

5 C O N C L U S I O N S

Acoustic axes can exist even under an infinitesimally weak
anisotropy, and occur when slowness surfaces of the S1 and S2 waves
touch or intersect. The maximum number of isolated acoustic axes
in weak triclinic anisotropy is 16 as in strong triclinic anisotropy,
hence a weak anisotropy condition does not reduce the maximum
number of acoustic axes. However, media with 16 real-valued acous-
tic axes are very rare; the most frequent number of acoustic axes in
weak triclinic anisotropy is much less, ranging between four and six
(Vavryčuk 2005).

The directions of acoustic axes for strong triclinic anisotropy
are calculated by solving two coupled polynomial equations of the
sixth order in two variables. The system yields 36 real- or complex-
valued solutions, from which 20 solutions are spurious and must
be rejected. The real acoustic axes correspond to the degeneracy of
homogeneous plane waves that propagate with a linear polarization.
The complex acoustic axes correspond to the degeneracy of inhomo-
geneous plane waves that propagate with an elliptical polarization.
The number and positions of real and complex acoustic axes depend
on tensor bijkl, which defines anisotropy including its symmetry but
they also depend on anisotropy strength controlled by parameter ε

in (8).
Under the condition that strength of anisotropy is much less than

the difference between the squares of the P and S velocities in the
isotropic background, ε/(λ + µ) → 0, the order of the equations for
acoustic axes is reduced from 6 to 5. This somewhat simplifies the
problem and speeds up the calculation but not substantially. Due to
the weak anisotropy condition, the acoustic axes are approximate and
may deviate from the exact axes by several degrees for anisotropy
strength about 5 per cent. The equations also yield some spurious
solutions. These solutions are easily recognized because they are
aligned in the coordinate planes. If also some true acoustic axes lie
in the coordinate planes, then we obtain the total number of real
and complex acoustic axes less than 16. In this case, the anisotropy
must be rotated by an arbitrary angle and the procedure must be run
again.

Although the weak anisotropy approximation does not simplify
the problem of calculating the acoustic axes significantly, it can
find some useful applications. The weak anisotropy approxima-
tion might be particularly advantageous when calculating acoustic
axes under extremely weak anisotropy (anisotropy strength less than
0.1 per cent) because solving the exact equations may become nu-
merically unstable or complicated to code. Also it can find applica-
tions in the inversion for anisotropy from the directions of acoustic
axes.
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A P P E N D I X A : T H E C H R I S T O F F E L T E N S O R Γ F O R W E A K T R I C L I N I C A N I S O T RO P Y

Inserting the weak anisotropy expansion, defined in eqs (8) and (9) into the definition of the Christoffel tensor (1), we obtain

�11 = (λ + 2µ)n2
1 + µ

(
n2

2 + n2
3

) + ε
(
b11n2

1 + b66n2
2 + b55n2

3 + 2b16n1n2 + 2b15n1n3 + 2b56n2n3

)

�22 = (λ + 2µ)n2
2 + µ

(
n2

1 + n2
3

) + ε
(
b66n2

1 + b22n2
2 + b44n2

3 + 2b26n1n2 + 2b46n1n3 + 2b24n2n3

)

�33 = (λ + 2µ)n2
3 + µ

(
n2

1 + n2
2

) + ε
(
b55n2

1 + b44n2
2 + b33n2

3 + 2b45n1n2 + 2b35n1n3 + 2b34n2n3

)

�12 = (λ + µ)n1n2 + ε
[
b16n2

1 + b26n2
2 + b45n2

3 + (b12 + b66)n1n2 + (b14 + b56)n1n3 + (b25 + b46)n2n3

]

�13 = (λ + µ)n1n3 + ε
[
b15n2

1 + b46n2
2 + b35n2

3 + (b14 + b56)n1n2 + (b13 + b55)n1n3 + (b45 + b36)n2n3

]

�23 = (λ + µ)n2n3 + ε
[
b56n2

1 + b24n2
2 + b34n2

3 + (b25 + b46)n1n2 + (b36 + b45)n1n3 + (b23 + b44)n2n3

]

A P P E N D I X B : P O LY N O M I A L S P1, Q1 A N D R 1

Polynomials P 1, Q1 and R1 in (11a–c) are homogeneous polynomials of the sixth order in components of direction vector n. They can be
expressed as follows:

P1 = n3 pi j n
i
1n j

2n5−i− j
3 , Q1 = n2qi j n

i
1n j

2n5−i− j
3 , R1 = n1ri j n

i
1n j

2n5−i− j
3 ,

where summation over repeated indices is applied. Indices i and j run from 0 to 5 and their sum is less than or equal to 5. Coefficients pij read

p50 = b56, p05 = −b46,

p20 = −b45, p02 = b45,

p32 = b24 − b14, p23 = b25 − b15,

p11 = b55 − b44, p22 = 3(−b26 + b16),

p40 = b45 + b36 − b16, p04 = −b45 − b36 + b26,

p41 = b46 + b25 − b15, p14 = −b56 + b24 − b14,

p30 = −b56 + b34 − b14, p03 = b46 − b35 + b25,

p21 = −3b46 − b35 − b25 + 2b15, p12 = 3b56 + b34 − 2b24 + b14

p31 = −b55 + b44 + b23 − b13 − b12 + b11, p13 = −b55 + b44 + b23 − b22 − b13 + b12
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other coefficients being zero. Coefficients qij read

q50 = b56 q00 = −b45

q03 = b46 q23 = −b46

q13 = −b44 q21 = 3(−b35 + b15)

q20 = b36 − b16 q30 = b34 − b14

q01 = −b46 + b35 − b25 q10 = −b56 + b34 − b14

q41 = b46 + b25 − b15 q40 = b45 + b36 − b16

q02 = b45 + b36 − b26 q32 = −b56 + b24 − b14

q22 = −3b45 − b36 − b26 + 2b16 q12 = 3b56 − 2b34 + b24 + b14

q31 = −2b55 + b44 + b23 − b13 − b12 + b11 q11 = 2b55 + b44 + b23 + b13 − b12

other coefficients being zero. Coefficients rij read

r00 = −b45 r05 = b46

r30 = b56 r32 = −b56

r31 = −b55 r12 = 3(−b34 + b24)

r02 = b36 − b26 r03 = b35 − b25

r01 = −b46 + b35 − b25 r10 = −b56 + b34 − b14

r04 = b45 + b36 − b26 r14 = b56 − b24 + b14

r20 = b45 + b36 − b16 r23 = −b46 − b25 + b15

r21 = 3b46 − 2b35 + b25 + b15 r22 = −3b45 − b36 + 2b26 − b16

r11 = b55 + 2b44 + b23 + b13 − b12 r13 = b55 − 2b44 − b23 + b22 + b13 − b12

other coefficients being zero. Matrix bIJ , I , J = 1, . . . , 6 is the two-index notation of tensor bijkl (see Musgrave 1970, eq. 3.13.4).
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