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S U M M A R Y
Focal mechanisms of seismic sources in anisotropic media are more complicated than in
isotropic media. Planar shear faulting produces pure double-couple (DC) mechanism in
isotropy, but generally non-double-couple (non-DC) mechanism in anisotropy. The non-DC
mechanism can comprise both the isotropic (ISO) and compensated linear vector dipole
(CLVD) components. The amount of the ISO and CLVD components depends on strength
and symmetry of anisotropy and on the orientation of faulting. Shear faulting in anisotropy
generates a pure DC mechanism, provided that faulting is situated in symmetry planes of or-
thorhombic or of higher anisotropy symmetries. The fault plane solution, i.e. the orientation
of the fault normal and the slip direction, can be retrieved from the seismic moment tensor
and from elastic parameters describing anisotropy at the source. Numerical modelling shows
that shear faulting in anisotropic rocks present in the Earth crust, the Earth mantle or in the
subduction zones can produce mostly mechanisms with the CLVD up to 30 per cent and with
the ISO up to 15 per cent. The fault plane solutions calculated under the assumption of isotropy
typically deviate from the true solutions by an angle of 5◦ to 10◦.
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1 I N T RO D U C T I O N

Anisotropy is a pervasive property of geological structures in the
Earth crust and the upper mantle (Babuška & Cara 1991; Rabbel &
Mooney 1996; Silver 1996; Savage 1999). It may be caused by sedi-
ment layering, stress-aligned systems of microcracks, cracks or frac-
tures, or the textural ordering of rock-forming minerals. Anisotropy
significantly affects seismic observations: it affects the propagation
of seismic waves as well as the generation of waves by seismic
sources. So far seismologists have focused mainly on studying the
theoretical aspects of wave propagation in anisotropic media (e.g.
Musgrave 1970; Helbig 1994; Červený 2001) and on observing
the effects of anisotropy on seismic waves (Babuška & Cara 1991)
such as, for example, the directional variation of seismic velocities
or shear wave splitting, detected and measured in situ (Kaneshima
et al. 1988; Crampin 1993; Savage 1999) or in the laboratory on
rock samples (Kern & Schmidt 1990; Pros et al. 1998; Mainprice
et al. 2000).

However, equally important is the way in which anisotropy af-
fects the generation of seismic waves. This comprises the problem
of calculating the Green functions (Burridge 1967; Ben-Menahem &
Sena 1990a,b; Ben-Menahem et al. 1991; Gajewski 1993; Vavryčuk
1997; Pšenčı́k 1998; Červený 2001), and the problem of calculat-
ing seismic moment tensors and focal mechanisms in anisotropic
media. As regards the focal mechanisms, Kawasaki & Tanimoto
(1981) pointed out that shear faulting in anisotropic media can pro-
duce mechanisms with non-double-couple (non-DC) components

and nodal lines with peculiarities not observed in isotropic media.
Because the non-DC mechanisms of earthquakes are frequently ob-
served (Sipkin 1986; Kuge & Kawakatsu 1992; Kuge & Lay 1994;
Miller et al. 1998), the problem, whether anisotropy contributes to
them or not, is not only of theoretical interest, but also of practical
relevance. Anisotropy as a possible cause of non-DC mechanisms
has been mentioned and discussed also by other authors (Kawakatsu
1991; Frohlich 1994; Julian et al. 1998; Vavryčuk 2002; Rössler
et al. 2003; Vavryčuk 2004). Because the effects of anisotropy on
focal mechanisms are still not well understood, we present a detailed
mathematical description of the problem. We define conditions un-
der which shear faulting in anisotropic media can be represented by a
pure double couple (DC) and describe the procedure of determining
the fault plane solutions in anisotropic media. In numerical mod-
elling, we consider various anisotropy models and illustrate prop-
erties of the non-DC mechanisms in dependence on strength and
symmetry of anisotropy and on the orientation of faulting. We also
estimate errors in determining nodal planes as a result of neglecting
anisotropy.

2 M O M E N T T E N S O R S

2.1 Isotropic medium

The moment tensor M of a seismic source in an isotropic medium
is expressed as (Aki & Richards 2002, eq. 3.21)

Mi j = uS[λνknkδi j + µ(νi n j + ν j ni )], (1)
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where u is the slip, S is the fault area, λ and µ are the Lamé constants
describing the isotropic medium surrounding the fault, ν is the slip
direction and n is the fault normal. For shear sources (ν ⊥ n), eq.
(1) further simplifies to (Aki & Richards 2002, eq. 3.22)

Mi j = µuS(νi n j + ν j ni ), (2)

which is the standard DC representation of an earthquake source.

2.2 Anisotropic medium

The moment tensor M of a seismic source in an anisotropic medium
is expressed as (Aki & Richards 2002, eq. 3.19)

Mi j = uSci jklνknl , (3)

where cijkl are the elastic parameters of the anisotropic medium
surrounding the fault. Introducing tensor D and taking into account
the symmetry of cijkl, we can express eq. (3) in the following simple
form:

Mi j = ci jkl Dkl . (4)

Tensor D denotes the symmetric dyadic tensor

Dkl = uS

2
(νknl + νl nk) (5)

called hereinafter the seismic source tensor or shortly the source
tensor. Eq. (4) is similar to the generalized Hooke’s law, but instead
of the relation between the stress and strain tensors, it expresses
the relation between the moment and source tensors. Therefore, it
will be called the generalized Hooke’s law at the source. Eq. (4) can
equivalently be expressed in matrix form as

m = Cd, (6)

where C is the 6 × 6 matrix of the elastic parameters in the two-index
Voigt notation, where the subscripts are substituted in the following
way: 11→1, 22→2, 33→ 3, 23→ 4, 13→ 5 and 12→ 6 (see Mus-
grave 1970, eq. 3.13.4). Quantities m and d are the 6-vectors defined
as

m = (M11, M22, M33, M23, M13, M12)T , (7)

d = uS(n1ν1, n2ν2, n3ν3, n2ν3

+ n3ν2, n1ν3 + n3ν1, n1ν2 + n2ν1)T . (8)

Source tensor D is expressed by the components of vector d as
follows:

D = 1

2


 2d1 d6 d5

d6 2d2 d4

d5 d4 2d3


 . (9)

2.3 Non-DC components

The moment tensor of a source in anisotropic media has a more
general form than in isotropic media. It comprises the DC, the
isotropic (ISO) and the compensated linear vector dipole (CLVD)
parts (Knopoff & Randall 1970; Jost & Hermann 1989; Lay & Wal-
lace 1995; Vavryčuk 2001):

M = MISO + MCLVD + MDC, (10)

where

MISO = 1

3
Trace (M)


 1 0 0

0 1 0
0 0 1


 , (11)

MCLVD = |ε| M∗
|MAX|


 −1 0 0

0 −1 0
0 0 2


 , (12)

MDC = (1 − 2|ε|)M∗
|MAX|


 −1 0 0

0 0 0
0 0 1


 . (13)

Parameter ε measures the size of CLVD relative to DC (Sipkin 1986;
Kuge & Lay 1994; Julian et al. 1998, eq. 18) and is defined as

ε = − M∗
|MIN|∣∣M∗
|MAX|

∣∣ , (14)

where M∗
|MAX| and M∗

|MIN| are the eigenvalues of deviatoric moment
M∗ = MCLVD + MDC with the maximum and minimum absolute
values, respectively. To assess relative amounts of the DC, CLVD
and ISO components in a moment tensor, we usually calculate their
percentages:

ISO = 1

3

Trace(M)∣∣M|MAX|
∣∣ · 100 per cent, (15)

CLVD = 2ε(100 per cent − |ISO|), (16)

DC = 100 per cent − |ISO| − |CLVD|, (17)

where M |MAX| denotes that eigenvalue of M, which has the max-
imum absolute value. The DC component is always positive; the
isotropic and CLVD components can be positive or negative. The
sum of the ISO and CLVD components is called the non-DC com-
ponent of M. The sum of the absolute values of the DC and non-DC
components is 100 per cent. The non-DC component is zero for
shear faulting in isotropic media but generally non-zero for shear
faulting in anisotropic media (Kawasaki & Tanimoto 1981).

2.4 DC moment tensors in anisotropic media

Under special geometry of faulting and special types of anisotropy,
the moment tensor of a source in anisotropic media can simplify and
have only the DC component. Assuming, for example, shear faulting
with n = (0, 0, 1)T and ν = (1, 0, 0)T in triclinic anisotropy, eq. (6)
yields

m = Cd =




C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66




·




0
0
0
0

uS
0




= uS




C15

C25

C35

C45

C55

C56




. (18)

Hence, the moment tensor is expressed as

M = uS


 C15 C56 C55

C25 C45

C35


 . (19)

The condition for the pure DC moment tensor implies that
Trace(M) = 0 and Det(M) = 0. The first condition is the condi-
tion for zero ISO and the second condition ensures zero CLVD.
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Both conditions are satisfied, for example, for C 15 = C 25 = C 35 =
0. Therefore, if anisotropy is orthorhombic or of higher symmetry,
the moment tensor must be pure DC:

m = Cd =




C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66




·




0
0
0
0

uS
0




=




0
0
0
0

M0

0




, (20)

where M 0 = uSC55 is the scalar moment. Similar results are obtained
also for n andν lying along the other symmetry axes, but the couples
are scaled by different scalar moments:

M = M0


 0 1 0

1 0 0
0 0 0


 , M0 = uSC66,

for n =

 1

0
0


 and ν =


 0

1
0


 , (21)

M = M0


 0 0 1

0 0 0
1 0 0


 , M0 = uSC55,

for n =

 1

0
0


 and ν =


 0

0
1


 , (22)

M = M0


 0 0 0

0 0 1
0 1 0


 , M0 = uSC44,

for n =

 0

1
0


 and ν =


 0

0
1


 . (23)

If fault normal n coincides with a symmetry axis and slip ν lies in
a symmetry plane (but not along a symmetry axis), then M is also
pure DC. However, the DC can deviate from the plane defined by
the fault normal and slip direction.

2.5 Zero-trace moment tensors in anisotropic media

We can also derive conditions imposed on elastic parameters, under
which shear faulting in an anisotropic medium generates no ISO
component. This happens if the trace of M is zero. Eqs (6)–(8) yield
the following conditions under triclinic anisotropy:

C16 + C26 + C36 = 0, for n =

 1

0
0


 and ν =


 0

1
0


 , (24)

C15 + C25 + C35 = 0, for n =

 1

0
0


 and ν =


 0

0
1


 , (25)

C14 + C24 + C34 = 0, for n =

 0

1
0


 and ν =


 0

0
1


 . (26)

If we seek anisotropy that generates no ISO component for shear
faulting with any orientation, we obtain the following five con-
ditions for the 15 elastic parameters of triclinic anisotropy (see
Appendix A):

C11 + C12 − C23 − C33 = 0, (27)

C11 + C13 − C22 − C23 = 0, (28)

C16 + C26 + C36 = 0, (29)

C15 + C25 + C35 = 0, (30)

C14 + C24 + C34 = 0. (31)

The five conditions (27)–(31) for triclinic anisotropy reduce to three
conditions (27)–(29) for monoclinic anisotropy, to two conditions
(27)–(28) for orthorhombic anisotropy and only to condition (27) for
trigonal anisotropy, tetragonal anisotropy or transverse isotropy (TI).
Interestingly, any cubic anisotropy satisfies eqs (27)–(31), hence no
shear faulting can generate the ISO component in this symmetry.

Because parameters C44, C45, C46, C55, C56 and C66 are missing
in eqs (27)–(31), we conclude that the ISO component is not sensitive
to them.

3 FAU LT P L A N E S O L U T I O N S

We distinguish two different coordinate systems for seismic sources
in anisotropic media. The first coordinate system is defined by the
eigenvectors of source tensor D, which is related to the geometry of
faulting. The other coordinate system is defined by the eigenvectors
of moment tensor M, which is related to stresses generated by fault-
ing. Both systems coincide in isotropy, but can differ in anisotropy.
The deviation between them depends on the symmetry and strength
of anisotropy and on geometry of faulting.

3.1 Eigenvectors of source tensor D

Source tensor D,

D = uS

2
(nν + νn)

= uS

2


 2n1ν1 n1ν2 + n2ν1 n1ν3 + n3ν1

n1ν2 + n2ν1 2n2ν2 n2ν3 + n3ν2

n1ν3 + n3ν1 n2ν3 + n3ν2 2n3ν3


 , (32)

has the following diagonal form (see Appendix B):

Ddiag = uS

2


 n · ν + 1 0 0

0 0 0
0 0 n · ν − 1


 , (33)

where n · ν is the scalar product of two unit vectors n and ν,

n · ν = n1ν1 + n2ν2 + n3ν3. (34)

The determinant of D is zero. The trace of D is

Trace(D) = Dkk = uS(n · ν). (35)

The maximum eigenvalue D1 = uS
2 (n · ν + 1) is positive or zero;

the minimum eigenvalue D3 = uS
2 (n · ν − 1) is negative or zero.

The eigenvectors e1, e2 and e3 of D are (see Appendix B)

e1 = n + ν

|n + ν| , e2 = n ⊗ ν, e3 = n − ν

|n − ν| , (36)
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where symbol ⊗ denotes the vector product. Eqs (33) and (36) apply
to tensile sources (n and ν have arbitrary orientations) as well as to
shear sources (n and ν are perpendicular). For shear sources, Ddiag

simplifies to the following form:

Ddiag = uS

2


 +1 0 0

0 0 0
0 0 −1


 . (37)

3.2 Eigenvectors of moment tensor M

The eigenvectors of moment tensor M define the coordinate system,
in which M diagonalizes:

Mdiag =

 M1 0 0

0 M2 0
0 0 M3


 , where M1 ≥ M2 ≥ M3. (38)

They are denoted as p, t and b, and define the P, T and B axes.
The P-axis corresponds to the minimum eigenvalue M 3, the T-axis
corresponds to the maximum eigenvalue M 1 and the B-axis corre-
sponds to the intermediate eigenvalue M 2. Physically, the P, T and B
axes specify directions of the maximum compressional, maximum
tensional and intermediate stresses generated at the source. These
directions are generally different from the eigenvectors of source
tensor D.

Table 1. Anisotropy models.

Model/rock Type vP vS ρ Sample/model identification Reference
(km s−1) (km s−1) (g cm−3)

Theoretical models
Dry cracks TI 3.92 2.33 2.80 Model 3 Shearer & Chapman (1989)
Water-filled cracks TI 4.42 2.39 2.80 Model 1 Shearer & Chapman (1989)
Periodic thin layers TI 3.27 1.84 2.60 PTL2 Baptie et al. (1993, table 1)

Upper crustal rocks
Sandstone TI 4.57 2.61 2.46 Mesaverde (5481.3) Thomsen (1986, table 1)

immature sandstone
Shale I TI 4.25 2.37 2.50 Bazhenov shale (12.507 ft) Vernik & Liu (1997, appendix A)
Shale II TI 3.33 1.74 2.42 Shale (5000 ft) Jones & Wang (1981, table 2)
Granite ORT 5.29 3.13 2.64 Westerly granite Lebedev et al. (2003, table 5b)
Gneiss TI 5.57 3.33 2.75 KTB (7.9–8.2 km) Rabbel et al. (2004, table 1)
Schist TI 5.97 3.58 2.72 Haast schist, A-1 Godfrey et al. (2000, table 1)

P = 100 MPa
Phyllite TI 6.17 3.71 2.74 Chugach phyllite, TA-23 Godfrey et al. (2000, table 1)

P = 100 MPa
Slate TI 5.89 3.20 2.81 Vermont slate, VT-1 Godfrey et al. (2000, table 1)

P = 100 MPa

Lower crustal rocks
Metapelite ORT 7.59 4.25 3.06 Metapelite I, No. 3279 Weiss et al. (1999, table 1)
Mafic granofels ORT 7.00 3.89 2.94 Mafic granofels II, No. 3366 Weiss et al. (1999, table 1)
Bt-plg gneiss ORT 6.59 3.59 2.81 Bt-plg gneiss, No. 3270 Weiss et al. (1999, table 1)
Amphibolite TI 6.66 3.72 3.13 Green hornblende Takanashi et al. (2001, table 4)

amphibolite, SB-1
Granulite ORT 6.88 3.78 2.87 Granulite, No. 3261 Weiss et al. (1999, table 1)

Mantle rocks and subduction zones
Olivine aggregate I ORT 7.99 4.56 3.30 Subduction zone average Ben Ismail & Mainprice (1998, table 2)
Olivine aggregate II ORT 7.94 4.53 3.33 Total database average Ben Ismail & Mainprice (1998, table 2)
Xenolith I ORT 7.95 4.62 3.23 KL, West Kettle river Saruwatari et al. (2001, table 2)
Xenolith II ORT 7.93 4.49 3.31 Torre Alfina xenoliths Pera et al. (2003, table 3)
Tonga deep zone ORT 10.37 5.80 3.92 Average slab model Vavryčuk (2004, table 5)

for depths of 500–700 km

TI is transverse isotropy; ORT is orthorhombic anisotropy; vP, vS are average P and S velocities.

For isotropic media, the elastic parameters are specified as

ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk) (39)

and eq. (4) yields

Mi j = λDkkδi j + 2µDi j , (40)

Trace(M) = Mkk = (3λ + 2µ)Dkk, (41)

where λ and µ are the Lamé coefficients. Inserting the diagonal
source tensor (33) into eq. (40), we obtain

M = uS


 (λ + µ)n · ν + µ 0 0

0 λn · ν 0
(λ + µ)n · ν − µ


 . (42)

This implies that tensor M has different eigenvalues than tensor D,
but both tensors diagonalize in the same coordinate system. There-
fore, the P, T and B axes can directly be inferred from fault normal
n and slip direction ν:

b = n ⊗ ν, t = n + ν

|n + ν| , p = n − ν

|n − ν| . (43)

For shear sources, tensor M reads

Mdiag = µuS


 +1 0 0

0 0 0
0 0 −1


 , (44)

well known as the DC moment tensor.
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Table 2. Elastic parameters.

Model/rock Type C11 C22 C33 C44 C55 C66 C12 C13 C23

Theoretical models
Dry cracks TI 53.51 53.51 33.35 14.28 14.28 17.86 17.79 12.32 12.32
Water-filled cracks TI 56.62 56.62 56.11 14.28 14.28 17.86 20.90 20.75 20.75
Periodic thin layers TI 32.27 32.27 24.84 7.95 7.95 10.18 11.91 9.51 9.51

Upper crustal rocks
Sandstone TI 55.00 55.00 46.53 16.26 16.26 19.68 15.65 20.89 20.89
Shale I TI 58.81 58.81 27.23 13.23 13.23 23.54 11.73 23.64 23.64
Shale II TI 34.30 34.30 22.70 5.40 5.40 10.60 13.10 10.70 10.70
Granite ORT 72.27 69.00 75.06 27.31 26.46 24.92 21.25 23.84 22.13
Gneiss TI 102.7 102.7 71.8 26.9 26.9 38.8 25.1 25.2 25.2
Schist TI 113.8 113.8 88.5 29.9 29.9 41.8 30.2 23.0 23.0
Phyllite TI 120.2 120.2 97.9 32.3 32.3 45.0 30.3 23.9 23.9
Slate TI 123.3 123.3 80.5 21.1 21.2 46.0 31.3 40.4 40.4

Lower crustal rocks
Metapelite ORT 167.0 188.8 178.0 58.6 51.5 52.7 61.3 62.8 66.4
Mafic granofels ORT 141.6 157.9 140.4 47.0 41.8 42.7 57.5 53.9 53.6
Bt-plg gneiss ORT 111.3 124.7 131.8 42.2 30.9 30.7 44.8 45.3 43.5
Amphibolite TI 123.1 123.1 160.7 43.3 43.3 38.8 45.6 42.8 42.8
Granulite ORT 142.1 131.3 135.7 40.9 41.1 40.3 53.9 56.3 51.0

Mantle rocks and subduction zones
Olivine aggregate I ORT 192.1 237.1 208.8 72.6 63.3 68.5 69.9 72.4 73.5
Olivine aggregate II ORT 195.5 236.9 205.9 71.4 63.0 69.8 71.1 72.1 72.4
Xenolith I ORT 217.2 192.4 201.0 67.4 71.9 70.1 67.4 68.0 67.5
Xenolith II ORT 187.8 240.5 206.5 70.2 60.6 66.9 70.7 73.8 73.0
Tonga deep zone ORT 421.8 447.3 404.9 110.5 154.8 134.5 145.0 188.9 149.0

Elastic parameters Cij are in 109 kg m−1 s−2.
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Figure 1. Phase velocities of P (upper plot) and S (lower plot) waves as a
function of the deviation of the wave normal from the symmetry axis for the
model of dry cracks.
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Figure 2. Phase velocities of P (upper plot) and S (lower plot) waves as a
function of the deviation of the wave normal from the symmetry axis for the
model of water-filled cracks.
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Figure 3. Directional variation of phase velocities (in km s−1) for the model
of olivine aggregate I. Equal-area projection is used.

3.3 Inversion for geometry of faulting

In order to determine fault normal n and slip direction ν from mo-
ment tensor M and from the matrix of elastic parameters C, we have
to calculate vector d from eq. (6),

d = C−1m, (45)

and subsequently construct source tensor D using eq. (9). Diagonal-
izing D, we obtain eigenvalues D1 and D3, and eigenvectors e1, e2

and e3. The angle δ between the fault normal and slip direction is
determined from the trace of D (eq. 35):

cos(δ) = 1

uS
Trace(D) = D1 + D3

D1 − D3
. (46)

Vectors n and ν are determined from the eigenvectors and eigen-
values of D:

n = 1√
D1 − D3

(
√

|D1|e1 +
√

|D3|e3), (47)

Figure 4. Directional variation of phase velocities (in km s−1) for the model
of the Tonga deep zone. Equal-area projection is used.

ν = 1√
D1 − D3

(
√

|D1|e1 −
√

|D3|e3). (48)

For shear sources (n⊥ν), Trace(D) = 0, D1 = uS
2 and D3 = − uS

2 ,
hence

n = 1√
2

(e1 + e3), (49)

ν = 1√
2

(e1 − e3). (50)

It follows from the symmetry in the positions of fault normal n and
slip direction ν in formulae (5) and (8) that the solution for n and
ν is ambiguous, and the plus and minus signs in eqs (47)–(48) and
in (49)–(50) can be interchanged.

4 N U M E R I C A L M O D E L L I N G

In this section, the properties of focal mechanisms and the calcula-
tion of fault plane solutions in anisotropic media will be illustrated
numerically.
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340 V. Vavryčuk

Figure 5. The percentages of the non-DC components generated by shear
faulting in the dry cracks model with an inclined symmetry axis. Geometry
of faulting is fixed: n = (0, 0, 1)T , ν = (1, 0, 0)T . Points inside the circle
correspond to transverse isotropy (TI) with a varied orientation of the sym-
metry axis. The plus sign marks the TI with the vertical symmetry axis; the
points along the circle correspond to TI with horizontal symmetry axes. The
colour indicates the value of the non-DC component. Equal-area projection
is used.

4.1 Anisotropy models

We consider 21 models of anisotropic media (see Table 1). First,
we consider theoretical models of anisotropy inferred for cracked
and layered media. The cracked media contain aligned dry (empty)
or water-filled cracks and the effective anisotropy is calculated us-
ing the Hudson (1981) theory. The layered medium is composed
of periodic thin layers and the effective anisotropy is calculated by
the Backus (1962) averaging. The media display transverse isotropy
and should characterize rocks in the uppermost crust of the Earth.
Secondly, we consider anisotropy models of transverse isotropy (TI)
or of orthorhombic symmetry (ORT) inferred from laboratory mea-
surements of velocities on various rock samples. The rocks orig-
inate from the upper and lower crust, and from the upper mantle
and subduction zones. The samples include a variety of sedimen-
tary, metamorphic and crustal igneous rocks, as well as ultramafic
mantle rocks, with a wide range of compositions and microstruc-
tures, and the velocities were measured under varied stress condi-
tions. Finally, we consider an ORT anisotropy model inferred from
in situ observations. The anisotropy model was determined for the
deep part of the Tonga subduction zone using an inversion of the
non-DC components of moment tensors of deep-focus earthquakes
(Vavryčuk 2004). Obviously, the presented models do not cover all
possible variations of anisotropy that might occur at focal areas, but
still they can give an insight into the problem of how significantly

Figure 6. The percentages of the non-DC components generated by shear
faulting in the water-filled cracks model with an inclined symmetry axis.
Equal-area projection is used. The plus sign marks the vertical axis. For
details, see the caption of Fig. 5.

focal mechanisms and seismic moment tensors can be affected by
anisotropy.

Table 1 presents the type of anisotropy, average P and S veloci-
ties, the density, the identification code and the reference for each
rock sample or anisotropy model. Table 2 presents the elastic pa-
rameters of the rock samples or models. Several authors (Ben Ismail
& Mainprice 1998; Weiss et al. 1999; Saruwatari et al. 2001; Pera
et al. 2003) published a complete elasticity tensor, which describes
triclinic anisotropy and includes 21 elastic parameters. Because all
these samples were very close to orthorhombic anisotropy, Table
2 presents only the orthorhombic subset of the elastic parameters.
Thomsen (1986), Vernik & Liu (1997) and Takanashi et al. (2001)
published anisotropy of the rock samples using weak anisotropy pa-
rameters. For these samples, the elastic parameters were calculated
using Thomsen’s formulae (Thomsen 1986).

A directional variation of phase velocities is exemplified for two
TI and two ORT models (see Figs 1–4). Figs 1 and 2 show the phase
velocities for the dry and water-filled crack models (see Shearer
& Chapman 1989). The anisotropy strength of the P, SV and SH
waves is 23.5, 1.3 and 11.2 per cent for dry cracks, and 3.5, 11.0
and 11.2 per cent for the water-filled cracks. Fig. 3 shows the phase
velocities for the model of the olivine aggregate I (see Ben Ismail &
Mainprice 1998), which displays anisotropy of 9.6, 3.0 and 5.6 per
cent for the P, S1 and S2 waves, respectively. Fig. 4 shows the P, S1
and S2 phase velocities for the model of the Tonga deep zone with
anisotropy of 7.3, 13.4 and 12.6 per cent, respectively (see Vavryčuk
2004).
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Figure 7. Histograms of the CLVD components produced by shear faulting
in olivine aggregate I (a) and in the Tonga deep zone (b).

4.2 Non-DC components

The non-DC components generated by shear faulting in anisotropic
media depend on the type and strength of anisotropy and on the
orientation of faulting. For TI, the behaviour of the non-DC com-
ponents is illustrated on shear faulting in cracked media (see Figs 5
and 6). The geometry of faulting is fixed: the fault normal lies along
the z-axis and the slip along the x-axis, n = (0, 0, 1)T and ν = (1,
0, 0)T . Such a source generates no ISO and no CLVD for TI with a
vertical symmetry axis. However, if the symmetry axis is inclined,
the ISO and CLVD become non-zero. The values of ISO and CLVD
are shown as a function of the direction of the symmetry axis in
Fig. 5 (dry cracks) and Fig. 6 (water-filled cracks). For the model
of dry cracks, the percentages of the ISO and CLVD are in the in-
tervals (−20.7, 20.7) and (−16.1, 16.1), respectively. For the model
of water-filled cracks, the percentages of the ISO and CLVD are
in the intervals (−0.6, 0.6) and (−19.9, 19.9), respectively. Hence,
the shear source produces remarkable non-DC components in both
anisotropy models. For dry cracks, both the ISO and CLVD are high.
On the contrary, water-filled cracks produce high CLVD, but almost
zero ISO. Despite the different percentages of the ISO in both mod-
els, their directional variation is similar. Interestingly, the directional
variations of CLVD are quite different for both models, the varia-
tion for water-filled cracks being more complicated than for dry
cracks.

In order to estimate, how large non-DC components can be pro-
duced by shear faulting in the anisotropy models presented in Table
1, we used the following procedure: we generated a set of 10 000
randomly oriented mechanisms defined by angles dip, strike and
rake. For this set, we calculated moment tensors in each anisotropy
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Figure 8. Histograms of the ISO component produced by shear faulting in
olivine aggregate I (a) and in the Tonga deep zone (b).

model using eq. (3) and decomposed it into the DC, CLVD and ISO
using eqs (15)–(17). From the obtained sets of the DC and non-DC
values, we calculated the maximum absolute value of the CLVD and
ISO, and the minimum value of the DC. Figs 7 and 8 demonstrate
the behaviour of the CLVD and ISO in the olivine aggregate I and
in the Tonga deep zone. Table 3 summarizes the extreme values of
the DC, CLVD and ISO in all anisotropy models. The table shows
that, except for two models (dry cracks and granulite), the CLVD
is more significant than the ISO. Typically, the CLVD attains values
from 15 to 30 per cent and ISO from 5 to 15 per cent. The highest
value of CLVD is 83 per cent in shale I and the lowest value is 2 per
cent in granulite. The highest value of ISO is almost 21 per cent for
dry cracks and 0.6 per cent for water-filled cracks.

4.3 Correction for a true fault normal and slip direction

So far, fault plane solutions are calculated in the seismological prac-
tice under the assumption of an isotropic focal area. If the focal area
is anisotropic, the procedure yields distorted results. The errors ow-
ing to neglect of anisotropy are illustrated in Fig. 9 (dry cracks) and
in Fig. 10 (water-filled cracks). The upper/lower plots in the figures
show the deviation between the true and approximate fault nor-
mals/slip directions. The approximate values were calculated from
the eigenvectors of the moment tensor using the following standard
formulae:

napprox = 1√
2

(p + t), (51)

νapprox = 1√
2

(p − t), (52)
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Table 3. Average velocities, anisotropy strength and non-double-couple (non-DC) components produced by shear faulting.

Model/rock Type vP vS aP aSV /aS1 aSH/aS2 CLVDMAX ISOMAX DCMIN δMAX

(km s−1) (km s−1) (per cent) (per cent) (per cent) (per cent) (per cent) (per cent) (◦)

Theoretical models
Dry cracks TI 3.92 2.33 23.5 1.3 11.2 16.1 20.7 64.3 6.4
Water filled cracks TI 4.42 2.39 3.5 11.0 11.2 19.9 0.6 79.8 6.4
Periodic thin layers TI 3.27 1.84 13.1 8.1 12.3 18.7 14.4 72.0 7.1

Upper crustal rocks
Sandstone TI 4.57 2.61 8.4 4.7 9.5 37.1 3.2 59.8 6.7
Shale I TI 4.25 2.37 38.0 26.1 28.6 83.2 18.6 2.0 62.1
Shale II TI 3.33 1.74 20.8 22.4 33.4 40.9 19.8 46.0 19.0
Granite ORT 5.29 3.13 4.5 3.6 3.5 9.8 5.4 89.4 2.6
Gneiss TI 5.57 3.33 17.8 5.4 18.3 27.5 13.2 60.0 10.4
Schist TI 5.97 3.58 13.1 12.5 16.7 25.2 11.9 67.6 9.5
Phyllite TI 6.17 3.71 11.4 13.2 16.5 25.5 9.9 68.7 9.5
Slate TI 5.89 3.20 21.2 16.1 38.5 50.4 13.6 37.1 21.8

Lower crustal rocks
Metapelite ORT 7.59 4.25 6.2 5.3 4.6 12.9 6.6 82.3 3.7
Mafic granofels ORT 7.00 3.89 6.3 5.4 4.0 12.6 6.7 81.6 3.5
Bt-plg gneiss ORT 6.59 3.59 8.9 15.7 9.9 25.2 7.3 68.9 9.1
Amphibolite TI 6.66 3.72 13.3 5.8 5.5 24.4 9.8 65.7 5.2
Granulite ORT 6.88 3.78 4.0 0.5 0.9 2.2 6.1 93.7 0.6

Mantle rocks and subduction zones
Olivine aggregate I ORT 7.99 4.56 10.5 4.1 5.2 17.1 9.2 73.8 3.9
Olivine aggregate II ORT 7.94 4.53 9.6 3.0 5.6 16.8 8.4 75.2 3.7
Xenolith I ORT 7.95 4.62 6.1 2.2 4.1 10.6 5.6 83.8 2.7
Xenolith II ORT 7.93 4.49 12.4 5.5 6.1 21.3 10.2 68.6 4.8
Tonga deep zone ORT 10.37 5.80 7.3 13.4 12.6 28.7 1.8 71.2 9.6

aP, aSV /aS1, aSH /aS2 denote the anisotropy strength for P, SV and SH waves in the case of TI anisotropy and the anisotropy strength for P, S1 and S2 waves in
the case of ORT anisotropy. The anisotropy strength is defined as a = 200 (vMAX − vMIN)/(vMAX + vMIN), where vMAX and vMIN are the maximum and
minimum phase velocities of the respective wave. CLVDMAX, ISOMAX, DCMIN and δMAX are the maximum absolute values of the compensated linear vector
dipole (CLVD) and isotropic (ISO) components, the minimum value of the double couple (DC) and the maximum deviation of the approximate fault normal
and slip direction from true values observed in the specified anisotropy, respectively.

where p and t are the unit eigenvectors of the moment tensor
corresponding to the P and T axes. Because of the ambiguity of
the solutions (51)–(52) for the fault normal and slip, we selected
the pair of napprox and νapprox that approximated the true vectors
better.

Figs 9 and 10 show that the maximum deviation between the
true and approximate fault normals and slips attains coincidently a
value of 6.4◦. This indicates that the deviation is not sensitive to the
strength of the P-wave anisotropy, which is different in both models,
but rather to the strength of the S-wave anisotropy. The maximum
deviation of 6.4◦, corresponding to the S-wave anisotropy of 11.2 per
cent, is not very high, but it can still introduce a non-negligible bias in
carefully determined focal mechanisms. Similarly as for the CLVD,
the directional variation of the deviations is more complicated for
water-filled cracks than for dry cracks.

The maximum possible deviations of true fault normals or true
slip directions from approximate values calculated using an isotropic
procedure are summarized in Table 3. The deviations were calcu-
lated similarly as the values of the DC, CLVD and ISO in Section 4.2
from a set of 10 000 randomly oriented focal mechanisms calculated
in each anisotropy model. The table indicates that the maximum de-
viation is typically less than 10◦. The exceptions are shale I, shale
II, slate and gneiss with deviations of 62.1◦, 19.0◦, 21.8◦ and 10.4◦,
respectively. All models with the anomalous deviations can be con-
sidered as strongly anisotropic.

5 C O N C L U S I O N S

(i) Shear faulting on planar faults in anisotropic media can pro-
duce non-DC mechanisms. The non-DC mechanisms can comprise
both the CLVD and ISO components. The amount of the CLVD and
ISO depends on strength and symmetry of anisotropy and on the
orientation of faulting.

(ii) Under specific conditions imposed on anisotropy, shear
faulting with an arbitrary orientation generates no ISO compo-
nents. These conditions are satisfied, for example, in any cubic
anisotropy. The ISO components produced by shear faulting in tri-
clinic anisotropy are not sensitive to parameters C44, C45, C46, C55,
C56 and C66.

(iii) In some specific cases, shear faulting in anisotropy can also
produce pure DC mechanisms similarly as in isotropy. This happens,
for example, when faulting is situated in the horizontal plane of
monoclinic anisotropy or in any symmetry plane of orthorhombic
anisotropy or of higher symmetries. However, the scalar seismic
moment can vary with respect to the orientation of the slip in a
symmetry plane. The double couple can deviate from the plane
defined by the fault normal and slip direction.

(iv) The fault plane solutions in anisotropy display the same am-
biguity in identifying a fault normal and slip direction as in isotropy.
The moment tensor corresponding to shear faulting in anisotropy
has eigenvectors (P, T and B axes), which can deviate from those
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Figure 9. The deviation between the true and approximate fault normals
(upper plot), and between the true and approximate slip directions (lower
plot) for the dry cracks model with an inclined symmetry axis. The centre of
the circle corresponds to transverse isotropy (TI) with the vertical symmetry
axis; the points along the circle correspond to TI with horizontal symmetry
axes. The colour indicates the angular deviation. Equal-area projection is
used. The deviation is in degrees.

in isotropy. If anisotropy is neglected at a focal area, the fault plane
and slip calculated under the isotropic assumption can deviate from
true ones.

(v) Shear faulting in anisotropic rocks present in the Earth crust,
the Earth mantle or in the subduction zones can produce mechanisms
with significant non-DC components. The CLVD can typically attain
values up to 30 per cent and the ISO up to 15 per cent. The fault
plane solutions calculated under the assumption of isotropy typically
deviate from the true solutions by an angle of 5◦ to 10◦. However,
for strongly anisotropic rocks such as some shales or schists, the
CLVD and ISO can be much higher, and the isotropic procedure for
determining the fault plane solution can completely fail.
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Figure 10. The deviation between the true and approximate fault normals
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details, see the caption of Fig. 9.
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Babuška, V. & Cara, M., 1991. Seismic Anisotropy in the Earth, Kluwer
Academic Publishers, London.

Backus, G.E., 1962. Long-wave anisotropy produced by horizontal layering,
J. geophys. Res., 66, 4427–4440.

Baptie, B., Crampin, S. & Liu, E., 1993, Displaying shear-wave splitting
in cross-hole surveys for materials with combinations of EDA and PTL
anisotropies, Can. J. Expl. Geophys., 29, 227–235.

Ben Ismail, W. & Mainprice, D., 1998. An olivine fabric database: an
overview of upper mantle fabrics and seismic anisotropy, Tectonophysics,
296, 145–157.

Ben-Menahem, A. & Sena, A.G., 1990a. Seismic source theory in stratified
anisotropic media, J. geophys. Res., 95, 15 395–15 427.

Ben-Menahem, A. & Sena, A.G., 1990b. The elastodynamic Green’s tensor
in an anisotropic half-space, Geophys. J. Int., 102, 421–443.

Ben-Menahem, A., Gibson, R.L. & Sena, A.G., 1991. Green’s tensor and
radiation patterns of point sources in general anisotropic inhomogeneous
elastic media, Geophys. J. Int., 107, 297–308.

Burridge, R., 1967. The singularity on the plane lids of the wave surface
of elastic media with cubic symmetry, Q. J. Mech. Appl. Math., 20, 40–
56.
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Vavryčuk, V., 1997. Elastodynamic and elastostatic Green tensors for homo-

geneous weak transversely isotropic media, Geophys. J. Int., 130, 786–
800.
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A P P E N D I X A : A N I S O T RO P Y G E N E R AT I N G N O I S O C O M P O N E N T S F O R S H E A R
FAU LT I N G W I T H A N A R B I T R A RY O R I E N TAT I O N

Assume shear faulting in triclinic anisotropy with fault normal n = (0, 0, 1)T and slip direction ν = (1, 0, 0)T . According to eq. (18), the
moment tensor of the source is expressed as follows:

M = uS


 C∗

15 C∗
56 C∗

55

C∗
25 C∗

45

C∗
35


 . (A1)

The zero ISO component is equivalent to the condition of zero trace of M:

Trace(M) = uS
(
C∗

15 + C∗
25 + C∗

35

) = 0, (A2)
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where the matrix of elastic parameters C∗ refers to the coordinate system, in which two axes (x1 and x3) are formed by vectors n and ν. If
the orientation of the coordinate system is arbitrary with respect to the orientation of shear faulting, elasticity tensor cijkl must be rotated (see
Musgrave 1970, eq. 3.12.2a). Using the rotated coordinate system

e1 =




− sin ψ sin ϕ cos θ + cos ψ cos ϕ

− sin ψ cos ϕ cos θ − cos ψ sin ϕ

sin ψ sin θ


 , (A3)

e2 =




sin ψ cos ϕ + cos ψ sin ϕ cos θ

− sin ψ sin ϕ + cos ψ cos ϕ cos θ

− cos ψ sin θ


 , (A4)

e3 =




sin ϕ sin θ

cos ϕ sin θ

cos θ


 , (A5)

where ψ , ϕ and θ are angles defining the rotation, the trace of M reads

Trace(M) = uS(C11 + C12 − C23 − C33) sin ϕ sin θ cos θ

−uS(C11 + C13 − C22 − C23) cos ψ sin θ (sin ψ cos ϕ + cos ψ sin ϕ cos θ )

−uS(C14 + C24 + C34)(sin ψ cos ϕ cos θ + cos ψ sin ϕ cos 2θ )

−uS(C15 + C25 + C35)(cos ψ cos ϕ cos θ − sin ψ sin ϕ cos 2θ )

−uS(C16 + C26 + C36)

(
1

2
sin 2ψ sin ϕ sin 2θ − cos 2ψ cos ϕ sin θ

)
. (A6)

The condition of zero trace of M for any value of angles ψ , ϕ and θ yields

C11 + C12 − C23 − C33 = 0, (A7)

C11 + C13 − C22 − C23 = 0, (A8)

C14 + C24 + C34 = 0, (A9)

C15 + C25 + C35 = 0, (A10)

C16 + C26 + C36 = 0. (A11)

Eqs (A7)–(A11) represent a system of five equations for 15 elastic parameters of triclinic anisotropy.

A P P E N D I X B : E I G E N VA L U E S A N D E I G E N V E C T O R S O F S O U RC E T E N S O R D

A spectral decomposition of tensor D reads

D = D1e1e1 + D2e2e2 + D3e3e3, (B1)

where D1, D2 and D3 are the eigenvalues, and e1, e2 and e3 are the eigenvectors of D. The eigenvectors are of a unit length and mutually
perpendicular. Because source tensor D is formed by a dyad of vectors n and ν,

D = uS

2
(nν + νn), (B2)

it is easy to show that one of egenvectors of D is perpendicular to n and ν, and the corresponding eigenvalue is zero:

e2 = u ⊗ ν, D2 = 0, (B3)

where symbol ⊗ denotes the vector product. Because e1 ⊥ e2 ⊥ e3, vectors e1 and e3 must lie in the plane defined by vectors n and ν. It
follows from the following dyadic products,

(ν + n)(ν + n) = νν + nn + νn + nν, (B4)

(ν − n)(ν − n) = νν + nn − νn − nν, (B5)
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that tensor D can be obtained by their combinations, and thus the eigenvectors e1 and e3 can be expressed as follows:

e1 = ν + n

|ν + n| , e3 = ν − n

|ν − n| . (B6)

Inserting eq. (B6) into eq. (B1), we get

D = D1
(ν + n)(ν + n)

(ν + n) · (ν + n)
+ D3

(ν − n)(ν − n)

(ν − n) · (ν − n)

=
[

D1

(ν + n) · (ν + n)
+ D3

(ν − n) · (ν − n)

]
(νν + nn) +

[
D1

(ν + n) · (ν + n)
− D3

(ν − n) · (ν − n)

]
(νn + nν), (B7)

where the dot between two vectors means its scalar product. Comparing with eq. (B2), we obtain the equations for D1 and D3:[
D1

(ν + n) · (ν + n)
+ D3

(ν − n) · (ν − n)

]
(νν + nn) = 0, (B8)

[
D1

(ν + n) · (ν + n)
− D3

(ν − n) · (ν − n)

]
(νn + nν) = uS

2
. (B9)

From eqs (B8)–(B9), we write

D1 = uS

4
(ν + n) · (ν + n), (B10)

D3 = −uS

4
(ν − n) · (ν − n). (B11)

Taking into account that ν · ν = n · n = 1, we finally get for eigenvalues of D

D1 = uS

2
(ν · n + 1), D2 = 0, D3 = uS

2
(ν · n − 1), (B12)

the eigenvectors of D being defined in eqs (B3) and (B6).
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