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S U M M A R Y
Ray tracing equations applicable to smoothly inhomogeneous anisotropic viscoelastic media
are derived. The equations produce real rays, in contrast to previous ray-theoretical approaches,
which deal with complex rays. The real rays are defined as the solutions of the Hamilton equa-
tions, with the Hamiltonian modified for viscoelastic media, and physically correspond to tra-
jectories of high-frequency waves characterized by a real stationary phase. As a consequence,
the complex eikonal equation is satisfied only approximately. The ray tracing equations are
valid for weakly and moderately attenuating media. The rays are frequency-dependent and
must be calculated for each frequency, separately.

Solving the ray tracing equations in viscoelastic anisotropy is more time consuming than
in elastic anisotropy. The main difficulty is with determining the stationary slowness vector,
which is generally complex-valued and inhomogeneous and must be computed at each time
step of the ray tracing procedure. In viscoelastic isotropy, the ray tracing equations considerably
simplify, because the stationary slowness vector is homogeneous. The computational time for
tracing rays in isotropic elastic and viscoelastic media is the same. Using numerical examples,
it is shown that ray fields in weakly attenuating media (Q higher than about 30) are almost
indistinguishable from those in elastic media. For moderately attenuating anisotropic media
(Q between 5–20), the differences in ray fields can be visible and significant.

Key words: Elasticity and anelasticity; Body waves; Seismic anisotropy; Seismic attenuation;
Wave propagation.

1 I N T RO D U C T I O N

The attenuation and dispersion of waves propagating in real rock
structures is frequently modelled, using a linearized viscoelastic
medium. Properties of such a medium are described by frequency-
dependent elasticity and viscosity parameters, which can formally
be integrated into complex-valued viscoelastic parameters. In the
frequency domain, the wave propagation problems are solved in
a similar way as in elasticity, except that some of wave attributes
in viscoelasticity become complex valued (Auld 1973; Carcione
2007). In homogeneous viscoelastic media, this approach has been
applied to studying properties of plane waves (Caviglia & Morro
1992; Shuvalov & Scott 1999; Shuvalov 2001; Červený & Pšenčı́k
2005; Zhu & Tsvankin 2006, 2007) and to calculating the exact and
asymptotic Green’s functions and other asymptotic wave quantities
(Carcione 1994; Vavryčuk 2007a,b). In inhomogeneous viscoelastic
media, the complete wavefields are usually computed using time-
demanding numerical methods that directly solve the wave equation
(Carcione 1990; Saenger & Bohlen 2004; Moczo et al. 2004, 2007).

An alternative to the direct numerical methods is to apply ray the-
ory (Červený 2001) and to compute wavefields propagating in 3-D
inhomogeneous viscoelastic media using high-frequency approxi-
mation. In this case, the most straightforward way is to construct

rays and other ray quantities in the elastic background medium and
to incorporate the effects of attenuation as perturbations (Gajewski
& Pšenčı́k 1992; Vavryčuk 2008). This procedure is simple and
effective but applicable only to weakly attenuating media. Another
option is to apply the complex ray theory, which deals with rays as
trajectories in complex space (Hearn & Krebes 1990a,b; Le et al.
1994; Thomson 1997; Chapman et al. 1999; Kravtsov et al. 1999;
Hanyga & Seredyňska 2000; Kravtsov 2005). At the first sight,
this theory seems to be mathematically elegant and straightforward
derivable, but in fact, it proves awkward and far more complicated
than real ray theory. So far, it has not been fully developed and
struggles with essential difficulties, which prevent from using it in
realistic seismic applications.

In this paper, I develop novel ray tracing equations, applicable
to smoothly inhomogeneous anisotropic viscoelastic media. The
ray tracing equations are derived from the Hamilton equations by
using the Hamiltonian modified for viscoelastic media. The equa-
tions produce real-valued rays in contrary to the approach deal-
ing with complex rays. The rays are defined as trajectories of en-
ergy transported by high-frequency waves with a real stationary
phase. The ray tracing equations are valid for weakly and mod-
erately attenuating media. Using numerical examples, the appli-
cability of the ray tracing equations is tested and the differences
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between ray fields and traveltimes in elastic and viscoelastic media
are discussed.

2 D E F I N I T I O N O F T H E V I S C O E L A S T I C
M E D I U M

2.1 Notations

In formulae, the real and imaginary parts of complex-valued quan-
tities are denoted by superscripts R and I, respectively. A complex-
conjugate quantity is denoted by an asterisk. The direction of
a complex-valued vector v is calculated as v/

√
vT v, where su-

perscript T means the transposition (the normalization condition
v/

√
v · v∗ = √

v1v
∗
1 + v2v

∗
2 + v3v

∗
3 is not used). The magnitude of

complex-valued vector v is complex valued and is calculated as
v = √

vT v = √
v1v1 + v2v2 + v3v3.

If any complex-valued vector is defined by a real-valued direc-
tion, it is called homogeneous and if defined by a complex-valued
direction, it is called inhomogeneous. The directions of the real and
imaginary parts of a complex-valued vector are parallel for a homo-
geneous vector but non-parallel for an inhomogeneous vector. The
terms ’homogeneous’ and ’inhomogeneous’ are also used in the text
to describe properties of the medium: elastic/viscoelastic parame-
ters are constant in homogeneous media, but spatially-dependent in
inhomogeneous media. From the context, it is clear in which sense
the terms ’homogeneous/inhomogeneous’ are used.

Besides the standard four-index notation for viscoelastic param-
eters aijkl and quality parameters qijkl, also the two-index Voigt
notation AMN and QMN is alternatively used. The Voigt notation re-
duces pairs of indices i, j or k, l into a single index M or N using
the following rules

11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5 and 12 → 6. (1)

Quantities in the frequency domain are calculated using the
Fourier transform defined as follows

f (ω) = F [ f (t)] =
∫ ∞

−∞
f (t) exp (iωt) dt. (2)

In formulae, the Einstein summation convention is used for re-
peated subscripts.

2.2 Viscoelastic parameters

A viscoelastic medium is defined by density-normalized vis-
coelastic parameters aijkl, which are, in general, complex-valued,
frequency-dependent and vary with position vector x. The real and
imaginary parts of aijkl,

ai jkl (x, ω) = aR
i jkl + i aI

i jkl , (3)

define elastic and viscous properties of the medium. We assume that
viscoelastic parameters aijkl satisfy the symmetry relations

ai jkl = a jikl = ai jlk = akli j . (4)

The ratio between the real and imaginary parts of aijkl is called
the matrix of quality factor parameters,

qi jkl (x, ω) = −aR
i jkl

aI
i jkl

(no summation over repeated indices), (5)

and quantifies how attenuative the medium is. Obviously, qijkl is not
a tensor quantity. The sign in eq. (5) depends on the definition of the

Fourier transform (2), used for calculating the viscoelastic param-
eters in the frequency domain. When using the Fourier transform
with the exponential term exp (−iωt), the minus sign in (5) must be
omitted.

2.3 Equation of motion and the eikonal equation

The equation of motion for a smoothly inhomogeneous anisotropic
viscoelastic medium, when no sources are considered, reads
(Červený 2001, eq. 2.1.27)

ρ ω2ui + (
ρ ai jkluk,l

)
, j = 0, i = 1, 2, 3, (6)

where u = u (x, ω) is the displacement, ρ = ρ (x) is the density
of the medium, ai jkl = ai jkl (x, ω) are the density-normalized vis-
coelastic parameters and ω is the circular frequency. We assume that
viscoelastic parameters aijkl and density ρ and their derivatives are
continuous functions of coordinates. Frequency ω, density ρ and
position vector x are real valued, viscoelastic parameters aijkl and
displacement u are complex valued.

The displacement u = u (x, ω) is assumed to describe a high-
frequency harmonic signal expressed as

ui (x, ω) = Ui (x) exp [iωτ (x)] , (7)

where U = U (x) is the complex-valued ray amplitude and τ = τ (x)
is the complex-valued traveltime. Inserting eq. (7) into the equation
of motion (6), we obtain the eikonal equation in the form

G (x, p) = ai jkl pi pl g j gk = 1, (8)

where G is the eigenvalue and g is the eigenvector of the Christoffel
tensor of the studied wave (P, S1 or S2),

� jk (x, p) = ai jkl pi pl , (9)

and vector p is the complex-valued slowness vector defined as

pi = ∂τ

∂xi
. (10)

Eigenvector g is also called the polarization vector.

3 R AY T R A C I N G I N A N I S O T RO P I C
M E D I A : E L A S T I C C A S E

3.1 Generalized coordinates and the Hamilton equations

If the medium is elastic, the stiffness parameters aijkl are real valued
and frequency-independent. Consequently, the slowness vector p,
polarization vector g and the traveltime τ are also real valued. The
eikonal equation can be rewritten in the following general form
(Červený 2001, eq. 3.6.3)

H (x, p) = 1

2
[G (x, p) − 1] = 0, (11)

where H = H (x, p) is called the Hamiltonian and vectors x and p
are called the generalized coordinates. The eikonal equation in the
Hamiltonian form (11) represents a non-linear partial differential
equation for the traveltime τ = τ (x). The ray tracing equations can
be obtained from (11) using a method of characteristics (Courant &
Hilbert 1962). The method of characteristics transforms the partial
differential eq. (11) into a system of ordinary differential equations.
The characteristics are expressed in the Hamiltonian canonical form
as follows (Červený 2002, eq. 5)

dxi

dσ
= ∂ H

∂pi
,

dpi

dσ
= −∂ H

∂xi
,

dτ

dσ
= pi

∂ H

∂pi
, (12)
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where σ is a parameter along a ray. For σ = τ , eq. (12) simplifies,
taking the following form (see Červený 2001, eq. 3.6.4)

dxi

dτ
= 1

2

∂G

∂pi
,

dpi

dτ
= −1

2

∂G

∂xi
, (13)

where G is given by eq. (8).

3.2 Ray tracing equations

Taking into account that stiffness parameters aijkl depend on x,
ai jkl = ai jkl (x) and the unit polarization vector g depends on p,
g = g (p), we obtain the ray tracing equations in the following form
(see Červený 2001, eq. 3.6.10; Vavryčuk 2001, eq. 7)

dxi

dτ
= ai jkl pl g j gk, (14)

dpi

dτ
= −1

2

∂a jkln

∂xi
pk pn g j gl . (15)

Eq. (14) describes the velocity of the signal propagating along
a ray. The velocity is denoted as v and called the group velocity
vector (see Červený 2001) or energy velocity vector (see Carcione
2007). Eq. (15) describes the time variation of the slowness vector
along a ray.

Multiplying eq. (14) by the slowness vector p and taking into
account eq. (8), we obtain the following well-known identity

vi pi = 1. (16)

Eqs (14) and (15) represent a system of six ordinary differential
equations of the first order, which can be solved in a standard way
(see Press et al. 1992). Some problems can arise near singularities
(acoustic axes) in anisotropic media (Vavryčuk 2005), where rays
must be traced with care. Otherwise, false and unphysical bending
of rays can occur when a ray passes the singularity (Vavryčuk 2001,
2003).

4 R AY T R A C I N G I N A N I S O T RO P I C
M E D I A : V I S C O E L A S T I C C A S E

4.1 Generalized coordinates and the Hamilton equations

In viscoelastic media, the problem of ray tracing is more involved.
First, parameters aijkl are frequency-dependent, hence tracing rays
must be done for each frequency separately. Second, since parame-
ters aijkl are complex valued, slowness vector p, polarization vector
g and traveltime τ become complex valued. If we restrict the ray to
be a trajectory in the real space, the vector v defined as

vi = dxi

dτ
= ai jkl pl g j gk (17)

is a complex-valued homogeneous vector (see Appendix), called
the complex energy velocity vector (see Vavryčuk 2007a,b). Its
magnitude v = √

vT v, is called the complex energy velocity. Note
that ’complex energy velocity’ is different from the ’energy veloc-
ity’ used by Carcione (2006, 2007), where it means a real-valued
time-averaged quantity.

Since the complex energy velocity vector v is homogeneous, the
real and imaginary parts of v are parallel. This condition restricts
possible values of the slowness vector p and indicates that the real
and imaginary parts of p are not independent in the ray tracing

equations. The slowness vector p, which predicts a homogeneous
complex energy velocity vector v, is called the ’stationary’ slowness
vector (see Vavryčuk 2007a,b). The stationary slowness vector is,
in general, inhomogeneous. Since the real and imaginary parts of
p are not independent, vector p cannot be used as the generalized
variable in the Hamilton equations (12). Instead, we can define the
real-valued vectors x and pR,

pR
i = ∂τR

∂xi
, (18)

as the generalized coordinates being functions of the real-valued
traveltime τR. An inverse quantity to pR is the ray velocity Vray,

V ray
i = dxi

dτR
, (19)

which physically means the velocity of a high-frequency signal with
a real stationary phase propagating along a ray. For a discussion clar-
ifying the differences between the ’ray velocity’, ’complex energy
velocity’ and ’energy velocity’, see Vavryčuk (2007b).

Eqs (18) and (19) imply that a similar identity to eq. (16) valid
for vectors p and v can be established also for vectors pR and Vray,

V ray
j pR

j = 1. (20)

Considering the Hamiltonian H = H
(
x, pR

)
in the same form

as in eq. (11), the ray tracing equations read

dxi

dτ R
= 1

2

∂G

∂pR
i

,
dpR

i

dτR
= −1

2

∂G

∂xi
, (21)

where

G
(
x, pR

) = ai jkl pi pl g j gk = 1. (22)

As in the elastic case, the polarization vector g depends on p,
g = g (p), but the slowness vector p must further be decomposed
into its real and imaginary parts,

p j = pR
j + ipI

j . (23)

The imaginary part pI is not independent, but a function of aijkl

and pR, pI = pI
(
ai jkl , pR

)
.

4.2 The first ray tracing equation

Let us treat the first equation of (21)

V ray
i = 1

2

∂G

∂pR
i

= 1

2

∂G

∂pk

∂pk

∂pR
i

= vk
∂pk

∂pR
i

= vk

(
δik + i

∂pI
k

∂pR
i

)
. (24)

Decomposing the complex energy velocity v into its real and
imaginary parts and taking into account that the ray velocity Vray is
real valued, we can get from (24) the following equations,

vI
i + vR

k

∂pI
k

∂pR
i

= 0, (25)

vR
i − vI

k

∂pI
k

∂pR
i

= V ray
i . (26)

Since vector v is homogeneous (see Appendix), its real and imag-
inary parts are parallel,

vR
i = Niv

R, vI
i = Niv

I, (27)
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where N is the real-valued direction vector. Inserting eq. (27) into
(25) and multiplying by N, we obtain

Ni Nk
∂pi

∂pk
= − vI

vR
. (28)

Multiplying eq. (26) by N and inserting eq. (28) into (26), we
finally get for Vray

V ray
i = Ni

vRvR + vIvI

vR
. (29)

This equation is identical with eqs (21) and (23) of Vavryčuk
(2007b), derived for the ray velocity of asymptotic wavefields gen-
erated by point sources and propagating in homogeneous anisotropic
viscoelastic media.

4.3 The second ray tracing equation

The second equation of (21) reads

dpR
i

dτR
= −1

2

∂G

∂xi
= −1

2

[
∂G

∂a jklm

∂a jklm

∂xi
+ ∂G

∂pk

∂pk

∂xi

]

= −1

2

∂a jklm

∂xi
p j pm gk gl − ivk

∂pI
k

∂xi
, (30)

where we used

∂G

∂pk
= 2vk and

∂pk

∂xi
= i

∂pI
k

∂xi
. (31)

Since the left-hand side of (30) is real valued, we get

−1

2

[
∂a jklm

∂xi
p j pm gk gl

]I

− vR
k

∂pI
k

∂xi
= 0, (32)

−1

2

[
∂a jklm

∂xi
p j pm gk gl

]R

+ vI
k

∂pI
k

∂xi
= dpR

i

dτR
. (33)

From eqs (27) and (32), we can write

v I
k

∂pI
k

∂xi
= −1

2

vI

vR

[
∂a jklm

∂xi
p j pm gk gl

]I

, (34)

and inserting it into eq. (30), we finally obtain

dpR
i

dτR
= −1

2

[(
∂a jklm

∂xi
p j pm gk gl

)R

+ vI

vR

(
∂a jklm

∂xi
p j pm gk gl

)I
]

.

(35)

Obviously, if the parameters aijkl are real valued, the ray tracing
eqs (29) and (35) become identical with the ray tracing equations
derived for the elastic media.

5 R AY T R A C I N G I N I S O T RO P I C
V I S C O E L A S T I C M E D I A

5.1 Eikonal equation

The above derived ray tracing equations can readily be modified for
isotropic media. Taking into account that the stiffness parameters
cijkl are expressed in isotropic media as follows

ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)
, (36)

we obtain the eigenvalue of the Christoffel tensor in the following
form

G
(
x, pR

) = c2 pi pi = 1, (37)

where c is the complex-valued phase velocity, being expressed ei-
ther as c = √

(λ + 2μ) /ρ for the P wave or as c = √
μ/ρ for the

S wave. Quantities λ and μ are the complex-valued Lamé’s coeffi-
cients. Vector p is the complex-valued slowness vector, pi = ∂τ

∂xi
, its

magnitude is p = 1/c, vector pR is its real-valued part, pR
i = ∂τR

∂xi
,

and τ is the complex-valued traveltime.

5.2 Ray tracing equations

Inserting eq. (37) into eq. (17), the complex energy velocity vector
v reads

vi = c2 pi . (38)

Taking into account that p = 1/c, we readily obtain v = c.
Since v is homogeneous in (38), the slowness vector p must also be
homogeneous. This significantly simplifies the ray tracing problem,
the eqs (29) and (35) being reduced to the following form:

dxi

dτR
= V 2 pR

i ,
dpR

i

dτR
= − 1

V

∂V

∂xi
, (39)

where V is the real-valued phase velocity calculated from the
complex-valued phase velocity c as,

V = 1

(c−1)R , (40)

and τR is the real part of the traveltime τ . Obviously, V ray = V and
pR = 1/V ray. The imaginary part of p has magnitude

pI = (
c−1

)I
, (41)

and is parallel to pR, pI ||pR.
Note that when solving the complex eikonal equation (11) exactly

without restricting the ray to be a real trajectory, the collinearity of
pR and pI is lost.

6 N U M E R I C A L P RO C E D U R E

When tracing rays in anisotropic elastic media, we have to solve a
system of six ordinary differential equations for real-valued vectors
x and p. The right-hand sides depend on ai jkl (x) and p. When
tracing rays in anisotropic viscoelastic media, the procedure is more
involved. We have to solve a system of six ordinary differential
equations for real-valued vectors x and pR, but the right-hand sides
of the equations depend not only on ai jkl (x, ω) and pR but also on
pI = pI

(
ai jkl (x, ω) , pR

)
. This means that we have to additionally

calculate vector pI at each time step. This can be done by iterations,
using the condition that the slowness vector p is stationary. For
a fixed value of pR, we vary pI in such a way to minimize the
imaginary part of the ray direction vector N, N =v/v. Usually, the
value of pI is much smaller than that of pR, and several iterations
lead to success. Nevertheless, performing the iterations at each step
of ray tracing causes that calculating rays in viscoelastic media is
slower than in elastic media.

Specifically, when calculating rays, we can proceed in the follow-
ing way (see Fig. 1):

(1) We specify the initial conditions by setting (a) the starting
point x0 of a ray and the initial direction of the wave normal nR

0 or
(b) the starting point x0 and the initial direction of a ray N0.
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Initial conditions

jk G, g and v

the RHS of the 
ray-tracing equations

x and pR

at the new time step

stationary p

( )ijkl
RI ,a f 00 nn =

R
00 , nx 00 , Nx

( )ijkl,a f 00 Nn =

RRR p/pn =

( )ijkl
RI , a f nn =

stop
maxττ <

maxττ

Γ

≥

Figure 1. A scheme of the numerical procedure for ray tracing in anisotropic
viscoelastic media.

(2) We calculate the initial slowness vector p0. This can be done
iteratively for both types of initial conditions.

(a) If the wave normal nR
0 is specified, we seek two real-valued

angles defining the direction of nI
0. From the initial guess of nI

0,
we calculate the complex-valued direction n0 =nR

0 + i nI
0, the

Christoffel tensor � jk (n0) = ai jkln0i n0l , its eigenvalues G and
eigenvectors g and subsequently the complex phase velocity c,

c = [
ai jkln0i n0l g j gk

] 1
2 , and complex slowness p, p = 1/c. Then,

we calculate complex energy velocity vector v, vi = aijklplgjgk , and
the ray direction N =v/v. Vector N is generally complex valued.
Therefore, we have to vary, iteratively, nI

0 to minimize the imaginary
part of N to obtain the real-valued N. As the misfit function, we can
use the non-negative scalar function, f = NI ·NI, which must be
zero at the stationary point.

(b) If the initial ray direction N0 is specified, we use iterations
to find four real-valued angles, defining the real and imaginary
parts of slowness direction n0. We can adopt the ray direction N0

as the initial guess of n0 and proceed in an analogous way to the
previous case. The misfit function can be defined as the modulus of

the complex-valued deviation between the fixed and predicted ray
vectors. Alternatively, instead of iterations, we can solve a system
of coupled algebraic equations of the 6th order in three unknowns,
p1, p2 and p3 (see Vavryčuk 2006, 2007b).

(3) Finding the stationary slowness vector p, we calculate the
Christoffel tensor � jk (p), its eigenvalues G and eigenvectors g and
the complex energy velocity vector v.

(4) We evaluate the right-hand sides of the ray tracing eqs (29)
and (35)

R(1)
i = Ni

vRvR + vIvI

vR
, (42)

R(2)
i = −1

2

[(
∂a jklm

∂xi
p j pm gk gl

)R

+ vI

vR

(
∂a jklm

∂xi
p j pm gk gl

)I
]

.

(43)

(5) We move forward along a ray by one time step 
τR

xi

(
t0 + 
τR

) = xi (t0) + 
xi , pR
i

(
t0 + 
τR

) = pR
i (t0) + 
pR

i ,

(44)

where


xi = R(1)
i 
τR, 
pR

i = R(2)
i 
τR. (45)

(6) Normalizing pR
(
t0 + 
τR

)
, we obtain nR

(
t0 + 
τR

)
and

calculate nI
(
t0 + 
τR

)
in a way analogous to (2a). Afterwards, we

again continue by following steps (3)–(6). The whole process is
repeated until the traveltime reaches a predefined maximum value.

Tracing rays in isotropic viscoelastic media is much simpler than
described in the above scheme because the stationary slowness
vector is homogeneous. Vector pI can readily be obtained from ray
direction N and attenuation A

pI = N A, A = (
c−1

)I
. (46)

Hence no iterative procedure for calculating pI is needed and
solving the ray tracing equations in viscoelasticity is quite analogous
to solving them in elasticity.

7 N U M E R I C A L E X A M P L E S

In this section, I examine the behaviour of rays in viscoelastic
media numerically. I consider the SH wave propagating in two
vertically inhomogeneous isotropic media (models A and B) and in
two vertically inhomogeneous transversely isotropic media, with the
vertical axis of symmetry (models C and D). The frequency of the
signal is assumed to be 20 Hz. The models are defined by the depth-
dependent density-normalized viscoelastic parameters a44 and a66:

a44 (z) = (
a0

44

)R (
1 + εR

44z
)2 + i

(
a0

44

)I (
1 + εI

44z
)2

, (47)

a66 (z) = (
a0

66

)R (
1 + εR

66z
)2 + i

(
a0

66

)I (
1 + εI

66z
)2

, (48)

where a0
44 and a0

66 are the values of a44 and a66 at the surface
(z = 0). The real parts of a44 and a66 describe the relevant elastic
(non-attenuating) media. The imaginary parts of a44 and a66 de-
scribe attenuation. Models A and C display constant Q with depth
and models B and D display increasing Q with depth. The pa-
rameters defining the models are summarized in Table 1. The trans-
versely isotropic models are characterized by 22 per cent of velocity
anisotropy (calculated for the elastic background) and by 67 per cent
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Table 1. A summary of the parameters describing the models.

Model Type
(
a0

44

)R
(km2s−2)

(
a0

66

)R
(km2s−2) Q0

44 Q0
66 a0

V (per cent) a0
Q (per cent) εR εI

A I 6.25 6.25 10 10 0 0 −0.020 −0.020
B I 6.25 6.25 10 10 0 0 −0.020 0.025
C VTI 6.25 4.00 10 5 22 67 −0.020 −0.020
D VTI 6.25 4.00 10 5 22 67 −0.020 0.025

Note: Types I/VTI mean isotropy/transverse isotropy with a vertical axis of symmetry, a0
V is the phase velocity anisotropy in the elastic

background medium, and it is calculated as a0
V = 200

(
V 0

Z − V 0
H

)
/
(
V 0

Z + V 0
H

)
, where V 0

Z =
√(

a0
44

)R
, V 0

H =
√(

a0
66

)R
, a0

Q is the

Q-factor anisotropy, a0
Q = 200

(
Q0

44 − Q0
66

)
/
(
Q0

44 + Q0
66

)
. The velocity anisotropy and the Q-factor anisotropy do not change with

depth. Quantities εR and εI denote the real and imaginary parts of the velocity gradient in the medium.

Q-factor anisotropy. All calculations are performed in attenuating,
as well as non-attenuating media.

Figs 2(a) and (c) show the phase velocities as a function of depth,
for the models under study. The velocities are calculated at the
elastic background medium. The velocity gradient is constant and
falls within typical values observed in the Earth’s crust. Figs 2(b)
and (d) show the Q-factor as a function of depth. At the surface, the
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Figure 2. SH phase velocities and Q-factors as a function of depth. (a) Phase velocity in the elastic background of models A and B, (b) Q-factors for model A
(dashed line) and model B (solid line), (c) phase velocity in the elastic background of models C and D and (d) Q-factors for model C (dashed line) and model
D (solid line). VH , the horizontal phase velocity and VZ , the vertical phase velocity.

Q-factor is 10 for the isotropic medium and Q44 = 10 and Q66 =
5 for the transversely isotropic medium. The other values of the
Q-matrix are not needed for the propagation of the SH waves.
The values of Q at the surface are rather extreme and observed,
exceptionally, for some very soft sedimentary rocks. With increasing
depth, the value of Q is constant for models A and C but increases
for models B and D. The depth-independent Q is unrealistic, and

C© 2008 The Author, GJI, 175, 617–626

Journal compilation C© 2008 RAS



Real ray tracing in anisotropic viscoelastic media 623

20

10

0

D
e

p
th

[k
m

]

0 20 40 60 80 100

Offset [km]

20

10

0

D
e

p
th

[k
m

]

0 20 40 60 80 100

Offset [km]

Model A

Model B

a)

b)

Figure 3. Ray fields in models A (a) and B (b). Solid line, rays calculated in the viscoelastic medium; dashed line, rays calculated in the elastic background.
For parameters of the media and rays, see the text.

here it is used just to demonstrate properties of ray fields for such
specific attenuation models. In models B and D, the value of Q
increases non-linearly to Q44 = 160 and Q66 = 90 at depth of
25 km.

Fig. 3 shows ray fields in models A and B, generated by a point
source situated at the surface. The rays are calculated by package
Matlab, using the solver for a system of ordinary differential equa-
tions ODE45. The time step is adaptive attaining values from 10−5

s up to 1 s. The rays are shot along a profile in the x-z plane, with in-
cidences between 20◦ and 45◦ with step of 5◦. The incidence angles
are measured downwards from the horizontal axis. The ray fields
are shown for elastic (dashed line), as well as viscoelastic (full line)
media. For model A, both ray fields coincide. For model B, the
differences in ray fields are visible, but they are small and rather
marginal. The only significant differences can be observed in trav-
eltimes, provided the signal is of sufficiently high frequency (see
Fig. 4). This means a frequency of about 20 Hz or higher in the pre-
sented numerical experiment. The differences are negative meaning
that the traveltimes in media with attenuation are less than those in
media without attenuation, hence the waves propagate faster in me-
dia with attenuation (provided the elastic background is the same in
both models). As expected, the differences are more pronounced in
model A, which displays high attenuation at all depths. For model
B, the differences in traveltimes are observed for shallow rays,
which sample a highly attenuating structure. The deeper rays sam-
ple mainly a structure with low attenuation, hence the differences
are less significant. As a consequence, the differences between elas-
tic and viscoelastic traveltimes decrease with an increasing offset
for receivers, with offset larger than 45 km.

Fig. 5 shows the ray fields generated by a point source in model C
and D. The rays are shot with incidences between 20◦ and 50◦, with
step of 5◦. In both models, the ray field in a medium with attenuation
is different from that in a medium without attenuation. Hence, in
anisotropic medium, a constant Q-model does not necessarily imply
the ray field being identical with that in the elastic background. The
differences in the ray geometry of elastic and viscoelastic rays in
models C and D are remarkably larger than those in models A and
B and reflect the fact that models C and D are more attenuating.
This is pronounced also in differences in traveltimes (Fig. 6). The
differences between elastic and viscoelastic traveltimes as a function
of the epicentral distance have a similar shape in models C and D
compared with models A and B, but the scale is different. The
differences are about four times larger for models C and D than for
models A and B.

8 D I S C U S S I O N : R E A L V E R S U S
C O M P L E X R AY S

So far, it has been assumed that ray theory in viscoelasticity must
necessarily deal with complex rays (Hearn & Krebes 1990a,b; Le et
al. 1994; Thomson 1997; Chapman et al. 1999; Kravtsov et al. 1999;
Hanyga & Seredyňska 2000). Theory of complex rays, however,
encounters essential difficulties. First of all, it is not clear in complex
ray theory how to build a medium model in the complex space from
a model in the real space which describes a 3-D inhomogeneous
attenuating structure with interfaces. On the contrary, the presented
approach shows that viscoelastic ray theory with real-valued rays
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0 20 40 60 80 100

Offset [km]

-0.04

-0.03

-0.02

-0.01

0.00

T
im

e
d
e
la

y
[s

]

0 20 40 60 80 100

Offset [km]

-0.12

-0.08

-0.04

0.00

T
im

e
d
e
la

y
[s

]

Model A Model B

a) b)

Figure 4. Differences in traveltimes of waves propagating in the attenuating medium and in the elastic background. (a) traveltime differences in model A and
(b) traveltime differences in model B.
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Figure 5. Ray fields in models C (a) and D (b). Solid line, rays calculated in the viscoelastic medium; dashed line; rays calculated in the elastic background.
For parameters of the media and rays, see the text.

can be developed. The approach is based on the assumption that rays
are trajectories in the real space, characterized by the stationary real
traveltime. The imaginary part of the traveltime reflects attenuation
along a ray. Attenuation in directions perpendicular to a ray is
neglected in the phase term but included in the ray amplitude U(x).
As a consequence, the eikonal equation, as the partial differential
equation for the complex-valued traveltime, is not satisfied exactly
but only approximately.

The existence of real rays does not imply that the slowness vector
or other ray quantities must be real valued. In viscoelastic media,

the slowness vector is always complex valued. In anisotropic me-
dia, the slowness vector is inhomogeneous. In isotropic media, the
slowness vector is homogeneous. This implies that inhomogeneous
waves (described by the inhomogeneous slowness vector) cannot
be accurately treated in isotropic media by the standard geometrical
ray theory. Varying amplitude along the wave front of inhomoge-
neous waves is projected into spatially-dependent ray amplitude, see
eq. (7). But the phase must always produce a homogeneous slowness
vector, see eq. (10). This fact is well known for ray theory in elas-
ticity and remains valid also for real ray theory in viscoelasticity.
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Figure 6. Differences in traveltimes of waves propagating in the attenuating medium and in the elastic background. (a) traveltime differences in model C and
(b) traveltime differences in model D.

The reason for this seemingly surprising limitation is that inhomo-
geneous waves in isotropic media are not waves with the stationary
phase. Therefore, they cannot be described exactly but only approx-
imately using the zero-order ray theory. Consequently, the exact so-
lution derived, for example, for the reflection/transmission of plane
inhomogeneous waves at interfaces in isotropic attenuating me-
dia (Wennerberg 1985; Winterstein 1987; Caviglia & Morro 1992;
Carcione 2007) differs from the ray-theoretical solution, which is
approximate. In modelling of inhomogeneous waves, a higher accu-
racy can be achieved if higher-order ray approximations are incor-
porated (see Vavryčuk 2007c), or if the ray theory is in some way
extended or modified. The same applies to inhomogeneous waves
in anisotropic viscoelastic media, when the wave inhomogeneity is
different from that consistent with the stationary phase.

9 C O N C LU S I O N S

The real ray tracing in anisotropic viscoelastic media displays sub-
stantial differences compared with elastic media. The rays are
frequency-dependent and the ray fields must be calculated for each
frequency separately. The proposed ray tracing equations produce
real-valued vectors x and pR. Vector pI is calculated, independent of
the ray tracing equations, at each time step. It is computed by itera-
tions from the condition that the complex energy velocity vector v
is homogeneous. Several iterations are usually sufficient for finding
of pI, but still these additional calculations slow down the ray trac-
ing procedure. For isotropic media, the problem simplifies because
the slowness vector p is homogeneous, and the requirements on the
computer time are essentially the same as in elastic media.

Using numerical examples, it has been shown that the ray fields
are not very sensitive to attenuation of the medium. The ray fields
in weakly attenuating media (Q higher than 30) are almost indis-
tinguishable from those in elastic media. In isotropic media with
constant Q-factor, the rays are exactly identical with those in elastic
media. This applies to all values of constant Q. In anisotropic media,
this property is lost. For moderately attenuating (Q between 5–20)
anisotropic or isotropic media with varying Q, the differences in ray
fields in attenuating and non-attenuating media can be visible and
significant. Observing the differences in traveltimes in attenuating
and non-attenuating media depend on several factors. They depend:
first, on how strongly attenuating the medium is; second, on the

length of the ray along which the wave propagates and third, on the
predominant frequency of the wavefield. In general, the differences
increase with magnitude of attenuation and with length of the ray,
and they are better distinguishable for high frequencies.
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I thank L. Klimeš for discussions on the subject and J.M. Carcione
and one anonymous reviewer for their helpful reviews. The work
was supported by the Grant Agency of the Academy of Sciences of
the Czech Republic, Grant No. IAA300120801; by the Consortium
Project ’Seismic Waves in Complex 3-D Structures’ and by the EU
Consortium Project IMAGES ‘Induced Microseismics Applications
from Global Earthquake Studies’, Contract No. MTKI-CT-2004-
517242. Part of the work was done while the author was a visiting
researcher at Schlumberger Cambridge Research.

R E F E R E N C E S

Auld, B.A., 1973. Acoustic Fields and Waves in Solids, Wiley, New York.
Carcione, J.M., 1990. Wave propagation in anisotropic linear viscoelastic

media: theory and simulated wavefields, Geophys. J. Int., 101, 739–750
(Erratum 1992, 111, 191).

Carcione, J.M., 1994. Wavefronts in dissipative anisotropic media, Geo-
physics, 59, 644–657.

Carcione, J.M., 2006. Vector attenuation: elliptical polarization, raypaths
and the Rayleigh-window effect, Geophys. Prospect., 54, 399–407.

Carcione, J.M., 2007. Wave Fields in Real Media: Theory and Numerical
Simulation of Wave Propagation in Anisotropic, Anelastic, Porous and
Electromagnetic Media, Elsevier, Amsterdam.

Caviglia, G. & Morro, A., 1992. Inhomogeneous Waves in Solids and Fluids,
World Scientific, London.

Chapman, S.J., Lawry, J.M.H., Ockendon, J.R. & Tew, R.H., 1999. On the
theory of complex rays, SIAM Rev., 41, 417–509.

Courant, R. & Hilbert, D., 1962. Methods of Mathematical Physics,Vol. I &
II, Wiley, New York.
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Vavryčuk, V., 2007b. Ray velocity and ray attenuation in homoge-
neous anisotropic viscoelastic media, Geophysics, 72(6), D119–D127,
doi:10.1190/1.2768402.
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A P P E N D I X : H O M O G E N E I T Y O F
T H E C O M P L E X E N E RG Y V E L O C I T Y
V E C T O R

The complex energy velocity vector v is defined as

vi = dxi

dτ
, (A1)

where x is the position vector along a ray and τ is the complex-
valued traveltime. Hence,

dxi = vi dτ = vR
i

dτR − vI
i
dτ I + i

(
vR

i dτ I + vI
i dτR

)
. (A2)

Imposing the condition that the ray is a trajectory in the real
space, vector dx is real valued; so, we get

vR
i dτ I + vI

i dτR = 0. (A3)

Consequently,

vI
i = −vR

i

dτ I

dτR
, (A4)

which implies that vR and vI are parallel. Introducing the direction
vector N,

vR
i = Niv

R, vI
i = Niv

I, (A5)

we obtain,

vi = Ni

(
vR + ivI

) = Niv, (A6)

where N is the real-valued vector called the ray direction and v is
the complex energy velocity. Since ray direction N is real valued,
v must be a homogeneous vector.

From eqs (A4) and (A5) we further obtain,

dτ I

dτR
= − vI

vR
. (A7)

Consequently,

τ I = −
∫ B

A

vI

vR
dτR, (A8)

where A and B denote the start and endpoints of a ray.
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