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S U M M A R Y
The behaviour of rays at interfaces in anisotropic viscoelastic media is studied using three
different approaches: the real elastic ray theory, the real viscoelastic ray theory and the complex
ray theory. In solving the complex eikonal equation, the highest accuracy is achieved by
the complex ray theory. The real elastic and viscoelastic ray theories are less accurate but
computationally more effective. In all three approaches, the rays obey Snell’s law at the
interface, but its form is different for each approach. The complex Snell’s law constrains the
complex tangential components of the slowness vector. The real viscoelastic and elastic Snell’s
laws constrain the real tangential components of the slowness vector. In the viscoelastic ray
theory, the Snell’s law is supplemented by the condition of the stationary slowness vector of
scattered waves. The accuracy of all three ray theoretical approaches is numerically tested
by solving the complex eikonal equation and by calculating the R/T coefficients. The models
of the medium consist of attenuating isotropic and anisotropic homogeneous half-spaces
with attenuation ranging from extremely strong (Q = 2.5–3) to moderate (Q = 25–30).
Numerical modelling shows that solving the complex eikonal equation by the real viscoelastic
ray approach is at least 20 times more accurate than solving it by the real elastic ray approach.
Also the R/T coefficients are reproduced with a higher accuracy by the real viscoelastic ray
approach than by the elastic ray approach.
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1 I N T RO D U C T I O N

Applications of the ray theory to wave propagation problems
in anisotropic, inhomogeneous and attenuating media have been
intensively studied in recent years (Thomson 1997; Hanyga &
Seredyňska 2000; Carcione 2006; Vavryčuk 2007a,b; Červený et al.
2008; Vavryčuk 2008a,b). The ray theory yields a high-frequency
approximation, which is reasonably accurate in most seismic ap-
plications (Červený 2001), and computationally undemanding with
respect to other methods solving the equation of motion numer-
ically (Carcione 1990, 1993; Moczo et al. 2004, 2007), So far,
several ray-theoretical approaches for solving the eikonal equa-
tion and modelling of waves in anisotropic attenuating media have
been developed. The simplest approach is constructing the rays
and other ray quantities in the elastic reference medium and in-
corporating the effects of attenuation as perturbations (Gajewski
& Pšenčı́k 1992; Vavryčuk 2008b). However, this procedure is ap-
plicable to weakly attenuating media only. Alternatively, several
authors tried to develop the theory of complex rays (Hearn &
Krebes 1990a,b; Le et al. 1994; Thomson 1997; Chapman et al.
1999; Kravtsov et al. 1999; Hanyga & Seredyňska 2000; Kravtsov
2005; Amodei et al. 2006). The attenuation is incorporated into the
wave modelling by substituting the real-valued elastic parameters by
complex-valued and frequency-dependent viscoelastic parameters.
Consequently, the eikonal equation and other ray equations become

complex and their solution is sought in complex space. The complex
ray theory is very accurate in solving the complex eikonal equation,
and applicable to anisotropy and attenuation of arbitrary strength.
Unfortunately, this theory is computationally complicated and con-
ditioned by successful building of the velocity model in complex
space.

Another ray-theoretical approach applicable to solving the com-
plex eikonal equation has been proposed by Vavryčuk (2008a) and
called the real viscoelastic ray method. It produces real rays, but all
quantities along the rays are complex-valued. The approach is based
on the assumption that the complex slowness vector along a ray is
stationary and the complex energy velocity vector is homogeneous.
The viscoelastic ray approach is less accurate than the complex
ray approach, but has proved to be efficient and significantly more
accurate than the elastic ray approach.

So far, the viscoelastic ray theory has been developed and all
numerical tests have been performed in smoothly inhomogeneous
media. In this paper, the theory is completed by deriving formulae
for the behaviour of rays at interfaces in anisotropic attenuating
media. It is shown that the rays of scattered waves must obey Snell’s
law, which is similar but not identical with Snell’s law in elastic
media. The derived theoretical formulae are numerically tested by
solving the complex eikonal equation in models of isotropic and
anisotropic homogeneous half-spaces with various levels of attenu-
ation. The accuracy of the viscoelastic ray tracing is compared with
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that produced by real elastic ray tracing and complex ray tracing.
The accuracy of the viscoelastic R/T coefficients is also examined.

2 A N I S O T RO P I C V I S C O E L A S T I C
M E D I U M

2.1 Notation

In formulae, the real and imaginary parts of the complex-valued
quantities are denoted by superscripts R and I , respectively. A
complex-conjugate quantity is denoted by an asterisk. The direction
of a complex-valued vector v is calculated as v/

√
vT v, where the su-

perscript T means transposition. The magnitude of complex-valued
vector v is complex and is calculated as

√
vT v. If any complex-

valued vector is defined by a real-valued direction, it is called ho-
mogeneous, and if defined by a complex-valued direction, it is called
inhomogeneous.

Besides the standard four-index notation for viscoelastic param-
eters aijkl and quality parameters qijkl, also the two-index Voigt no-
tation AMN and QMN is used alternatively. The Voigt notation com-
bines pairs of indices i,j or k,l into a single index M or N using the
following rules:

11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6. (1)

Quantities in the frequency domain are calculated using the Fourier
transform defined as follows:

f (ω) = F [ f (t)] =
∞∫

−∞

f (t) exp(iω t)dt. (2)

In formulae, the Einstein summation convention is used for repeated
subscripts.

2.2 Viscoelastic parameters

A viscoelastic medium is defined by density-normalized vis-
coelastic parameters aijkl which are, in general, complex-valued,
frequency-dependent and vary with position vector x. The real and
imaginary parts of aijkl,

ai jkl (x, ω) = aR
i jkl + i a I

i jkl , (3)

define elastic and viscous properties of the medium. The ratio be-
tween the real and imaginary parts of aijkl is called the matrix of
quality factor parameters,

qi jkl (x, ω) = −aR
i jkl

a I
i jkl

(no summation over repeated indices), (4)

and quantifies how attenuating the medium is. The sign in eq. (4)
depends on the definition of the Fourier transform (2) used for cal-
culating the viscoelastic parameters in the frequency domain. When
using the Fourier transform with the exponential term exp(−iωt),
the minus sign in (4) must be omitted.

2.3 Complex eikonal equation

The equation of motion for an inhomogeneous anisotropic vis-
coelastic medium, when no sources are considered, reads [see
Červený 2001, eq. (2.1.27)],

ρω2ui + (ρ ai jkluk,l ), j = 0, i = 1, 2, 3, (5)

where u = u (x, ω) is the displacement, ρ = ρ (x) is the density of the
medium, aijkl = aijkl(x, ω) are the density-normalized viscoelastic

parameters, and ω is the circular frequency. Frequency ω, density
ρ and position vector x are real-valued, viscoelastic parameters aijkl

and displacement u are complex-valued. Displacement u = u (x,
ω) is assumed to describe a high-frequency signal,

ui (x, ω) = Ui (x) exp [iωτ (x)] , (6)

where U = U (x) is the complex-valued amplitude, and τ = τ (x)
is the complex-valued traveltime. Inserting eq. (6) into the equation
of motion (5) and equating terms with ω2, we obtain the eikonal
equation in the form

G (x, p) = ai jkl pi pl g j gk = 1, (7)

where G is the eigenvalue and g is the normalized complex-valued
eigenvector, g ·g = 1, of the Christoffel tensor of the studied wave
(P, S1 or S2)

� jk (x, p) = ai jkl pi pl , (8)

and vector p is the complex-valued slowness vector defined as

pi = ∂τ

∂xi
. (9)

3 R E A L V I S C O E L A S T I C R AY T R A C I N G
I N S M O O T H LY I N H O M O G E N O E U S
M E D I A

3.1 Anisotropic media

The eikonal eq. (7) can alternatively be expressed in the following
general form [see Červený 2001, eq. (3.6.3)]

H (x, p) = 1

2
(G (x, p) − 1) = 0, (10)

where H = H (x, p) is the Hamiltonian. The eikonal equation in the
Hamiltonian form (10) represents a non-linear partial differential
equation for the complex traveltime τ = τ (x). This equation can
be solved exactly by using the complex ray tracing equations with
complex-valued generalized coordinates x and p (see Section 5.1).
It can also be solved approximately using the real viscoelastic ray
tracing equations with real-valued generalized coordinates x and pR

(see Vavryčuk 2008a), where

pR
i = ∂τ R

∂xi
. (11)

The inverse quantity to pR is the ray velocity Vray,

V ray
i = dxi

dτ R
, (12)

which physically means the velocity of a signal propagating along
a ray. Eqs (11) and (12) imply the following identity:

V ray
j pR

j = 1. (13)

The real viscoelastic ray tracing equations read

dxi

dτ R
= 1

2

∂G

∂pR
i

,
dpR

i

dτ R
= −1

2

∂G

∂xi
. (14)

Substituting (7) into (14) we obtain [see Vavryčuk 2008a, eqs (29),
(35) and (A7)]

dxi

dτ R
= Ni

vRvR + v I v I

vR
, (15)
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dpR
i

dτ R
= −1

2

[(
∂a jklm

∂xi
p j pm gk gl

)R

+ v I

vR

(
∂a jklm

∂xi
p j pm gk gl

)I
]

,

(16)

dτ I

dτ R
= − v I

vR
, (17)

where energy velocity vector v,

vi = ai jkl pl g j gk, (18)

is a complex homogeneous vector and vector N defines its direc-
tion. Since energy velocity vector v is homogeneous, its real and
imaginary parts are parallel. This condition restricts possible val-
ues of the complex slowness vector and implies that the real and
imaginary parts of the slowness vector are not independent in the
ray tracing equations. The slowness vector, which predicts a homo-
geneous energy velocity vector, is called stationary (see Vavryčuk
2007a,b). The stationary slowness vector is, in general, inhomo-
geneous. The procedure, how to calculate the stationary slowness
vector p is described in Vavryčuk (2008a).

3.2 Isotropic media

The eigenvalue of the Christoffel tensor G in isotropic media reads

G(x, pR) = c2 pi pi = 1, (19)

where c is the complex-valued phase velocity, c = √
(λ + 2μ)/ρ for

the P wave and c = √
μ/ρ for the S wave. Parameters λ and μ are

complex-valued Lamé’s coefficients. Vector p is the complex-valued
slowness vector, pi = ∂τ/∂xi , its magnitude is p = 1/c, vector pR

is its real-valued part, pR
i = ∂τ R/∂xi and τ is the complex-valued

traveltime. Since the energy velocity vector v,

vi = c2 pi . (20)

is homogeneous, slowness vector p must also be homogeneous. This
simplifies the ray tracing problem, and the ray tracing equations in
anisotropic media (15)–(17) are reduced to the following form in
isotropic media [see Vavryčuk 2008a, eqs (39) and (A7)]

dxi

dτ R
= V 2 pR

i ,
dpR

i

dτ R
= − 1

V

∂V

∂xi
,

dτ I

dτ R
= − cI

cR
, (21)

where V is the real-valued phase velocity calculated from the
complex-valued phase velocity c as,

V = 1

(c−1)R , (22)

and τR is the real part of traveltime τ . Obviously, V ray = V and
pR = 1/V ray.

4 R AY S AT I N T E R FA C E S : R E A L
V I S C O E L A S T I C A P P ROA C H

4.1 Viscoelastic Snell’s law in anisotropic media

Let us assume two homogeneous half-spaces separated by a
smoothly curved interface with normal n. This medium can be
viewed as a limiting case of a smoothly inhomogeneous medium
with a thin transition layer displaying a strong gradient, and the
width of the layer shrinking to zero. In this way, we can utilize the
ray tracing equations to derive Snell’s law. Accordingly, we imme-
diately see that: (1) complex traveltime along a ray is continuous,

and (2) the tangential component of vector pR is conserved across
the interface [see eq. (14)]:

pR
� = pR − n(pR · n) = constant. (23)

Since generally three waves are reflected and three waves are trans-
mitted at the interface in anisotropic viscoelastic media, we can
express Snell’s law in the following form:

p(W )R
� = p(0)R

� , (24)

where superscript 0 denotes the incident wave, and superscript W =
1, . . . , 6, denotes the type of scattered wave (P, S1 and S2 reflected,
and P, S1 and S2 transmitted). Eq. (24) is the real viscoelastic
Snell’s law. It is emphasized that Snell’s law constrains only the real
parts of slowness vectors pR, but not the complete complex-valued
slowness vectors p. For elastic media, eq. (24) transforms to the
elastic Snell’s law.

4.2 Slowness vectors p of scattered waves

The real viscoelastic Snell’s law prescribes the value of the tangen-
tial component of pR at the interface for all scattered waves. The
complete complex-valued slowness vector p must satisfy two con-
ditions. First, it must satisfy the Christoffel equation, and second, it
must be stationary. Let us decompose vector p into its normal and
tangential components as follows:

p = σ n + p� = σ n + pR
� + i pI

�, (25)

where vector n is the real-valued normal to interface � and σ is the
complex-valued scalar. We have to find σ and pI

� for each scattered
wave. If we assume that not only pR

� , but also pI
� is known, we can

calculate σ from the equation for the eigenvalue of the Christoffel
tensor �jk ,

det
(
� jk − δ jk

) = 0, (26)

which represents an algebraic equation of the 6th degree in σ .
Alternatively, we can follow Červený & Pšenčı́k (2005) and find
σ by solving the eigenvalue problem of the 6 × 6 complex-valued
matrix �,

det(� − σ I6) = 0, (27)

where Im denotes the m x m identity matrix and matrix � is ex-
pressed by four 3 × 3 submatrices,

� =
[

�11 �12

�21 �22

]
,

(28)

which are defined as follows

�11 = − [
C(1)

]−1
C(2) = �T

22, �12 = − [
C(1)

]−1
,

�21 = −I3 + C(4) − C(3)
[
C(1)

]−1
C(2), �22 = −C(3)

[
C(1)

]−1
,

(29)

with

C (1)
ik = ai jkln j nl , C (2)

ik = ai jkln j p�l ,

C (3)
ik = ai jkl p� j nl , C (4)

ik = ai jkl p� j p�l . (30)

Calculating σ , we can determine the complete slowness vector p,
and subsequently polarization vector g, complex energy velocity
vector v, and finally the ray direction N, N = v/v.

If vector pI
� is chosen arbitrarily, the above procedure will yield

a generally complex-valued ray direction N. Since the stationary
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slowness vector must predict real-valued ray direction N, the pro-
cedure must be inverted. The task for the inversion is to find two
real-valued components of vector pI

� which yield the real-valued
ray direction N. Since the magnitude of vector pI

� is usually small,
an inversion with iterations can be applied and several iterations
lead to success in most cases.

4.3 Viscoelastic Snell’s law in isotropic media

The real viscoelastic Snell’s law in isotropic media has the same
form as in anisotropic media [see eq. (24)]. However, calculating
the complete slowness vectors p of scattered waves is much simpler
in isotropy than in anisotropy. Since the stationary slowness vector
is homogeneous (see Section 3.2), vectors pR and pI are parallel,

p = pR + ipI = (V −1 + i A)N = V −1 (1 + i AV ) N, (31)

where N is the ray direction and A is the ray attenuation (see
Vavryčuk 2007b)

A = (c−1)I . (32)

No inversion problem for calculating pI has to be solved. The normal
component of vector pR is directly obtained as

pR
n = ±

√
V −2 − pR

� · pR
�, (33)

and the normal and tangential components of pI read

pI
n = AV pR

n , pI
� = AV pR

�. (34)

The sign in eq. (33) is chosen in the same way as in elastic media.
For subcritical incidences, the sign discriminates between reflected
and transmitted waves. For overcritical incidences, the slowness
vector p of transmitted wave becomes inhomogeneous and the sign
of its imaginary normal component must be chosen to satisfy the
radiation conditions.

5 R AY S AT I N T E R FA C E S :
A LT E R NAT I V E A P P ROA C H E S

5.1 Complex Snell’s law

The most accurate method for solving the complex eikonal equation
is the complex ray theory. In anisotropic smoothly inhomogeneous
media, we apply the complex ray tracing equations,

dxi

dτ
= ai jkl pl g j gk, (35)

dpi

dτ
= −1

2

∂a jkln

∂xi
pk pn g j gl , (36)

where all quantities are complex-valued including the ray trajectory
x = x (τ ). Only the start and endpoints of the ray (i.e. the source and
the receiver) lie in real space. This implies that viscoelastic stiffness
parameters aijkl = aijkl(x) usually considered as functions in real
space, must be defined as functions in complex space. Parameters
aijkl can be defined in complex space by analytical continuation of
aijkl from the real to the complex space. However, this procedure is
complicated and as yet applicable to simple models only.

At interfaces, we apply the continuity condition of the com-
plex traveltime and the complex Snell’s law (Borcherdt 1977, 1982;
Wennerberg 1985; Winterstein 1987; Caviglia & Morro 1992;
Carcione 2007; Červený 2007)

p(W )
� = p(0)

� , (37)

where superscript 0 denotes the incident wave and superscript W =
1, . . . , 6 denotes the type of scattered wave (P, S1 and S2 reflected,
and P, S1 and S2 transmitted). It is emphasized that the complex
Snell’s law constrains the real as well as the imaginary parts of the
tangential component p� of the slowness vectors, but not just
the real part pR

� as assumed in the real viscoelastic Snell’s law. The
normal components of p of the scattered waves must be calculated
at the interface using the Christoffel equation.

5.2 Elastic Snell’s law

A simple approximate method of incorporating attenuation into the
ray theory is tracing rays in the elastic reference medium and calcu-
lating the effects of attenuation using the first-order perturbations
(Gajewski & Pšenčı́k 1992; Vavryčuk 2008b). The ray tracing equa-
tions are identical with those for the elastic reference medium [see
Červený 2001, eq. (3.6.10)],

dx R
i

dτ R
= aR

i jkl pR
l gR

j gR
k , (38)

dpR
i

dτ R
= −1

2

∂aR
jkln

∂x R
i

pR
k pR

n gR
j gR

l , (39)

where all quantities are real-valued. The ray tracing equations are
supplemented by an additional equation for τ I [see Gajewski &
Pšenčı́k 1992, eq. (10); Vavryčuk 2008b, eq. (59)]

dτ I

dτ R
= −1

2
aI

i jkl pR
i pR

l gR
j gR

k . (40)

At interfaces, the elastic Snell’s law reads,

p(W )R
� = p(0)R

� . (41)

The imaginary parts of the slowness vectors p are identically zero.
The elastic ray approach is approximate and works mostly for

weakly attenuating media. Its accuracy can be enhanced by incor-
porating higher-order perturbations (Klimeš 2002). In several as-
pects, the elastic and viscoelastic ray approaches are similar. Both
approaches solve x, pR and τ I as a function of τR and produce real
rays. However, the computed ray fields and traveltime τ = τ (x) are
not identical. The differences are more pronounced in media with
strong attenuation. In media with weak attenuation, the differences
between both approaches are of the order of the second and higher
perturbations.

6 R E F L E C T I O N / T R A N S M I S S I O N
C O E F F I C I E N T S

Having established the Snell’s law in viscoelastic media we can
readily derive formulae for the viscoelastic ray-theoretical reflec-
tion/transmission (R/T) coefficients. The displacement and traction
vectors u(x, ω) and T(x, ω) of any of the waves at the interface can
be expressed in the following way:

u(W ) (x, ω) = c(W ) g(W ) exp[iωτ (W )(x)],

T(W ) (x, ω) = c(W )σ (W ) exp[iωτ (W )(x)], (42)
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where c(0) = 1 is the unit scalar amplitude of the incident wave, and
c(W ), W = 1, . . . , 6 is the displacement R/T coefficient of the W th
scattered wave. Vector σ (W ) is the amplitude-normalized traction
vector:

σ
(W )
i = ρ(I )a(I )

i jkln j g
(W )
k p(W )

l . (43)

Superscript I = 1,2 identifies the half-space, in which the wave
propagates. Displacement and traction at the interface must satisfy
boundary conditions requiring their continuity across the interface.
Since the complex traveltime is continuous along a ray across the
interface:

τ (0) (x) = τ (W ) (x) , W= 1, . . . , 6, (44)

we can omit the common exponential factor exp[iωτ (W )(x)] in eq.
(42) when considering the boundary conditions. If we introduce a
6-vector d(W ) for each wave

d(W ) = ±
[

g(W )

σ (W )

]
, (45)

where the plus sign stands for the reflected wave and the minus sign
for the transmitted and incident waves, we can express the boundary
conditions by the following equation:

Dc = d(0). (46)

Subsequently, we obtain

c = D−1d(0), (47)

where D is the 6 × 6 matrix called the displacement-stress matrix,
d(W ) is the displacement-stress vector of the W th wave, and c is the
6-vector of the displacement R/T coefficients:

D = [ d(1) d(2) d(3) d(4) d(5) d(6) ],

c = [ R P RS1 RS2 T P T S1 T S2 ]T . (48)

In isotropic media, eq. (47) disintegrates into two separate equa-
tions: the first one for the R/T coefficients of the P-SV waves,
and the second one for the R/T coefficients of the SH waves. The
both equations can be solved explicitly and their solutions are well
known.

The formulae for the ray-theoretical viscoelastic R/T coefficients
in isotropic or anisotropic media are formally identical to those
valid for the R/T coefficients of the plane waves in viscoelastic
isotropic or anisotropic media. The only difference is that the slow-
ness vectors of the incident and scattered waves are calculated in
a different way (see Sections 4 and 5). Since the slowness vectors
calculated according to the real viscoelastic Snell’s law are approx-
imate, the boundary conditions at the interface are satisfied only
approximately. Consequently, the viscoelastic R/T coefficients ap-
plied to the propagation of plane waves are less accurate than the
R/T coefficients calculated using the complex Snell’s law. A more
accurate result is obtained if the complex traveltime across the in-
terface is calculated according to the viscoelastic Snell’s law but the
slowness vectors of the scattered waves needed in the formulae for
the R/T coefficients are calculated as gradients of the traveltime.

The calculation of the R/T coefficients for overcritical incidences
is more involved. The slowness vector of the transmitted wave is no
more stationary and the viscoelastic Snell’s law must be modified. In
this case, the tangential component of the ray direction N along the
interface is real, but the normal component of N is pure imaginary.
The sign of the normal component of N should be taken in such a
way the transmitted wave to satisfy the radiation conditions (Krebes
& Daley 2007).

Table 1. Viscoelastic parameters of Models A.

Model
Upper

half-space
Lower

half-space

μR/ρ Q μR/ρ Q

A1 1.0 5 0.5 2.5
A2 1.0 25 0.5 12.5
A3 1.0 50 0.5 25

Note: μR/ρ is in km2 s−2. Density ρ is 1000 kg m−3.

Table 2. Viscoelastic parameters of Models B.

Model Upper half-space Lower half-space

a R
44 a R

66 Q44 Q66 a R
44 a R

66 Q44 Q66

B1 1.2 2.4 6 6 0.6 1.2 3 3
B2 1.2 2.4 30 30 0.6 1.2 15 15
B3 1.2 2.4 60 60 0.6 1.2 30 30

Note: a R
44 and a R

66 are in km2 s−2. Density ρ is 1000 kg m−3.

7 N U M E R I C A L E X A M P L E S

7.1 Medium model

In this section, the efficiency of the approaches presented above is
tested numerically. The model of the medium consists of two ho-
mogeneous viscoelastic half-spaces. The half-spaces are in welded
contact and the medium density is the same in both half-spaces. Two
models are studied: Model A consisting of two isotropic half-spaces
and Model B consisting of two transversely isotropic half-spaces
with a vertical axis of symmetry. For both models, three levels of
attenuation are considered, ranging from extremely strong attenua-
tion with Q of 2.5–3.0 to moderate attenuation with Q of 25–30 (see
Tables 1 and 2). The models with the extremely strong attenuation
are unrealistic and probably do not reflect any seismic structure.

Figure 1. Position of the point of incidence of a complex ray at the interface
x3 = −1 for Model A1 as a function of the receiver position in the lower
half-space. The real (a) and imaginary (b) parts of the coordinate x1 of the
incidence point at the interface are shown in colours being the function of
the receiver position. The colour scale, and the horizontal and vertical scales
are in kilometres.
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Here they are used to check the robustness of the developed ray
methods.

The accuracy of the eikonal equation is studied for the direct and
transmitted SH waves. The direct wave is generated by the point
source situated at the origin of coordinates and lying in the upper
half-space. The interface is horizontal at depth x3 = −1 km. The
area under study lies in the vertical plane x1–x3 being delimited
by x1 between 0 and 5 km and by x3 between 0 and −3 km. The
traveltimes are calculated in a grid with steps of 0.01 km in both
horizontal and vertical directions.

The accuracy of the R/T coefficients is studied for plane SH
waves. The incident wave propagates in the upper half-space. The
angle of incidence ranges from 0◦ to 90◦ with step of 0.1◦. No

overcritical incidences appear in the models used. The overcritical
incidences are avoided in the numerical modelling because they can
cause difficulties in the complex ray theory in selecting a proper sign
of the normal component of the slowness vector at the interface (see
Krebes & Daley 2007).

7.2 Accuracy of the eikonal equation

7.2.1 Complex rays

Since the half-spaces are homogeneous, rays calculated by the com-
plex ray tracing equations (35) and (36) are straight lines. If the
source and receiver lie in the same half-space, the rays are straight

Figure 2. Complex traveltime and its errors in Model A1. (a) Real part of the exact traveltime, τ R , (b) imaginary part of the exact traveltime, τ I , (c) errors of
τ R produced by the real viscoelastic ray method, (d) errors of τ I produced by the real viscoelastic ray method, (e) errors of τ R produced by the real elastic ray
method, (f) errors of τ I produced by the real elastic ray method. The traveltime (a,b) is in seconds, the errors of the traveltime (c–f) are in per cent. The dashed
line shows the interface. The horizontal and vertical scales are in kilometres.

C© 2010 The Author, GJI, 181, 1665–1677

Journal compilation C© 2010 RAS



Rays at interfaces in viscoelastic media 1671

lines in the real space. If the source and receiver lie in different
half-spaces, the rays are the piecewise straight lines in the complex
space. The complex rays change their directions at the interface ac-
cording to the complex Snell’s law. The geometry of complex rays is
calculated according to Appendix A. The slowness vector of a wave
outgoing from the source is generally inhomogeneous. For a direct
wave, slowness vector p is stationary (see Vavryčuk 2007a,b). The
energy velocity vector v and traveltime τ are calculated using eqs
(A2) and (A3), respectively. For a transmitted wave, the slowness
vector p of the wave outgoing from the source is non-stationary. In
Models A, the slowness vector is calculated using eqs (A12) and
(A13); in Models B, it is calculated using eqs (A10) and (A11).
The complex traveltime is calculated using eq. (A9). The point of
incidence of a ray at the interface lies in the complex space having
a non-zero imaginary coordinate x1.

7.2.2 Real rays

The real-ray approaches are simpler than the complex-ray approach.
The real elastic and viscoelastic rays are calculated using eqs
(38–39) and (15–16), respectively. The rays are real straight lines in
both half-spaces and change their direction at the interface accord-
ing to the corresponding Snell’s law (elastic or viscoelastic). In the
elastic-ray approach, all quantities along a real ray are real-valued
except for the traveltime. The imaginary part of the traveltime is
calculated using eq. (40). In the viscoelastic-ray approach, the wave

Figure 4. Position of the point of the incidence of a complex ray at the
interface x3 = −1 for Model B1 as a function of the receiver position in the
lower half-space. The real (a) and imaginary (b) parts of the coordinate x1 of
the incidence point at the interface are shown in colours being the function
of the receiver position. The colour scale, and the horizontal and vertical
scales are in kilometres.
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Figure 3. Isochrones in Model A1. Blue line—exact solution calculated using the complex ray theory, red line—approximate solution calculated using the
real viscoelastic ray method (a,b), and using the real elastic ray method (c,d). Left-hand plots show the isochrones of the real part of the complex traveltime,
right-hand plots show the isochrones of the imaginary part of the complex traveltime. The steps in the real and imaginary isochrones are 0.5 and 0.1s,
respectively. The dashed line shows the interface. The vertical and horizontal scales are in kilometres.
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Figure 5. Complex traveltime and its errors in Model B1. (a) Real part of the exact traveltime, τ R , (b) imaginary part of the exact traveltime, τ I , (c) errors of
τ R produced by the real viscoelastic ray method, (d) errors of τ I produced by the real viscoelastic ray method, (e) errors of τ R produced by the real elastic ray
method, (f) errors of τ I produced by the real elastic ray method. The traveltime (a,b) is in seconds, the errors of the traveltime (c–f) are in per cent. The dashed
line shows the interface. The horizontal and vertical scales are in kilometres.

quantities along a real ray are generally complex-valued. The com-
plex slowness vector is inhomogeneous, but the complex energy
velocity vector is homogeneous. This applies to the direct as well
as transmitted wave. The imaginary part of the traveltime is calcu-
lated by applying the quadrature along the ray [see eq. (17)]. For a
direct wave, the real viscoelastic-ray approach yields an identical
solution with the complex-ray approach. For a transmitted wave, the
approaches yield different results.

7.2.3 Comparison of real and complex rays

The most accurate solution of the complex eikonal equation is ob-
tained using complex ray tracing. The crucial step of the complex

ray tracing is to find the point of incidence of a complex ray of the
transmitted SH wave at the interface. The start point of a ray is at
the source (at the origin of coordinates), and the endpoint is at the
grid of receivers in the lower half-space. The start and endpoints lie
in the real space, but the point of incidence of a ray at the interface
is in complex space. The positions of the incidence points for the
transmitted SH wave in Model A1 are shown in Fig. 1. The real and
imaginary coordinates of the incidence point vary in dependence on
the position of the receiver. For near-vertical incidences the complex
rays do not deviate much from the real plane xR

1 − xR
3 . However,

for shallower incidences and for greater depths of the receivers, the
complex rays can deviate significantly from this plane. Obviously,
we can expect that, in this area, the approximate real-ray approaches
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Figure 6. Isochrones in Model B1. Blue line—exact solution calculated using the complex ray theory, red line—approximate solution calculated using the
real viscoelastic ray method (a,b), and using the real elastic ray method (c,d). Left-hand plots show the isochrones of the real part of the complex traveltime,
right-hand plots show the isochrones of the imaginary part of the complex traveltime. The steps in the real and imaginary isochrones are 0.5 and 0.1 s,
respectively. The dashed line shows the interface. The vertical and horizontal scales are in kilometres.

will reproduce the solution of the eikonal equation with the lowest
accuracy.

Fig. 2 shows the exact complex traveltime in Model A1 calculated
by complex ray tracing (Figs 2a and b) together with errors produced
by real viscoelastic ray tracing (Figs 2c and d) and by elastic ray
tracing (Figs 2e and f). The errors are calculated at each point of
the grid using the following formulae:

eR = (τ aprox)R − (τ exact)R

(τ exact)R
100 per cent,

eI = (τ aprox)I − (τ exact)I

(τ exact)I
100 per cent. (49)

The maximum errors eR and eI of the complex traveltime τ calcu-
lated by the real viscoelastic method attain values of up to 5.3 ×
10−2 and 4.6 × 10−2 per cent, respectively. The real elastic ray
method yields errors of up to 4.6 per cent in τR and 8.6 per cent
in τ I . Hence, the accuracy of the viscoelastic ray method is about
100 times higher than that of the elastic ray method. Interestingly,
the area of the significant deviation of complex rays from the real
plane xR

1 − xR
3 (see Fig. 1) matches the area of low accuracy only

very roughly and just for the real viscoelastic rays (see Figs 2c
and d). The errors produced by elastic ray tracing display quite a
different pattern: the errors mainly reflect inadequate modelling of
the traveltime in the extremely attenuating lower half-space (Q =
2.5). This is confirmed in Fig. 3, which shows a comparison of

Table 3. Errors in the complex traveltime produced by real ray methods.

Model Elastic rays Viscoelastic rays

eR (percent) eI (percent) eR (percent) eI (percent)

A1 4.6 8.6 5.3 × 10−2 4.6 × 10−2

A2 1.9 × 10−1 3.5 × 10−1 2.2 × 10−3 2.2 × 10−3

A3 4.8 × 10−2 8.9 × 10−2 5.6 × 10−4 5.6 × 10−4

B1 3.2 6.0 1.1 × 10−1 1.8 × 10−1

B2 1.3 × 10−1 2.5 × 10−1 4.6 × 10−3 7.4 × 10−3

B3 3.4 × 10−2 6.2 × 10−2 1.1 × 10−3 1.9 × 10−3

exact and approximate isochrones. The real viscoelastic ray tracing
reproduces the isochrones quite well; no differences between the
exact and approximate isochrones are observed (see Figs 3a and b).
However, the real elastic ray tracing produces isochrones deviating
from the exact ones. The deviation is particularly visible at greater
depths of the lower half-space (see Figs 3c and d).

Figs 4–6 display analogous quantities as Figs 1–3, but for Model
B1. The results of the numerical modelling for all models are sum-
marized in Table 3. The table shows that the real viscoelastic ray
tracing is more accurate than the elastic ray tracing in all models.
The accuracy is at least 20 times higher for viscoelastic rays than
for elastic rays. As expected, in models with low attenuation, the
accuracy of both methods increases.
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Figure 7. Reflection/transmission coefficients for the plane SH waves in model A1. Black line—exact coefficients, blue line—coefficients calculated by the
viscoelastic ray approach, red line—elastic coefficients.

7.3 Accuracy of the R/T coefficients

Finally, we examine the accuracy of the R/T coefficients calculated
using the viscoelastic ray approach. The viscoelastic R/T coeffi-
cients are compared with the exact plane-wave R/T coefficients cal-
culated using the complex Snell’s law and with the standard elastic
plane-wave R/T coefficients when attenuation is fully neglected.

Fig. 7 shows the phases and moduli of the SH-wave R/T coef-
ficients for model A1, which is characterized by extremely strong
attenuation. The differences between the three different methods
applied are mainly visible in the phase of the reflection coefficient.
The phase of the elastic reflection coefficient is zero for incidences

between 0◦ and the Brewster angle (54.7◦), and 180◦ for incidences
between the Brewster angle and 90◦. At the Brewster angle, the
phase is discontinuous. The phase of the real viscoelastic and exact
plane-wave reflection coefficients is 15.7◦ for a normal incidence
and gradually increases up to 180◦ for the incidence of 90◦. The
phase is smooth having the highest gradient at the Brewster angle.
The differences in the phase of the transmission coefficient calcu-
lated by the three methods are insignificant being less than 5◦. Also
the differences in the moduli are almost invisible except for the
reflection coefficient in a close vicinity of the Brewster angle.

Fig. 8 shows the phases and moduli of the SH-wave R/T co-
efficients for model A2, which has twice lower attenuation than
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Figure 8. Reflection/transmission coefficients for the plane SH waves in model A2. Black line—exact coefficients, blue line—coefficients calculated by the
viscoelastic ray approach, red line—elastic coefficients.

model A1. In this case, the differences in the R/T coefficients are
practically negligible. The same applies to model A3 characterized
by four times lower attenuation than model A1.

The R/T coefficients in models B1–B3 behave in a similar way
as in models A1–A3, so they are not shown here.

8 D I S C U S S I O N

The most accurate approach for calculating rays in anisotropic vis-
coelastic media is the complex ray theory. The rays are calculated
using complex ray tracing equations in smoothly inhomogeneous
media and obey the complex Snell’s law at the interface. The com-

plex Snell’s law constrains complex tangential components of slow-
ness vector p. The normal components are calculated using the
Christoffel equation. The start and endpoints of a complex ray lie
in the real space, but the point of incidence at the interface lies in
the complex space.

Less accurate but computationally more efficient approaches are
the real viscoelastic and elastic ray methods. The ray tracing equa-
tions are simpler and produce real rays. At the interface, the rays
obey the real viscoelastic or elastic Snell’s law, respectively. The real
Snell’s laws bind the tangential components of the real part of slow-
ness vectors pR

� . All wave quantities along a real ray in the elastic ray
approach are real-valued except for the traveltime. The imaginary

C© 2010 The Author, GJI, 181, 1665–1677

Journal compilation C© 2010 RAS



1676 V. Vavryčuk

part of the traveltime is calculated by applying the quadrature along
the ray. In the viscoelastic ray approach, the wave quantities along a
ray are complex-valued. The complex-valued slowness vector must
be stationary. Similarly as in the elastic ray approach, the imaginary
part of the traveltime is calculated by applying the quadrature along
a ray.

Applying the real viscoelastic Snell’s law is more involved than
applying the elastic Snell’s law. In the elastic ray theory, the slowness
vector is real-valued. The elastic Snell’s law constrains its tangen-
tial components pR

� , and the normal components pR
n are calculated

using the Christoffel equation. The sign of pR
n is selected accord-

ing to the proper ray direction and the radiation conditions. In the
viscoelastic ray theory, the slowness vector is complex-valued. The
viscoelastic Snell’s law constrains the real parts of the tangential
components pR

� , but not the imaginary parts pI
� . Therefore, to de-

termine the complete slowness vector of scattered waves, the other
missing components: pR

n , pI
� and pI

n, must be calculated. The com-
ponents pR

n and pI
n are calculated using the Christoffel equation,

the component pI
� can be found using the condition of the station-

arity of the slowness vector. However, this computation cannot be
done at one step, but by iterations. At this point, the procedure is
different from that applied to the complex ray theory. In calculat-
ing the complex slowness vector by applying the complex Snell’s
law, the tangential components of the complete slowness vector p�

are conserved. This condition is stronger than that required by the
real viscoelastic Snell’s law. Consequently, normal component pn

can be calculated more easily in the complex ray approach, and
no procedure with iterations is needed. In isotropic media, the real
viscoelastic ray approach simplifies. Since the slowness vector is
homogeneous for all scattered waves, no iterations are needed in
calculating the missing components of p: pR

n , pI
� and pI

n.
Numerical modelling shows that the real viscoelastic ray ap-

proach is highly accurate in calculating the traveltimes as well as
the R/T coefficients. Isotropic and anisotropic models with various
levels of attenuation ranging from extremely strong (Q = 2.5–3) to
moderate attenuation (Q = 25–30) have been used to demonstrate
that the real viscoelastic approach is at least 20 times more accurate
than the real elastic ray approach when calculating the traveltimes.
Also the R/T coefficients are reproduced with a higher accuracy by
the real viscoelastic ray approach than by the elastic ray approach.

Numerical modelling also reveals that the accuracy of solving
the complex eikonal equation and of calculating the R/T coeffi-
cients rapidly increases with decreasing attenuation. In media with
Q higher than 100, the differences between the approximate (elas-
tic or viscoelastic) and exact viscoelastic solutions are practically
negligible. This implies that the real viscoelastic ray approach can
find applications mainly in solving wave propagation problems in
rather strongly attenuating media such as in unconsolidated sed-
imentary rocks. In media with weak attenuation, a simple elastic
ray approach considering the attenuation effects as perturbations is
fully sufficient. Similarly, if the Q-factor is not extremely variable
with frequency then the frequency dependence of the ray fields and
the R/T coefficients can be omitted.
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A P P E N D I X A : C O M P L E X R AY T R A C I N G
I N A M E D I U M W I T H T W O
H O M O G E N E O U S H A L F - S PA C E S

Let us assume two homogeneous viscoelastic half-spaces separated
by a plane horizontal interface at x3 = 0. The source is situated
in the upper half-space and the receiver in the lower half-space.
Both source and receiver lie in the x-z plane. The homogeneous
half-spaces defined in the real space are analytically continued to be
homogeneous in the complex space. The interface in the complex
space is defined by x3 = xR

3 + i x I
3 = 0.

The solution of the complex ray tracing equations (35–36) is
elementary in both half-spaces and yields

xi = vi τ, (A1)

where energy velocity vector v,

vi = ai jkl g j gk pl , (A2)

and slowness vector p are constant along the complex ray. If the
source and receiver lie in the same half-space, the ray defined as
x = x (τ ) is a straight line in real space. The complex energy ve-
locity vector v is homogeneous and slowness vector p is stationary.
The stationary slowness vector p can be calculated using the proce-
dure described in Vavryčuk (2007a,b). The complex traveltime τ is
expressed as

τ = p · x, (A3)

and its real and imaginary parts are related by the following equa-
tion:

τ I = − v I

vR
τ R . (A4)

If the source and receiver lie in different half-spaces, the ray consists
of two straight line segments. Both segments are, in general, in
complex space, only the start and endpoints of the ray lie in real
space. If we denote the ray segments in the upper and lower half-

spaces by superscripts A and B, respectively,

x1 = x A
1 + x B

1 , x A
1 = vA

1

vA
3

x A
3 , x B

1 = vB
1

vB
3

x B
3 , (A5)

and taking into account that

tan i A = vA
1

vA
3

, tan i B = vB
1

vB
3

, (A6)

we obtain

x1 − x A
3 tan i A − x B

3 tan i B = 0, (A7)

where x1 is the horizontal distance between the source and the
receiver, i A and i B are angles of a ray at the source and receiver,
respectively. Coordinates x1, xA

3 and xB
3 are real, angles i A and i Bare

complex. The ray angles i A and i B are functions of slowness vectors
pA and pB at the source and at the receiver and can be calculated by
applying eqs (35) and (A6). The horizontal component of slowness
vector pB is obtained from pA by applying the complex Snell’s law
at the interface:

pA
1 = pB

1 . (A8)

The vertical component of pB is obtained using the Christoffel
equation. Hence, eq. (A7) is actually the equation for the unknown
complex take-off angle iA

p of slowness vector pA. Having calcu-
lated angle iA

p , and consequently slowness vectors pA and pB, the
traveltime comes out as

τ = τ A + τ B = pA
1 x1 + pA

3 x A
3 + pB

3 x B
3 . (A9)

In transversely isotropic media, eq. (A7) simplifies for the SH wave
to

x1 − x A
3

a A
66

a A
44

tan i A
p − x B

3

aB
66

aB
44

tan i B
p = 0, (A10)

where

tan i A
p = pA

1
pA

3
,

tan i B
p = pB

1
pB

3
= pA

1
pB

3
. (A11)

In isotropic media, eq. (A7) yields for the P or S waves

x1 − x A
3 tan i A

p − x B
3 tan i B

p = 0, (A12)

where

tan i A
p = pA

1√
(cA )−2−(pA

1 )2
,

tan i B
p = pA

1√
(cB )−2−(pA

1 )2
. (A13)

Quantities cA and cB are the complex phase velocities in the upper
and lower half-spaces, respectively.
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