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S U M M A R Y
The moment tensors are unique and describe the body force equivalents of rupture processes in
any medium including faulting at a material interface, defined as the contact of two media with
non-zero velocity or density contrasts. From a practical point of view, however, the moment
tensor inversion of sources near or at a material interface is more involved than if the medium
is smooth in the source area. First, the moment tensors of sources characterized by the same
displacement discontinuity display jumps when the source crosses the interface. Consequently,
the moment tensors become sensitive to the source location. If the source lies near the interface,
the location into an incorrect half-space can introduce errors in the moment tensor. Second,
if the source lies at the material interface, some of the spatial derivatives of the Green’s
function are, in general, discontinuous and the radiated wave field must be calculated using a
generalized representation theorem. Third, the moment tensors are functions of averaged elastic
parameters known from effective medium theory. The theory implies that shear faulting at a
material interface in isotropic media is represented by the standard double-couple moment
tensor. The scalar seismic moment is calculated as a product of the displacement discontinuity
across the fault, the fault size and the effective rigidity at the fault. The effective rigidity is the
harmonic mean of rigidities at the individual sides of the fault.

Key words: Earthquake dynamics; Earthquake source observations; Body waves; Seismic
anisotropy; Dynamics and mechanics of faulting.

1 I N T RO D U C T I O N

The moment tensor was introduced as a mathematical representa-
tion of forces associated with an earthquake rupture (Burridge &
Knopoff 1964; Backus & Mulcahy 1976a,b). The forces described
by the moment tensor, however, are not the actual forces acting at the
source. Since the rheological properties of the material at the fault
are usually strongly non-linear and known vaguely, a proper stress–
strain relation cannot be established, and the actual forces in such a
complex environment cannot be accurately retrieved. Nevertheless,
the non-linear behaviour of the material is mainly limited just to
a fault gouge and the surrounding medium can be described well
by elastic or viscoelastic parameters. For this reason, the moment
tensor ignores the forces associated with the non-linear rheology at
the fault and with rupturing itself. The fault is assumed to be an
artificial internal surface inside the elastic medium along which the
body forces are distributed producing the waves and static defor-
mations in the medium outside the fault. This description proved
to be useful and became widely used in seismological practice for
quantifying seismic sources in the point source approximation. The
moment tensor is now a standard quantity evaluated for earthquakes
on all scales from acoustic emissions to large devastating earth-
quakes (Dziewonski et al. 1981; Sipkin 1982; Fukuyama et al. 2001;

Pondrelli et al. 2002). The moment tensors are used to quantify the
moment magnitude, double-couple as well as non-double-couple
focal mechanisms (Frohlich 1994; Lay & Wallace 1995; Julian et
al. 1998; Miller et al. 1998; Vavryčuk 2001, 2002, 2011; Kanamori
& Brodsky 2004), and help understand physical processes at the
earthquake source.

Even though the moment tensor is a fundamental quantity de-
scribing the earthquakes in the point-source approximation, some
authors question the usefulness and unambiguity of the moment ten-
sor. The confusions mostly arise for earthquakes at faults forming
a contact of two media with non-zero velocity or density contrasts
(Woodhouse 1981; Heaton & Heaton 1989a,b; Ben-Zion 2001; Am-
puero & Dahlen 2005). Such earthquakes have been studied theo-
retically (Ben-Zion 1989, 1990; Ben-Zion & Andrews 1998; Shi
& Ben-Zion 2009) as well as observed in various tectonic settings
(Le Pichon et al. 2005; Houlie & Romanowicz 2011; Ozakin et al.
2012). The rupturing along the faults at a material discontinuity
interface might also have some interesting consequences for the
migration of aftershock activity (Rubin 2002; Rubin & Ampuero
2007; Zaliapin & Ben-Zion 2011).

The family of earthquakes at faults forming a material inter-
face cannot be described using the standard theory of moment
tensors. For example, theory predicts the scalar seismic moment
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M0 of shear faulting in an isotropic medium in the following
form:

M0 = μ [u] S, (1)

where μ is the rigidity of the medium, [u] is the average slip (dis-
placement discontinuity) on the fault and S is the fault size. If the
rigidity of the medium is different at both sides of the fault, it is
not obvious, how to evaluate the scalar moment. To overcome this
difficulty, Wu & Chen (2003) proposed to substitute rigidity μ in
eq. (1) with effective rigidity μ∗:

M0 = μ∗ [u] S (2)

expressed as

μ∗ = 2
μ+μ−

μ+ + μ− , (3)

where μ+ and μ−are values of the rigidity at the individual sides
of the fault. However, Ampuero & Dahlen (2005) argue that eqs (2)
and (3) cannot be viewed as the only possible prescription of the
scalar moment. They argue that theory is inherently ambiguous and
does not constrain the scalar moment uniquely. They conclude that
a more appropriate description of earthquake sources is obtained
if source (potency) tensors are applied. These tensors avoid the
problem of ambiguous rigidity μ because they are no longer related
to forces but to deformations at the fault only.

In this paper, I reopen the debate about the ambiguity of the
moment tensor for earthquakes occurring at a material interface. I
show that correct application of theory leads to a unique moment
tensor even for such a difficult case as that discussed earlier.

2 R E P R E S E N TAT I O N T H E O R E M F O R
S O U RC E S I N A S M O O T H M E D I U M

2.1 Single body forces

The equation of motion in elastic anisotropic media reads

ρüi − τi j, j = fi , (4)

where u = u (x, t) is the displacement, ρ = ρ (x) is the mass density,
τi j = τi j (x, t) is the stress tensor, f = f (x, t) is the body force,
ci jkl = ci jkl (x) is the stiffness tensor, x is the position vector, and t
is time. The stress tensor is expressed using Hooke’s law as

τi j = ci jklεkl , (5)

where εkl = εkl (x, t) is the strain tensor

εkl = 1

2
(uk,l + ul,k) . (6)

Eq. (4) is often solved using Green’s function Gin = Gin (x, t ; ξ , τ )
defined as the solution of the following equation:

ρG̈in − (ci jkl Gkn,l ), j = δinδ (x − ξ ) δ (t − τ ) (7)

under appropriate boundary and initial conditions. Displacement u
is expressed as

ui (x, t) =
∞∫

−∞

dτ

∫ ∫ ∫
fn(ξ , τ )Gin(x, t ; ξ , τ ) dV (ξ ) (8)

or simply

ui = fn ∗ Gin, (9)

where symbol ‘∗’ stands for the space–time convolution, and ξ and
τ are the position vector and time at the source.

Figure 1. Force couple at a fault in a smooth medium (a) and at a material
interface (b).

2.2 Dipole body forces

The body forces f (ξ , τ ) associated with the earthquake source have
some specific properties. First, the forces must satisfy a condition
of the inner source. The condition requires the total force and the
total torque at the source to be zero (Aki & Richards 2002, eqs 3.6
and 3.7):∫ ∫ ∫

V
f(ξ , τ ) dV (ξ ) = 0,

∫ ∫ ∫
V

(ξ − ξ 0) × f(ξ , τ ) dV (ξ ) = 0, (10)

for all τ and any fixed ξ 0. Second, the forces are not distributed
in a volume, but rather along fault �. And third, the source need
not be necessarily represented by single forces but mostly by dipole
forces.

For dipole forces, displacement u (x, t) is obtained as the sum of
displacements u+ (x, t) and u− (x, t), produced by individual single
forces f+(ξ+

, τ ) and f−(ξ−
, τ ), forming a force couple, f+ = −f−

(see Fig. 1a)

ui (x, t) = u+
i (x, t) + u−

i (x, t) = f +
k ∗ G+

ik + f −
k ∗ G−

ik, (11)

and diminishing the force arm to zero

ui (x, t) = lim
dξl →0

(
fkdξl ∗ G+

ik − G−
ik

dξl

)

= mkl ∗ lim
dξl →0

(
G+

ik − G−
ik

dξl

)
. (12)

Hence,

ui (x, t) = mkl ∗ Gik,l , (13)

where

Gik,l = lim
dξl →0

(
G+

ik − G−
ik

dξl

)
(14)

is the spatial derivative of the Green’s function with respect to the
position vector ξ at the source, and

mkl = lim
dξl →0

(
fkdξl

)
(15)

is the moment density of force (or the moment density tensor), and
f = f+ = −f−. If we assume dipole forces distributed along fault
�, the representation theorem (13) is further expressed as follows:

ui (x, t) =
∫ ∞

−∞
dτ

∫ ∫
�

mkl (ξ , τ )
∂

∂ξl
Gik(x, t ; ξ , τ ) d� (ξ ) . (16)
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2.3 Moment tensor

Displacement u (x, t) generated by an earthquake source can also
be expressed in terms of displacement discontinuity [u] along fault
� using the Betti’s theorem (Aki & Richards 2002, eq. 3.2):

ui (x, t) =
∫ ∞

−∞
dτ

∫ ∫
�

[un(ξ , τ )]cnjkl n j
∂

∂ξl
Gik(x, t ; ξ , τ ) d� (ξ ) ,

(17)

where n is the normal to the fault �. Comparing eqs (16) and (17)
we readily obtain for the moment density tensor mkl

mkl = ci jkl [ui ] n j . (18)

For a point source approximation, we define seismic moment tensor
M as

Mkl =
∫ ∫

�

mkl d� = Sci jkl [ui ] n j , (19)

where S is the fault size, cijkl are the average elastic parameters
along the fault, [u] is the average displacement discontinuity along
the fault, and n is the normal of the (planar) fault.

3 R E P R E S E N TAT I O N T H E O R E M F O R
S O U RC E S AT A M AT E R I A L I N T E R FA C E

3.1 Single body forces

Displacement u (x, t) produced by a single force at a contact of two
media is obtained in the same way as in the smooth medium

ui = fn ∗ Gin, (20)

where the appropriate Green’s function must be taken into account.
Similarly as in the smoothly inhomogeneous medium, the Green’s
function for the source at an interface is uniquely defined and is
continuous when the source crosses the material interface (Heaton
& Heaton 1989a; Jı́lek & Červený 1996). However, the spatial
derivatives of the Green’s function are, in general, discontinuous
at the interface (Heaton & Heaton 1989a), and consequently, the
representation theorem for dipole sources at the interface and the
expression for the moment tensor are more involved.

3.2 Dipole body forces

Displacement u (x, t) produced by a dipole force at a material inter-
face can be expressed similarly as in smooth media as the sum of
displacements u+ (x, t) and u− (x, t), produced by individual single
forces f+(ξ+

, τ ) and f−(ξ−
, τ ), forming the dipole force, f+ = −f−

(see Fig. 1b):

ui (x, t) = u+
i (x, t) + u−

i (x, t) = f +
k ∗ G+

ik + f −
k ∗ G−

ik, (21)

and diminishing the force arm to zero

ui (x, t) = lim
dξl →0

(
fkdξl ∗ G+

ik − G−
ik

dξl

)

= mkl ∗ lim
dξl →0

(
G+

ik − G−
ik

dξl

)
, (22)

where mkl = limdξl →0

(
fkdξl

)
is the moment density tensor, and

f = f+ = −f−. Since some of the spatial derivatives of the Green’s
function are, in general, discontinuous at interface � (Heaton &

Heaton 1989a) but continuous outside the interface, we can write

lim
dξl →0

(
G+

ik − G−
ik

dξl

)
= lim

dξl →0

(
1

2

(
G+

ik − G�
ik

) + (
G�

ik − G−
ik

)
dξl/2

)

= 1

2

(
G+

ik,l + G−
ik,l

)
, (23)

where G�
ik is the Green’s function at the interface, and the spatial

derivatives of the Green’s function G+
ik,l and G−

ik,l are the limits of
the derivatives calculated with respect to the position vector ξ at the
source from both sides of interface �.

Finally, the generalized representation theorem for sources at the
material interface reads

ui (x, t) = mkl ∗ 〈
Gik,l

〉
, (24)

where

〈
Gik,l

〉 = 1

2

(
G+

ik,l + G−
ik,l

)
(25)

is the average spatial derivative of the Green’s function at the inter-
face. Obviously, eq. (25) holds also for continuous spatial derivatives
of the Green’s function across the interface (i.e. for the derivatives
with respect to coordinates parallel to the material interface).

4 M O M E N T T E N S O R O F S O U RC E S
N E A R A N D AT A M AT E R I A L
I N T E R FA C E

4.1 Discontinuity of the moment tensor across the
interface

Let us assume three earthquake sources characterized by the same
displacement discontinuity [u]. Two sources will be situated at the
first and second half-spaces, respectively, but infinitesimally close to
the material interface. The third source will be situated exactly at the
interface. Since the sources are characterized by the same displace-
ment discontinuity [u] and the source positions are infinitesimally
close each to the other, all three sources produce the same displace-
ment field u (x, t). Taking into account representation theorems (13)
and (24), we can write:

ui (x, t) = m+
kl ∗ G+

ik,l = m−
kl G−

ik,l = mkl ∗ 〈
Gik,l

〉
, (26)

where m+
kl and m−

kl are the moment density tensors of sources situ-
ated at the first and second half-spaces, respectively,

m+
kl = c+

i jkl [ui ] n j , (27)

m−
kl = c−

i jkl [ui ] n j , (28)

and mkl is the moment density tensor of the source at the interface.
Eqs (27) and (28) imply that the moment tensors display jumps
when the source crosses the material interface. This observation
seems apparently surprising but it reflects a simple fact that the
moment tensors represent equivalent body forces but not equivalent
tractions at the fault. Although the moment tensors are different
for the three considered sources, their tractions are identical. The
condition of continuity of traction across the material interface will
be used in the next section for deriving the moment density tensor
mkl of the source at the interface.
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4.2 Moment tensor for a source at the material interface

Adopting a local coordinate system with fault normal n along the
x3-axis, the Green’s functions G+and G−in eq. (26) must satisfy the
following conditions:

G+
ik,1 = G−

ik,1, G+
ik,2 = G−

ik,2, where i, k = 1, 2, 3, (29)

and

c+
13kl G

+
ik,l = c−

13kl G
−
ik,l , c+

23kl G
+
ik,l = c−

23kl G
−
ik,l ,

c+
33kl G

+
ik,l = c−

33kl G
−
ik,l , where i = 1, 2, 3. (30)

The conditions express the continuity of the displacement and
traction across the material interface. Using these conditions and
eq. (26) we can uniquely determine moment tensor mkl . The equa-
tions to be solved are analogous to those known in theory of effec-
tive media. Applying the averaging theory of Schoenberg & Muir
(1989), we obtain for the moment density tensor mkl

mkl = c̄i jkl [ui ] n j , (31)

where c̄i jkl are the effective elastic parameters calculated from c+
i jkl

and c−
i jkl . If we express elastic parameters ci jkl in the 2-index Voigt

notation and combine them into submatrices CTT, CNT and CNN in
the following way:

C =
[

CT T CT N

CN T CN N

]
, (32)

where

CT T =

⎡
⎢⎢⎢⎣

c11 c12 c16

c12 c22 c26

c16 c26 c66

⎤
⎥⎥⎥⎦ , CT N =

⎡
⎢⎢⎢⎣

c13 c14 c15

c23 c24 c25

c36 c46 c56

⎤
⎥⎥⎥⎦ ,

CN N =

⎡
⎢⎢⎣

c33 c34 c35

c34 c44 c45

c35 c45 c55

⎤
⎥⎥⎦ , CN T = CT

T N , (33)

the effective elastic parameters finally read (Carcione et al. 2012)

C̄N N = 〈
C−1

N N

〉−1
,

C̄T N = 〈
CT N C−1

N N

〉
C̄N N , (34)

C̄T T = 〈CT T 〉 − 〈
CT N C−1

N N CN T

〉 + C̄T N

〈
C−1

N N CN T

〉
.

Brackets 〈·〉 in (34) mean averaging over the first and second half-
space, for example,

〈CT T 〉 = 1

2

(
C+

T T + C−
T T

)
,

〈
C−1

N N

〉 = 1

2

[(
C+

N N

)−1 + (
C−

N N

)−1
]
. (35)

5 S H E A R A N D T E N S I L E FAU LT I N G AT
A C O N TA C T O F T W O T R A N S V E R S E LY
I S O T RO P I C M E D I A A N D T W O
I S O T RO P I C M E D I A

5.1 Transversely isotropic media

The averaging formulae (34) can be specified for faulting in trans-
versely isotropic media. Adopting the local coordinate system in

which the fault normal is along the x3-axis, n = (0, 0, 1)T , we ob-
tain (Backus 1962):

c̄11 = c̄22 = 〈c11〉 − 〈
c2

13c−1
33

〉 + 〈
c13c−1

33

〉2 〈
c−1

33

〉−1
,

c̄12 = c̄11 − 2c̄66, c̄13 = c̄23 = 〈
c13c−1

33

〉 〈
c−1

33

〉−1
,

c̄33 = 〈
c−1

33

〉−1
, c̄44 = c̄55 = 〈

c−1
44

〉−1
, c̄66 = 〈c66〉 , (36)

the other elastic parameters being zero.
Subsequently, the moment tensor of a point pure tensile source

with displacement discontinuity [u] = (0, 0, u)T reads

Mtensile = uS

⎡
⎢⎢⎢⎣

〈
c13c−1

33

〉 〈
c−1

33

〉−1
0 0

0
〈
c13c−1

33

〉 〈
c−1

33

〉−1
0

0 0
〈
c−1

33

〉−1

⎤
⎥⎥⎥⎦ ,

(37)

and the moment tensor of a point shear source with displacement
discontinuity [u] = (u, 0, 0)T reads

Mshear = uS

⎡
⎢⎢⎣

0 0
〈
c−1

44

〉−1

0 0 0〈
c−1

44

〉−1
0 0

⎤
⎥⎥⎦ . (38)

5.2 Isotropic media

In isotropic media, defined by the Lamé coefficient λ and μ

ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)
, (39)

where δi j is the Kronecker delta, the effective elastic parameters
read

c̄11 = c̄22 = 〈λ + 2μ〉 − 〈
λ2 (λ + 2μ)−1〉

+ 〈
λ (λ + 2μ)−1〉2 〈

(λ + 2μ)−1〉−1
, c̄12 = c̄11 − 2c̄66,

c̄13 = c̄23 = 〈
λ (λ + 2μ)−1〉 〈(λ + 2μ)−1〉−1

, c̄33 = 〈
(λ + 2μ)−1〉−1

,

c̄44 = c̄55 = 〈
μ−1

〉−1
, c̄66 = 〈μ〉 . (40)

Note that the effective medium is not isotropic but transversely
isotropic.

The moment tensors of point tensile and shear sources with
displacement discontinuity [u] = (0, 0, u)T and [u] = (u, 0, 0)T , re-
spectively, are expressed as

Mtensile = uS

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

〈
λ (λ + 2μ)−1〉〈
(λ + 2μ)−1〉 0 0

0

〈
λ (λ + 2μ)−1〉〈
(λ + 2μ)−1〉 0

0 0
1〈

(λ + 2μ)−1
〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(41)

Mshear = uS

⎡
⎢⎣

0 0
〈
μ−1

〉−1

0 0 0〈
μ−1

〉−1
0 0

⎤
⎥⎦ . (42)
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Consequently, the scalar seismic moment M0 for shear sources
reads

M0 = 2
μ+μ−

μ+ + μ− [u] S. (43)

This formula has been proposed by Wu & Chen (2003) using a sim-
plified derivation based on physical understanding of the problem
and on a modified definition of the moment tensor. In contrast, our
approach is mathematical, eq. (43) is derived using the standard
definition of the moment tensor, and it is shown that this equation
is unique without any ambiguity.

6 D I S C U S S I O N

Let us shortly discuss why Ampuero & Dahlen (2005) incorrectly
stated that the moment tensors of sources at a material interface
are ambiguous and concluded that the description using source
(potency) tensors must be used. I will focus on this paper because
this paper is most comprehensive and the arguments in the other
papers are similar.

The authors assert (Ampuero & Dahlen 2005, p. 393) that the
‘prescribed slip 
uk is equivalent either to a superposition of double
couples situated on the front side of the fault. . . ’ (in our notation,
on �+) or ‘to a superposition of double couples situated on the
back side of the fault. . . ’ (in our notation, on �−). This assumption
is physically as well as mathematically incorrect and arises from
misunderstanding of meaning of the moment tensors. The moment
tensors always describe force couples acting on two respective sides
of a fault: force f+acting on �+ (and producing displacement u+)
and force f− acting on �− (and producing displacement u−), and
the fault can either lie in the first or second half-spaces or at their
contact �. So we cannot mix all three cases.

The statement about the ambiguity of the moment tensor at the
material interface is unacceptable also for the following reason. A
problem of generating displacement field u (x, t) by dipole body
forces acting at the material interface is well defined from mathe-
matical as well as physical points of view and it must have a unique
solution. This excludes any ambiguity.

Let us consider a source characterized by the same displacement
discontinuity, which moves across a material interface. As men-
tioned in Section 4, the moment tensor displays jumps. First, when
the source moves from one half-space to the interface, and second,
when the source moves from the interface to the other half-space.
These jumps are somewhat surprising and undesirable but they re-
flect the fact that the moment tensors represent equivalent body
forces but not equivalent tractions at the fault. The jumps of body
forces are physical and cannot be interpreted as an ambiguity of
the moment tensor. We cannot deduce that the moment tensor is
an ambiguous quantity just because the moment tensor inversion is
sensitive to the source position or to the elastic parameters at the
source area. Consequently, we conclude that the moment tensors of
sources near or at the material interface are unique and can be deter-
mined provided we know the source positions and elastic properties
of the medium.

However, Ampuero & Dahlen (2005) are correct when claiming
that the behaviour of source tensors is essentially different from
that of moment tensors. While the moment tensors change discon-
tinuously across the material interface for the source characterized
by the same displacement discontinuity, the source tensors change
smoothly with no jumps at the interface. Thus a direct inversion
for the source tensors might be more stable and of higher accuracy
than that for the moment tensors if the fault is close or at the mate-

rial interface. Obviously, the actual advantages of the source tensor
inversion should be proved in future numerical studies.

7 C O N C LU S I O N

The moment tensor is a unique quantity describing the rupture pro-
cess in any medium including faulting at a material interface. The
moment tensor cannot be viewed as an abundant or ambiguous de-
scription, which can be replaced by the source (potency) tensor.
The moment tensor describes equivalent body forces at the source,
which are responsible for the radiation of waves and for static de-
formations. The source tensor describes just the deformation at the
source, that is, the product of acting forces. Although the moment
tensor is far from describing actual forces at an earthquake source it
is still an important quantity broadly used until a more appropriate
force description of the earthquake source will be found.

If the fault lies at a material interface, some of the spatial deriva-
tives of the Green’s function needed in the representation theorem
are discontinuous and the representation theorem must be modified.
If the moment tensor is inverted using the generalized representa-
tion theorem (24) with appropriate Green’s functions for a source
situated at the material interface (Ben-Zion 1990; Jı́lek & Červený
1996) and using high-quality data, the inversion must yield a unique
moment tensor. Ambiguities in moment tensors arise if the veloc-
ity model is not well known, the sources are mislocated, Green’s
functions are inappropriate, or observations are limited or restricted
to a narrow frequency band. These deficiencies project into the in-
accuracy of moment tensors. The inaccuracy can be particularly
significant if the source area is strongly heterogeneous, because the
moment tensors are sensitive to material properties at the source and
a small location error can produce significantly different moment
tensors.

Shear faulting at a planar material interface in isotropic media
is represented by the standard double-couple moment tensor. The
scalar seismic moment is calculated as a product of the displacement
discontinuity across the fault, the fault size and the effective rigidity
at the fault. The effective rigidity is calculated as the harmonic mean
of rigidities at the individual sides of the fault.
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Hrubcová for performing numerical tests with the discrete wave-
number method and Jeannot Trampert, Yehuda Ben-Zion, Göran
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Vavryčuk, V., 2011. Tensile earthquakes: theory, modeling, and inversion,
J. geophys. Res., 116, B12320, doi:10.1029/2011JB008770.

Woodhouse, J.H., 1981. The excitation of long-period seismic waves by a
source spanning a structural discontinuity, Geophys. Res. Lett., 8, 1129–
1131.

Wu, Z.L. & Chen, Y.T., 2003. Definition of seismic moment at a discontinuity
interface, Bull. seism. Soc. Am., 93, 1832–1834.

Zaliapin, I. & Ben-Zion, Y., 2011. Asymmetric distribution of aftershocks
on large faults in California, Geophys. J. Int., 185, 1288–1304.

 by guest on Septem
ber 5, 2013

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/

