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Institute of Geophysics, Academy of Sciences, Bočnı́ II/1401, 14100 Praha 4, Czech Republic. E-mail: vv@ig.cas.cz

Accepted 2014 June 11. Received 2014 June 10; in original form 2014 April 11

S U M M A R Y
Stress inversions from focal mechanisms require knowledge of which nodal plane is the fault.
If such information is missing, and faults and auxiliary nodal planes are interchanged, the
stress inversions can produce inaccurate results. It is shown that the linear inversion method
developed by Michael is reasonably accurate when retrieving the principal stress directions
even when the selection of fault planes in focal mechanisms is incorrect. However, the shape
ratio is more sensitive to the proper choice of the fault and substituting the faults by auxiliary
nodal planes introduces significant errors. This difficulty is removed by modifying Michael’s
method and inverting jointly for stress and for fault orientations. The fault orientations are
determined by applying the fault instability constraint and the stress is calculated in iterations.
As a by-product, overall friction on faults is determined. Numerical tests show that the new
iterative stress inversion is fast and accurate and performs much better than the standard linear
inversion. The method is exemplified on real data from central Crete and from the West-
Bohemia swarm area of the Czech Republic. The joint iterative inversion identified correctly
36 of 38 faults in the central Crete data. In the West Bohemia data, the faults identified by
the inversion were close to the principal fault planes delineated by foci clustering. The overall
friction on faults was estimated to be 0.75 and 0.85 for the central Crete and West Bohemia
data, respectively.

Key words: Earthquake source observations; Seismicity and tectonics; Theoretical
seismology.

1 I N T RO D U C T I O N

Several methods have been proposed for determining tectonic stress
from focal mechanisms of earthquakes (see Maury et al. 2013). The
most commonly used methods have been developed by Michael
(1984), Gephart & Forsyth (1984) and Angelier (2002) with modi-
fications and extensions proposed by Lund & Slunga (1999), Hard-
ebeck & Michael (2006), Arnold & Townend (2007), Maury et al.
(2013) and others. These methods usually assume that (1) tectonic
stress is uniform (homogeneous) in the region, (2) earthquakes oc-
cur on pre-existing faults with varying orientations and (3) the slip
vector points in the direction of shear stress on the fault (the so-
called Wallace–Bott hypothesis; see Wallace 1951; Bott 1959). If
the above mentioned assumptions are satisfied, the stress inversion
methods are capable of determining four parameters of the stress
tensor: three angles defining the directions of principal stresses, σ 1,
σ 2 and σ 3, and shape ratio R (Gephart & Forsyth 1984):

R = σ1 − σ2

σ1 − σ3
. (1)

The methods are unable to recover the remaining two parameters
of the stress tensor. Therefore, the trace of the stress tensor is usually

assumed to be zero (Michael 1984):

Tr (τ) = σ1 + σ2 + σ3 = 0 (2)

and the stress tensor is normalized.
However, stress inversions from focal mechanisms are faced with

one basic and common trouble. In order to apply the Wallace–Bott
assumption, the stress inversions require deciding which of the nodal
planes is the fault. This is difficult and usually needs some additional
information (e.g. geological evidence or indications from foci clus-
tering), because the inherent ambiguity of focal mechanisms does
not allow distinguishing the fault and the auxiliary nodal plane.
Unfortunately, if the fault and the auxiliary plane are interchanged
in the stress inversions, the results can be biased and inaccurate.
For this reason, Lund & Slunga (1999) proposed applying the so-
called fault instability constraint and identified the fault with that
nodal plane which is more unstable in the given stress field. Using
this criterion, they modified the Gephart & Forsyth (1984) method
and improved its efficiency. In this paper, we follow this procedure
and modify Michael’s method (1984) in a similar way. As a conse-
quence, the stress is no longer calculated in one step as in Michael’s
original method but in iterations. The iterations are needed to iden-
tify the fault planes and thus to determine a more accurate stress
field. Using numerical tests we show that the iterative joint inversion
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for stress and fault orientations is quite robust yielding significantly
more accurate values of the shape ratio than Michael’s method. Fi-
nally, the efficiency of the proposed inversion is tested on the data
from central Crete and from the West-Bohemia swarm area of the
Czech Republic.

2 M I C H A E L’ S M E T H O D

The stress inversion method developed by Michael (1984) employs
expressions for normal and shear tractions on a fault σ n and τ :

σn = Ti ni = τi j ni n j , (3)

τ Ni = Ti − σn ni = τi j n j − τ jkn j nkni = τk j n j (δik − ni nk) , (4)

where δik is the Kronecker delta, T is the traction along the fault, n
is the fault normal and N is the unit direction vector of shear stress
along the fault. Subsequently, eq. (4) is modified to read:

τk j n j (δik − ni nk) = τ Ni . (5)

In order to be able to evaluate the right-hand side of eq. (4),
Michael (1984) applied the Wallace–Bott assumption and identified
the direction of shear stress N with the slip direction s of shear
motion along the fault. He further assumed that shear stress τ on
activated faults has the same value for all studied earthquakes. Since
the method cannot determine absolute stress values, τ is normalized
to be 1 in eq. (5). Subsequently, eq. (5) is expressed in matrix form:

At = s, (6)

where t is the vector of stress components,

t = [
τ11 τ12 τ13 τ22 τ23

]T
, (7)

A is the 3 × 5 matrix calculated from fault normal n,
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, (8)

and s is the unit direction of the slip vector. Extending eq. (8) for
focal mechanisms of K earthquakes with known fault normals n
and slip directions s, we obtain a system of 3K linear equations for
five unknown components of the stress tensor. Finally, we include
eq. (2) and solve the system using the generalized linear inversion
in the L2-norm (Lay & Wallace 1995, their section 6.4)

t = A−gs. (9)

As follows from the above formulae, the basic drawback of
Michael’s method is the necessity to know the orientations of the
faults (Michael 1987). If Michael’s method is used with incorrect
orientations of the fault planes, the accuracy of the retrieved stress
tensor is decreased. Michael (1987) performed a series of numerical
tests and found that, in particular, the shape ratio can be distorted.
On the other hand, the method is quite fast and it can be run re-
peatedly. Therefore, the confidence regions of the solution can be
determined using a standard bootstrap method (Michael 1987). If
the orientation of fault planes in focal mechanisms is unknown,
each nodal plane has a 50 per cent probability of being chosen as
the fault during the bootstrap re-sampling.

3 FAU LT I N S TA B I L I T Y C O N S T R A I N T

The ambiguity of identifying the fault plane in focal mechanisms
introduces difficulties also in other stress inversion methods. For ex-
ample, Gephart & Forsyth (1984) proposed calculating a deviation
between the shear traction and the slip for both options of the fault
orientation and identifying the fault with the nodal plane which pro-
duces the lower deviation. This procedure works well for noise-free
data, but it is rather formal and not very efficient for real data with
noise (see Lund & Slunga 1999). Michael (1987) reviewed some
other ‘fault choice algorithms’ and tested their efficiency on several
fault-slip data sets. He also mentions the possibility of utilizing the
fracture criterion for faulting. This approach was further elaborated
by Lund & Slunga (1999) who analysed orientations of the two
nodal planes in the stress field and found which of the nodal planes
were more unstable and thus more susceptible to shear faulting. The
susceptibility to failure is quantified using the Mohr–Coulomb fail-
ure criterion (see Fig. 1). According to this criterion (Beeler et al.
2000; Scholz 2002; Zoback 2010), shear traction τ on an activated
fault must exceed a critical value τ c, calculated from cohesion
C, fault friction μ, compressive normal traction σ n and pore
pressure p:

�τ = τ − τc ≥ 0, (10)

where

τc = C + μ (σn − p) . (11)

The fault plane is the nodal plane which has the higher value of
Coulomb failure stress �τ . In evaluating �τ in eq. (10) we need
the value of friction μ. Cohesion C and pore pressure p in eq. (11)
are not needed, because we are comparing the relative difference
of stresses. Friction μ for fractures was measured on rock samples
in the laboratory and ranged mostly between 0.6 and 0.8 (Byerlee
1978). The values of friction of faults in the Earth’s crust are similar
(Vavryčuk 2011) but for some large-scale faults such as the San

Figure 1. Mohr–Coulomb failure criterion. Quantities τ and σ are the shear
and the effective normal stresses, respectively; σ 1, σ 2 and σ 3 are the effective
principal stresses. The red area shows all possible orientations of fault planes
which satisfy the Mohr–Coulomb failure criterion. The blue dots denote the
principal fault planes which are optimally oriented with respect to stress,
and C denotes the cohesion. Upper and lower half planes of the diagram
correspond to the conjugate faults.
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Stress inversion from focal mechanisms 71

Andreas fault lower values like 0.2–0.4 have also been reported
(Scholz 2002).

Tractions τ and τ c are always assumed to be positive in eqs (10)
and (11) and thus, in principle, it would be sufficient to plot just the
upper half plane of the Mohr circle diagram in Fig. 1 (see Jaeger
et al. 2007, their fig. 4.9; Zoback 2010, his fig. 5.9). The full Mohr
circle diagram is obtained by considering a sign for shear traction
τ defined in the following way:

sign (τ ) = sign
(
N · e(3)

)
, (12)

where N is the direction of shear traction τ along the fault, and
e(3) is the direction of the minimum principal stress. Plotting of the
full Mohr circle diagram is convenient for distinguishing conjugate
faults (see Fig. 1, left-hand plots).

Another way of identifying the fault plane is evaluating the fault
instability I proposed by Vavryčuk et al. (2013, their eq. 3):

I = τ − μ (σ − σ1)

τc − μ (σc − σ1)
, (13)

where τ c and σ c are the shear traction and effective normal traction
along the optimally oriented fault (Fig. 2, red dot), and τ and σ are
the shear traction and effective normal traction along the analysed
fault plane (Fig. 2, black dot). Since eq. (13) is independent of
absolute stress values, the fault instability I can be evaluated just
from friction μ, shape ratio R and from directional cosines n defining
the inclination of the fault plane from the principal stress axes. If
we scale the reduced stress tensor as follows:

σ1 = 1, σ2 = 1 − 2R, σ3 = −1, (14)

where positive values mean compression, we get

τc = 1√
1 + μ2

, σc = − μ√
1 + μ2

(15)

and consequently

I = τ − μ (σ − 1)

μ +
√

1 + μ2
, (16)

where

σ = n2
1 + (1 − 2R) n2

2 − n2
3, (17)

τ =
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n2
1 + (1 − 2R)2n2

2 + n2
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n2
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2 − n2
3

]2
. (18)

Figure 2. Definition of the fault instability in Mohr’s diagram. The red
dot marks the tractions on the principal fault characterized by instability
I = 1. The black dot marks the tractions of an arbitrarily oriented fault with
instability I.

Quantity R is the shape ratio defined in eq. (1) and n is the
fault normal expressed in the coordinate system of the principal
stress directions. Fault instability I ranges from 0 (the most stable
faults) to 1 (the most unstable faults). The most unstable fault is the
optimally oriented fault for shear faulting (see Fig. 2, red dot) called
the principal fault (Vavryčuk 2011). Note that eq. (16) for the fault
instability looks different from that in Vavryčuk et al. (2013, their
eq. 6), where positive σ means extension but not compression as in
this paper.

4 I T E R AT I V E S T R E S S I N V E R S I O N

Lund & Slunga (1999) applied the fault instability constraint to
the stress inversion of Gephart & Forsyth (1984) and improved
its efficiency. Here, we apply this constraint to Michael’s method
(1984). Since the Gephart & Forsyth algorithm is non-linear and the
misfit is sought in a grid, the fault instability constraint can easily
be implemented when evaluating the fit for each stress. In contrast
to the method of Gephart & Forsyth, Michael’s method is linear
and implementing the fault instability constraint leads to solving
the stress inversion in iterations. First, Michael’s method is applied
in a standard way without considering any constraint and with no
knowledge of the orientation of the fault planes. After finding the
principal stress directions and the shape ratio, these values are used
for evaluating the instability (16) of the nodal planes for all inverted
focal mechanisms. The fault planes are the nodal planes which
are more unstable. The orientations of the fault planes found in
the first iteration are used in the second iteration performed again
using Michael’s method. The procedure is repeated until the stress
converges to some optimum values.

When evaluating the fault instability using eq. (16), a value of
friction μ is needed. As mentioned above, friction on faults most
often ranges between 0.2 and 0.8, but its value is usually unknown.
Numerical tests revealed, however, that the inversion is rather in-
sensitive to μ, so it is often sufficient to assign some mean value
to friction during the inversion, for example, μ = 0.6. Another ap-
proach is to run the inversion for several values of friction and adopt
the value which produces the highest overall instability of faults for
the data inverted. This approach is used in the subsequent synthetic
tests as well as in the applications to real data.

5 A C C U R A C Y T E S T S

The robustness and accuracy of the iterative stress inversion can be
tested using numerical modelling. We present numerical tests per-
formed on sets with a varying number of focal mechanisms ranging
from 20 to 200. The focal mechanisms were selected to satisfy the
Mohr–Coulomb failure criterion (see Fig. 3). Subsequently, cor-
responding moment tensors were calculated and contaminated by
uniform noise of several levels ranging from 0 to 100 per cent of
the moment tensor norm. The norm was calculated as the abso-
lute value of the maximum eigenvalue of the moment tensor (the
so-called ‘spectral norm’). The noisy moment tensors were decom-
posed back into strikes, dips and rakes of noisy focal mechanisms
and these mechanisms were inverted for stress. The mean devia-
tions between the true and noisy fault normals and slips attained
values from 0◦ to 35◦. Since the inverted focal mechanisms were
calculated from moment tensors, the identification of a fault from
two nodal planes was ambiguous. The inversion was run repeatedly
using 50 realizations of random noise and for two types of sets
of focal mechanisms. The first set consisted of focal mechanisms
which were projected into both half planes of the Mohr’s circle
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72 V. Vavryčuk

Figure 3. Example of data used in numerical tests of stress inversions.
The plots show 200 noise-free focal mechanisms selected to satisfy the
Mohr–Coulomb failure criterion. Left/right-hand plots—data set with a
full/reduced variety of focal mechanisms. (a, b) Mohr’s circle diagrams,
(c, d) the P/T axes and (e, f) the corresponding nodal lines. The P axes are
marked by the red circles and T axes by the blue crosses in (c) and (d).
The P/T axes form the so-called two butterfly wings in plot (c) and one
butterfly wing in plot (d), see Vavryčuk (2011). The σ 1, σ 2 and σ 3 stress
axes are (azimuth/plunge): 115◦/65◦, 228◦/10◦ and 322◦/23◦, respectively.
Shape ratio R is 0.7, cohesion C is 0.85, pore pressure p is zero and friction
μ is 0.6.

diagram (Fig. 3a). According to Vavryčuk (2011), the P/T axes form
a pattern called the ‘two butterfly wings’ (Fig. 3c). The second set
consisted of the same number of focal mechanisms but with their
variability reduced. The selected focal mechanisms were projected
just into the upper half plane of the Mohr’s circle diagram (Fig. 3b)
and covered just one butterfly wing in the P/T plot (Fig. 3d). The in-
verted principal stress directions and shape ratios for both data sets
and for all realizations of random noise were compared with the true
values and the errors were evaluated (see Figs 4 and 5). Similarly,
the faults identified from the nodal planes by the inversion were
compared with the true ones and the success of the identification
was evaluated (see Fig. 6).

In order to avoid the sensitivity of the inversion to friction, needed
in the instability constraint, the inversion was run repeatedly with
friction ranging from 0.2 to 1.2 in steps of 0.05. For each friction, an
overall instability of faults identified by the inversion was evaluated,
and the friction, which produced the highest overall fault instability,
was considered as optimum.

The numerical tests indicate that the accuracy of the stress inver-
sions varies being dependent on the number of focal mechanisms
inverted and on the noise level in the data. Both Michael’s and

iterative inversions yield satisfactory results for principal stress di-
rections with an average error of less than 12◦ for a set of 20 noisy
focal mechanisms with an error of 20◦ in the orientation of the
fault normal and the slip (see Figs 4 and 5, left-hand plots). For
more accurate focal mechanisms or for more extensive data sets,
the accuracy is even higher. The difference between both methods is
almost invisible, the iterative method being slightly more accurate
for data with a low noise level. The reason is simple. If the iden-
tification of the fault is unknown, Michael’s inversion can never
retrieve the true stress directions including the case when a large
set of noise-free focal mechanisms is inverted. In contrast, the it-
erative method removes this deficiency, because the orientations of
faults are determined during the iterations. A significant difference
between Michael’s inversion and the iterative joint inversion ap-
pears, however, when determining the shape ratio (see Figs 4 and 5,
right-hand plots). The average error of the shape ratio is almost
20 per cent for Michael’s inversion even when a large number of
noise-free focal mechanisms is inverted. When inverting noisy focal
mechanisms, this error is even higher. The iterative method yields
an average error of less than 10 per cent except for the inversion of
a low number of very noisy focal mechanisms.

In addition, the iterative method is capable of recognizing the
faults in the focal mechanisms and of estimating the overall friction
on the faults. Fig. 6 (left-hand plots) indicates that the success rate
in fault identification is higher than 85 per cent if one-wing noisy
focal mechanisms with an average error of 15◦ are inverted. In
case of two-wing focal mechanisms, the success rate is as much as
90 per cent. The value of friction is determined with an accuracy of
10–15 per cent for the same type of data (Fig. 6, right-hand plots).

6 A P P L I C AT I O N T O DATA

6.1 Central Crete

The efficiency of the iterative joint inversion was verified on the
data from central Crete analysed previously by Angelier (1979) and
Michael (1984, 1987). The data represent field measurements of 38
fault orientations and slip directions (slickenslides), so the identifi-
cation of faults and auxiliary nodal planes in the focal mechanisms
is known. In the stress inversion, we modified the input data by ran-
domly selecting the faults from the two nodal planes and checked
whether the iterative procedure identified the correct fault planes.

Fig. 7 shows the P/T axes and nodal lines of the input focal
mechanisms together with the results of the stress inversion. The
retrieved maximum compression is almost vertical (Fig. 7a) and
Mohr’s circle diagram indicates (Fig. 7c) that the input data cover
both butterfly wings. The fault planes (Fig. 7d) were successfully
identified in 36 of 38 cases. The shape ratio R was 0.88 and the
optimum friction was 0.75. The alternative definition of the shape
ratio used by Michael (1984), φ = (σ2 − σ3) / (σ1 − σ3), yields a
value of 0.12 identical with the result reported by Michael (1984).

For analysing the uncertainties in the principal stress directions
and in the shape ratio, the stress inversion is run repeatedly with
noisy focal mechanisms. We calculated 1000 realizations of noise.
The average error in the orientation of faults and slips is assumed to
be equally 6◦. This value is somewhat arbitrary because we do not
know the actual accuracy of the input data. Since we are comparing
the efficiency of two inversion methods, a more accurate estimate
of the error in focal mechanisms is not vital for our purposes.

Table 1 and Fig. 8 indicate that the principal stress directions
are determined with a similar accuracy regardless of whether the
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Stress inversion from focal mechanisms 73

Figure 4. Mean errors of the principal stress directions (left-hand plot) and of the shape ratio (right-hand plot) as a function of the number of focal mechanisms
and noise. The data set with a reduced variety of focal mechanisms (one-wing data) is inverted. Upper plots—Michael’s method; lower plots—the iterative
inversion method. The stress direction error is the average of deviations between the true and retrieved principal stress axes. The errors are further averaged
over 50 random realizations of noise. The errors in stress directions are in degrees, the errors in the shape ratio are in per cent.

faults are randomly selected from nodal planes (Fig. 8a) or cor-
rectly identified by the inversion (Fig. 8b). The behaviour of the
shape ratio is, however, remarkably different. Data with randomly
selected faults yield a broad distribution of the shape ratio with its
maximum significantly biased as compared to the inversion with
correctly selected faults. The maximum error is 44 and 12 per cent
for randomly and correctly selected faults, respectively.

6.2 West Bohemia swarm area

The iterative joint stress inversion is further exemplified on the
data from the 2008 earthquake swarm in West Bohemia, Czech
Republic (Fischer et al. 2010; Vavryčuk 2011; Davi & Vavryčuk
2012; Vavryčuk et al. 2013; Fischer et al. 2014). Since the micro-
earthquakes were recorded by many local seismic stations with
good focal sphere coverage, they represent a high-quality data set
suitable for retrieving the focal mechanisms and tectonic stress very
accurately.

We selected 167 micro-earthquakes recorded at all WEBNET
stations with a good signal-to-noise ratio and applied the moment

tensor inversion of vertical components of the direct P waveforms.
The Green functions were calculated using the ray method (Červený
2001) and the full moment tensors were determined using the gener-
alized linear inversion in the time domain (Vavryčuk & Kühn 2012).
The accuracy of the focal mechanisms was assessed by repeated in-
versions using noisy input data and biased locations (epicentres
with an error of 250 m and depth with an error of 500 m). The mean
errors in the orientations of the fault normal and slip direction were
estimated to be equally about 6◦.

The tectonic stress in the focal zone was calculated from the
167 focal mechanisms (Fig. 9) using the Michael (1984) and itera-
tive joint stress inversions (see Table 1). The errors were calculated
similarly as for the central Crete data by inverting noisy focal mech-
anisms. We calculated 1000 realizations of noise which produced
an accuracy similar to that of the retrieved focal mechanisms (mean
error of 6◦ in the fault normal and slip direction). In the iterative
stress inversion, the final stress was obtained after three to four
iterations. The fault planes cover both butterfly wings (Fig. 9c).
The stress is characterized by the horizontal σ 3 axis, the σ 1 and σ 2

axes significantly deviating from both the horizontal and vertical
directions (Fig. 9a). The directions of the principal stress axes and
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Figure 5. The same as for Fig. 4, but for the data set with a full variety of focal mechanisms (two-wing data).

their uncertainties are almost identical for Michael’s and the itera-
tive stress inversions (Figs 10a and b). The main difference between
both methods is in the shape ratio. Michael’s method yields a biased
value of the shape ratio with a high error (Fig. 10c), similarly as
in synthetic tests. The iterative inversion yields accurate directions
of the principal stresses as well as an accurate value of the shape
ratio (Table 1). Moreover, the iterative inversion is able to identify
the fault planes. As expected, the fault planes cluster in the area
of the validity of the Mohr–Coulomb failure criterion (Fig. 9c).
The retrieved orientations of the faults were confirmed by analysing
foci clustering (Vavryčuk et al. 2013). The foci clustered along two
fault systems (Fig. 9d) referred to as the principal faults in the region
(Vavryčuk 2011, his fig. 10). The optimum overall friction found in
the inversion was 0.85.

7 D I S C U S S I O N

Michael’s method is quite fast and accurate when retrieving direc-
tions of the principal stresses. It yields a reasonable accuracy even
for randomly selected fault planes in focal mechanisms. However,
the accuracy of the shape ratio is significantly lowered when the
fault planes are not correctly chosen. The value of the shape ratio
is very approximate even if a large number of accurate focal mech-

anisms is inverted. Hence the shape ratio is more sensitive to the
correct choice of the fault than the principal stress directions and
substituting the faults by the auxiliary nodal planes introduces high
errors.

An accurate value of the shape ratio can be calculated by the itera-
tive joint inversion for stress and fault orientations. In this inversion,
the fault instability constraint is applied and the fault is identified
with that nodal plane which is more unstable and thus more suscep-
tible to faulting. Incorporating the fault instability constraint into
the inversion leads to an iterative procedure. Instead of calculating
the stress in one step, the stress must be calculated in iterations. In
the first iteration, Michael’s method is run with randomly selected
fault planes. In the second and higher iterations, Michael’s method
is run with the fault planes identified by the instability constraint.
The numerical tests show that the procedure converges after three
to four iterations. Since principal stress directions are well retrieved
even in the first iteration, the subsequent iterations identify the fault
planes and improve mainly the shape ratio. This is the reason why
the convergence is so fast.

When analysing real data sets, the uncertainties of the retrieved
stress directions, the shape ratio, the fault selection and overall
friction on faults are not calculated by the bootstrap method as
proposed by Michael (1987). Here the uncertainties are calculated
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Stress inversion from focal mechanisms 75

Figure 6. The identification success (left-hand panel) and the errors of friction (right-hand panel) as a function of the number of focal mechanisms and noise.
The iterative stress inversion is applied. Upper plots: the data set with the reduced variety of focal mechanisms; lower plots : the data set with the full variety
of focal mechanisms. The values are calculated from 50 random realizations of noise. Identification success means the relative number of correctly identified
faults.

Figure 7. Iterative inversion for stress using the central Crete data (Angelier
1979; Michael 1984, 1987). (a) P/T axes with retrieved principal stress
directions, (b) nodal lines, (c) Mohr’s circle diagram with positions of faults
(blue plus signs) and (d) faults identified by stress inversion. The P and T
axes in (a) are marked by red circles and blue plus signs, respectively.

as the maximum differences between the results of the inversion for
noise-free and noisy data with 1000 noise realizations. This method
is convenient for several reasons. First, it can take into account the
case when some nodal planes are more uncertain than the others
by specifying differently noise levels for the fault orientations and
slip directions. And secondly, the obtained uncertainties are more
realistic. For example, the histogram of the shape ratio can be quite
broad (Figs 8c and 10c) and the true values need not lie necessarily
close to its maximum.

The efficiency of the iterative inversion was tested on the data
from central Crete and from West Bohemia, Czech Republic. For
both data sets, the method worked well and produced a significantly
more accurate shape ratio than the inversion of the focal mech-
anisms with randomly selected faults. When plotting Mohr’s cir-
cle diagram, the faults identified by the inversion displayed high
fault instability and concentrated in the area of validity of the
Mohr–Coulomb failure criterion. This is a clear indication that the
data are consistent with the fault instability model and that the
application of the iterative stress inversion is appropriate. If
the faults identified by the inversion do not display high insta-
bility, the fault instability model is probably not fully suitable, and
the results of the iterative inversion could be less reliable. This can
be caused either by high errors in the focal mechanisms or by a
more complicated stress field or tectonic conditions in the studied
area.
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Table 1. Results of stress inversions.

Method σ 1 Azimuth/plunge σ 2 Azimuth/plunge σ 3 Azimuth/plunge R

Central Crete

Michael’s inversion 241.8◦/82.7◦ ± 7.0◦ 51.3◦/7.2◦ ± 27.8◦ 141.5◦/1.3◦ ± 27.7◦ 0.77 ± 44 per cent
Iterative inversion 220.3◦/84.7◦ ± 4.7◦ 62.5◦/4.9◦ ± 21.5◦ 332.4◦/2.0◦ ± 21.5◦ 0.88 ± 12 per cent

West Bohemia

Michael’s inversion 137.7◦/34.8◦ ± 3.5◦ 332.8◦/52.9◦ ± 6.5◦ 233.1◦/7.3◦ ± 6.4◦ 0.66 ± 23 per cent
Iterative inversion 138.6◦/35.1◦ ± 2.4◦ 332.1◦/54.1◦ ± 6.4◦ 233.1◦/6.5◦ ± 6.0◦ 0.78 ± 6 per cent

Note: The errors are the maximum differences between the results calculated for the noise-free and noisy focal
mechanisms with 1000 random realizations.

Figure 8. Confidence limits of the principal stress directions retrieved by
the Michael method (a) and by the iterative method (b) and histograms of the
shape ratio (c). Red, green and blue colours in (a) and (b) correspond to the
σ 1, σ 2 and σ 3 stress directions, respectively. The grey and red histograms
in (c) define the distributions of the shape ratio calculated using Michael’s
method and the iterative method, respectively.

Michael’s method is quite popular and has been used in several
stress inversion codes such as SATSI (Hardebeck 2006; Hardebeck
& Michael 2006) or its Matlab modification MSATSI (Martı́nez-
Garzón et al. 2013, 2014; Ickrath et al. 2014). Since the iterative
stress inversion is based on Michael’s method, it can easily be
implemented in these codes enhancing their accuracy. The Matlab
code of this inversion called STRESSINVERSE is provided on the
web page (http://www.ig.cas.cz/stress-inverse, last accessed 27 June
2014).
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Figure 9. The same as Fig. 8 but for the West Bohemia data. The blue lines
in (d) define the principal faults in the West Bohemia region identified from
foci clustering (see Vavryčuk et al. 2013).

Figure 10. The same as Fig. 8 but for the West Bohemia data.
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in southwest Iceland, J. geophys. Res., 104, 14 947–14 964.

Martı́nez-Garzón, P., Bohnhoff, M., Kwiatek, G. & Dresen, G., 2013. Stress
tensor changes related to fluid injection at the Geysers geothermal field,
California, Geophys. Res. Lett., 40, 2596–2601.

Martı́nez-Garzón, P., Kwiatek, G., Ickrath, M. & Bohnhoff, M., 2014.
MSATSI: a MATLAB C© package for stress tensor inversion combining
solid classic methodology, a new simplified user-handling and a visualiza-
tion tool, Seismol. Res. Lett., 85(4), 896–904, doi:10.1785/0220130189.

Maury, J., Cornet, F.H. & Dorbath, L., 2013. A review of methods for
determining stress fields from earthquake focal mechanisms: application
to the Sierentz 1980 seismic crisis (Upper Rhine graben), Bull. Soc. Geol.
France, 184(4–5), 319–334.

Michael, A.J., 1984. Determination of stress from slip data: faults and folds,
J. geophys. Res., 89, 11 517–11 526.

Michael, A.J., 1987. Use of focal mechanisms to determine stress: a control
study, J. geophys. Res., 92(B1), 357–368.

Scholz, C.H., 2002. The Mechanics of Earthquakes and Faulting, Cambridge
Univ. Press.
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