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S U M M A R Y
Anisotropic attenuation affects seismic observations and complicates their interpretations. Its
accurate determination is, however, difficult and needs extensive measurements of wavefields
in many directions. So far, the traveltime and amplitude decay of waves are usually measured
along a sparse grid of propagation directions, and methods for inverting for anisotropic at-
tenuation are not fully developed. In this paper, we present theory allowing a description and
parametrization of general triclinic anisotropic attenuation. We focus on a correct recalcula-
tion of ray quantities usually measured in lab to phase quantities needed in the inversion. We
develop and numerically test an iterative inversion scheme for determining the parameters
of anisotropic attenuation. We present a lab facility that allows for measuring anisotropic
attenuation using the P-wave ultrasonic sounding of spherical samples in 132 directions dis-
tributed regularly over the sphere. The applicability of the proposed inversion method and the
performance of the experimental setup are exemplified by determining triclinic anisotropic
attenuation of the serpentinite rock from Val Malenco, Northern Italy. The ray velocity and
ray attenuation were measured on a spherical sample of the rock with diameter of 45.5 mm at
the room temperature and under two pressure levels: 0.1 and 20 MPa. The measurements con-
firmed that anisotropic attenuation is remarkably sensitive to confining pressure. Since cracks
are closing with increasing pressure, attenuation decreases. However, changes in pressure can
also induce changes in the directional variation of attenuation and rotation of anisotropy axes.
The obtained results for the serpentinite rock sample are unique because they represent the
first accurately determined triclinic anisotropic attenuation from lab measurements.
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1 I N T RO D U C T I O N

Many rocks of the lithosphere and uppermost mantle are seismically
anisotropic and attenuating (Babuška & Cara 1991; Savage 1999;
Romanowicz 2003; Fouch & Rondenay 2006). These two phenom-
ena are closely related and jointly affect the seismic waves (Burton
2007; Carcione 2014). They cause that the propagation velocity of
seismic waves and dissipation of energy are directionally dependent
and the signal is dispersive. Anisotropy and dispersion complicates
modelling of wave propagation as well as interpretation of seismic
observations.

Anisotropic velocity and attenuation are efficiently described us-
ing a model of viscoelastic anisotropy. The viscoelastic parameters
are complex-valued and frequency dependent (Auld 1973; Car-
cione 2014). Their real and imaginary parts describe elastic and
attenuation anisotropy, respectively. The use of complex algebra al-
lows for generalizing the theory developed for elastic anisotropy to

viscoelastic anisotropy. The equations for waves in viscoelastic me-
dia are formally the same as in elastic media except for being com-
plex. Implementing complex algebra into equations is mathemati-
cally straightforward, but still some care is needed for understanding
properly the physical meaning of all complex-valued quantities in
the equations.

The model of viscoelastic anisotropy has been successfully ap-
plied in theoretical studies of propagation of plane waves (Shu-
valov & Scott 1999; Červený & Pšenčı́k 2005; Zhu & Tsvankin
2006; Borcherdt 2009; Rasolofosaon 2010) as well as of waves ra-
diated by point sources (Carcione 1990, 1993, 1994; Gajewski &
Pšenčı́k 1992; Carcione et al. 1996; Vavryčuk 2007b). The exact
and asymptotic Green’s functions for homogeneous media were de-
rived (Vavryčuk 2007a), complex and real ray-tracing techniques
in smoothly inhomogeneous media and in media with interfaces
were developed (Hearn & Krebes 1990; Hanyga & Seredynska
2000; Vavryčuk 2008a, 2010). It was recognized that similarly to
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differentiating between the phase and ray velocities in elastic media,
the phase and ray attenuation must be distinguished in attenuating
media (Vavryčuk 2007b, 2015).

Anisotropic attenuation of rocks and other materials has been
modelled theoretically (Mukerji & Mavko 1994; Carcione 2000;
Chapman 2003; Wenzlau et al. 2010) and also measured in labora-
tory (Johnston & Toksöz 1980; Kim et al. 1983; Kern et al. 1997;
Stanchits et al. 2003; Zhu et al. 2007). So far, most experiments
were based on measuring elastic properties and attenuation of rocks
by ultrasonic waves propagating in a limited range of directions
of cubic, block or cylindrical rock samples (Hosten et al. 1987;
Kern et al. 1997; Stanchits et al. 2003). Therefore, they allowed for
rough estimating anisotropic attenuation of high symmetry only.
The elastic anisotropy has also been measured on spherical rock
samples (Pros et al. 1998, 2003; Lokajı́ček et al. 2014; Svitek
et al. 2014). Such arrangement is more convenient and robust be-
cause it allows for measuring rock properties in a rather high number
of uniformly distributed directions, which is necessary for deter-
mining parameters of general anisotropy. On the other hand, the
inversion of measurements on spherical samples is more involved.
The standard schemes are based on the inversion of phase quantities,
which are related to propagation of plane waves. However, in lab
experiments on spherical samples, waves with curved wave fronts
are generated and the ray quantities are measured and interpreted.
Similarly, field experiments provide usually measurements of ray
rather than phase quantities.

In this paper, we extend the approach originally developed for
studying general elastic anisotropy on spherical samples by incor-
porating measurements of anisotropic attenuation. We extend the-
ory of inversion for viscoelastic anisotropy presented by Vavryčuk
(2015) to be applicable to measurements in lab or field experiments.
Specifically, we focus on the following unsolved issues: (1) how to
calculate ray attenuation from amplitudes of signals propagated in
anisotropic rocks, (2) how to eliminate effects of elastic anisotropy
in amplitudes of waves and (3) how to construct the complex phase
velocity surface from the complex energy velocity surface, which is
a necessary step before applying an inversion scheme for parameters
of viscoelastic triclinic anisotropy. The accuracy and robustness of
the developed approach is numerically tested. It is shown that the in-
version is applicable to weak as well as strong anisotropy. Finally, we
demonstrate the determination of parameters of anisotropic attenu-
ation on measurements of the serpentinite rock from Val Malenco,
Northern Italy studied by Kern et al. (1997).

2 A N I S O T RO P I C V I S C O E L A S T I C M E D I A

In this section, basic formulae for waves propagating in anisotropic
viscoelastic media are shortly reviewed. In the formulae, real and
imaginary parts of complex-valued quantities are denoted by super-
scripts R and I. The complex-conjugate quantity is denoted by an
asterisk. The magnitude of complex-valued vector v is

√
v · v. If

any complex-valued vector has a real-valued direction, it is called
homogeneous. If its direction is complex, it is called inhomoge-
neous. In formulae, the Einstein summation convention is used for
repeated subscripts.

2.1 Viscloelastic parameters

A viscoelastic anisotropic medium is defined by density-normalized
stiffness parameters ai jkl = ci jkl/ρ which are, in general, frequency-

dependent and complex-valued. The real and imaginary parts of
aijkl,

aijkl (ω) = aR
ijkl + i a I

ijkl, (1)

define elastic and viscous properties of the medium. The Christoffel
tensor �jk

�jk (p) = aijkl pi pl , (2)

is frequency-dependent and complex. Similarly as in elastic me-
dia, the eigenvalue of the Christoffel tensor and its derivative are
expressed (Červený 2001)

G (p) = aijkl pi pl g j gk = 1, (3)

vi = 1

2

∂G (p)

∂ pi
= aijkl pl g j gk, (4)

where p is the slowness vector p = n/c, c is the complex phase
velocity, n is the complex slowness direction and v is the complex
energy velocity vector. The polarization vector g is calculated as the
eigenvector of the Christoffel tensor and normalized as g · g = 1. A
more common normalization in complex algebra g · g∗ = 1 is not
used because it leads to inconsistencies between equations in elastic
and viscoelastic media. Vectors v and p are related by the equation,

v · p = 1, (5)

expressing their polar reciprocity similarly as in elastic media (Hel-
big 1994).

The above equations are formally the same for elastic and vis-
coelastic media. They just differ in whether the wave quantities are
real or complex. The wave quantities are real in elastic media but
generally complex in viscoelastic media.

2.2 Phase and ray quantities

The phase quantities describe propagation of plane waves and are
obtained by decomposing the complex slowness vector p:

p =
[(

V phase
)−1 + i Aphase

]
n|| + i Dphase n⊥, (6)

where V phase, Aphase and Dphase are the real phase velocity, phase
attenuation and phase inhomogeneity. Vectors n|| and n⊥ are real,
mutually perpendicular unit vectors, n|| is normal to the wave front
and n⊥ lies in the wave front. The phase inhomogeneity Dphase

depends on the boundary conditions. If Dphase is known, the phase
velocity V phase and attenuation Aphase are uniquely determined from
the eikonal equation (3). If Dphase is zero, slowness vector p is
homogeneous, its direction n is real and coincides with n||. Velocity
V phase and attenuation Aphase are then called intrinsic.

The ray quantities describe propagation of energy along a ray.
They are obtained by decomposing the complex energy velocity
vector v:

v = [
(V ray)−1 + i Aray

]−1
N|| + i Dray N⊥, (7)

where V ray, Aray and Dray are the real ray velocity, ray attenua-
tion and ray inhomogeneity. Vectors N|| and N⊥ are real, mutually
perpendicular unit vectors. The ray inhomogeneity Dray depends on
the boundary conditions. For point sources situated in homogeneous
media, Dray is zero (see Vavryčuk 2007a). In this case, energy ve-
locity vector v is homogeneous, its direction N is real and coincides
with N|| (see appendix F of Carcione & Ursin 2016). Velocity V ray
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and attenuation Aray are then called intrinsic, similarly as for the
phase quantities.

The intrinsic phase and ray quantities are related to the complex
phase velocity c and complex energy velocity v as follows:

1

c
= 1

V phase
+ i Aphase,

1

v
= 1

V ray
+ i Aray, (8)

hence

V phase = cRcR + cI cI

cR
, V ray = vRvR + v I v I

vR
, (9)

Aphase = − cI

cRcR + cI cI
, Aray = − v I

vRvR + v I v I
, (10)

Qphase = − (c2)
R

(c2)I , Qray = − (v2)
R

(v2)I , (11)

where

v = √
vivi and c = 1/

√
pi pi . (12)

The intrinsic complex phase velocity c is calculated straightfor-
wardly using the eikonal equation (3), but calculating the intrinsic
complex energy velocity v using eq. (4) is more involved. It requires
computing the so-called ‘stationary’ slowness vector p0 introduced
in ray theory (Vavryčuk 2007a). The stationary slowness vector is
generally inhomogeneous being uniquely constrained by the bound-
ary conditions. It can be calculated by complex ray tracing (Kravtsov
et al. 1999; Hanyga & Seredynska 2000; Vavryčuk 2008a, 2010,
2012) and corresponds to a ray connecting the source of waves with
a receiver. While the source and receiver are points in real space,
the ray is a curve in complex space. The problem is simplified in
homogeneous media, where the ray becomes a straight line in real
space. To determine the stationary slowness vector in homogeneous
media, either a system of polynomial equations for unknown com-
ponents of p0 or an inverse problem for p0 must be solved for each
ray coming out of the source (for details, see Vavryčuk 2007a,b).

2.3 Asymptotic Green’s function

Radiation of waves generated by a point source is usually calculated
using the Green’s function. The asymptotic Green’s function in ho-
mogeneous anisotropic viscoelastic media reads (Vavryčuk 2007a,
his eq. 18):

Gkl (x, ω) = 1

4πρ

gk gl

v
√|K |

1

r
exp (iσ0 + iω p0 · x) , (13)

or

Gkl (x, ω) = 1

4πρ

gk gl

v
√|K |

1

r
exp (iσ0) exp (−ω Arayr )

× exp
(

iω
r

V ray

)
, (14)

where

σ0 = −1

2
(ϕ1 + ϕ2) , −3

2
π ≤ ϕ1 <

1

2
π, −3

2
π ≤ ϕ2 <

1

2
π,

and p0 is the stationary slowness vector (see Vavryčuk 2007a,b).
Quantity K = K1 K2 is the Gaussian curvature of the slowness sur-
face, K1 and K2 are the principal curvatures and ϕ1 and ϕ2 are their
phase angles. All quantities dependent on p in eqs (13) and (14)
are taken at stationary point p0. Position vector x = rN, distance

r, ray vector N, frequency ω, phase angles ϕ1 and ϕ2 and density
ρ are real-valued; but polarization vector g, Gaussian curvature K,
principal curvatures K1 and K2, energy velocity v and slowness vec-
tor p0 are complex-valued. The most efficient way how to calculate
the Gaussian curvature K in eqs (13) and (14) is by computing the
determinant of the wave metric tensor (see Vavryčuk 2003, his eqs
10 and 15).

3 I N V E R S I O N F O R V I S C O E L A S T I C
A N I S O T RO P Y

3.1 Phase and ray measurements

The parameters of anisotropic attenuating media can be determined
from a directionally dependent phase or ray velocity and attenuation.
The phase quantities are measured if the source of waves has a fi-
nite dimension and can generate a planar wave front. If the source is
much smaller than the distance between the source and the receiver
(the so-called point-like source), the wave front is curved and the ray
quantities are measured. Since inverting phase quantities is compu-
tationally much simpler than inverting ray quantities, measurements
of the phase velocity and attenuations are preferable. From the phase
quantities, we can directly construct the complex phase velocity and
then invert it for parameters of viscoelastic anisotropy.

However, devising an experiment with planar wave fronts excited
and propagating in a medium in many directions is complicated. In-
stead, we often measure just ray quantities on wave fronts generated
by a point-like source. In this case, the problem is more involved and
we have to first recalculate the ray quantities to the phase quantities
before inverting them for parameters of viscoelastic anisotropy.

3.2 Ray velocity and attenuation

In lab or field experiments, propagation time of a signal along a
ray and its amplitude are usually measured. Determining ray veloc-
ity from propagation time is straightforward but determining ray
attenuation from amplitudes of the signal is more involved. The
attenuation must be calculated from amplitude decay of a signal ob-
tained as the difference between amplitudes measured at two points
of a ray and corrected for geometrical spreading.

If the amplitude decay is measured along the source–receiver
distance, the amplitudes must be corrected for the radiation pattern
of a source (see eq. 13)

Ckl = 1

4πρ

gk gl

v
√|K | . (15)

Assuming the emitter and receiver of waves oriented along ray
direction N, the radiation function takes the following form:

R = 1

4πρ

gk gl Nk Nl

v
√|K | . (16)

The radiation function R in eq. (16) is complex and directionally
dependent in anisotropic viscoelastic media. The imaginary part
of R introduces phase shifts of the signal but the amplitude of
the signal is influenced negligibly. If we focus on processing of
amplitudes only, the radiation function R for attenuation anisotropy
can be well approximated by that in elastic anisotropy. In this way,
we can separate the effects of elastic anisotropy and attenuation and
determine ray attenuation in the following way:

(1) We determine elastic anisotropy of a rock from measurements
of the ray velocity (Svitek et al. 2014).
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(2) We calculate the radiation pattern and geometrical spreading
of elastic waves propagating in the anisotropic rock.

(3) We correct the measured amplitude decay of the signal for
these two factors and normalize the corrected value to a unit ray
length.

3.3 Complex phase velocity

Having calculated ray velocity V ray and ray attenuation Aray, we
determine the complex energy velocity v for a set of ray directions N
using eq. (8) and construct the complex energy velocity surface v =
v(N). Decomposing the energy velocity vector v and the slowness
vector p into their real and imaginary parts, the polar reciprocity
relation (5) reads

vR · pR − vI · pI = 1, (17)

vR · pI + vI · pR = 0. (18)

Taking into account that vector v is homogeneous

vR = vRN, vI = v I N, (19)

and vector p is inhomogeneous

pR = pRsR, pI = pI sI , (20)

where N is the real ray direction, and sR and sI are real directions
of vectors pR and pI , respectively, eqs (17) and (18) imply

pI = − v I

vR

N · sR

N · sI
pR, (21)

and consequently

pR = vR

vRvR + v I v I

1

N · sR
, (22)

pI = − v I

vRvR + v I v I

1

N · sI
. (23)

Finally, complex slowness vector p is

p = pRsR + i pI sI , (24)

and its direction

n = p√
p · p

. (25)

The above equations can be used for calculating the complex
slowness surface p = p(n) from the complex energy velocity sur-
face v = v(N). First, we calculate real unit vectors sR and sI as
the normals to the real part vR = vR(N) and the imaginary part
v I = v I (N) of the energy velocity surface v = v(N). Since surfaces
vR = vR(N) and v I = v I (N) are real, we can use standard formu-
lae of differential geometry (Lipschutz 1969). Then, we calculate
pR and pI using eqs (22) and (23), and subsequently the complex
slowness vectors p and its direction n using eqs (24) and (25).

If the procedure is applied to a sufficiently dense set of ray di-
rections N, we can construct the whole slowness surface p = p(n)
and subsequently the complex phase velocity surface c = c(n):

c = v N · n, (26)

and invert for parameters of viscoelastic anisotropy.

3.4 Inversion scheme

Determination of complex viscoelastic parameters ai jkl from the
complex phase velocity surface c = c(n) is a non-linear in-
verse problem which can be solved using perturbation theory
and iterations (Mensch & Rasolofosaon 1997; Vavryčuk 2008b,
2015; Svitek et al. 2014). In perturbation theory, we assume
that the anisotropic medium defined by unknown parameters ai jkl

can be obtained by a small perturbation of a known reference
medium

ai jkl = a0
i jkl + 	ai jkl , (27)

where a0
i jkl defines the viscoelastic reference medium and 	ai jkl its

viscoelastic perturbation. Under this assumption, the cubic equation
for the square of the phase velocity c2 can be linearized as follows
(Pšenčı́k & Vavryčuk 2002; Svitek et al. 2014):

	c2 = c2 − c2
0 = 	ai jklni nl g

0
j g

0
k , (28)

where c0 and g0 define the complex phase velocity and complex po-
larization vector in the reference medium, 	c2 is the misfit between
the squared phase velocity calculated from measurements and the
velocity in the reference medium. The reference medium can be
isotropic or anisotropic, elastic or viscoelastic. From perturbations
	ai jkl , we obtain parameters ai jkl using eq. (28). This new medium
serves as the reference medium in the next iteration. The iterations
are repeated until perturbations 	ai jkl are negligibly small. The
number of iterations depends on anisotropy strength: the stronger
the viscoelastic anisotropy is, the more iterations are needed. For
weak anisotropy (WA), the first iteration is usually sufficient for
getting accurate results.

3.5 Weak-anisotropy-attenuation parameters

Determination of the complete set of 21 viscoelastic parameters
requires measurements of the velocity and attenuation for the P and
S waves. In the case of P-wave mesurements only, six parameters
related to the S-wave propagation (called the S-wave related pa-
rameters) a44, a55, a66, a45, a46 and a56 cannot be well resolved (see
Svitek et al. 2014). Under weak velocity and attenuation anisotropy,
the S-wave related parameters cannot be determined at all. For this
reason, in analogy to WA parameters (see e.g. Pšenčı́k & Gajewski
1998; Farra & Pšenčı́k 2003, 2008) we define the so-called weak
anisotropy-attenuation (WAA) parameters and modify the inversion
scheme to invert for 15 WAA parameters only (see Vavryčuk 2009).
Since the reference medium is isotropic, eq. (28) is modified for the
P wave as follows:

	c2 = 	ai jklni n j nknl , (29)

and further rewritten in the form

	c2

2c2
0

= n2
1εx + n2

2εy + n2
3εz + n2

2n2
3ηx + n2

1n2
3ηy + n2

1n2
2ηz

+ 2n2n3
1ε16 + 2n3n3

1ε15 + 2n3n3
2ε24

+ 2n1n3
2ε26 + 2n1n3

3ε35 + 2n2n3
3ε34 + 2n2

1n2n3χx

+ 2n1n2
2n3χy + 2n1n2n2

3χz (30)
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where the complex WAA parameters are defined as

εx = a11 − c2
0

2c2
0

, εy = a22 − c2
0

2c2
0

, εz = a33 − c2
0

2c2
0

,

δx = a23 + 2a44 − c2
0

c2
0

, δy = a13 + 2a55 − c2
0

c2
0

,

δz = a12 + 2a66 − c2
0

c2
0

,

χx = a14 + 2a56

c2
0

, χy = a25 + 2a46

c2
0

, χz = a36 + 2a45

c2
0

, (31)

ε15 = a15

c2
0

, ε16 = a16

c2
0

, ε24 = a24

c2
0

, ε26 = a26

c2
0

,

ε34 = a34

c2
0

, ε35 = a35

c2
0

,

ηx = δx − εy − εz, ηy = δy − εx − εz, ηz = δz − εx − εy,

and

c2
0 = α2

0

(
1 − i

Q0

)
. (32)

Quantities α0 and Q0 are the mean real P-wave velocity and
P-wave Q-factor in the reference medium.

Knowing the P-wave complex phase velocity c for a set of com-
plex slowness directions n, eq. (30) can be solved for unknown
complex WAA parameters using the generalized inversion (Menke
1989). The robustness and accuracy of this inversion will be demon-
strated on synthetic data as well as lab measurements in the next
sections.

4 N U M E R I C A L M O D E L L I N G

In this section, the inversion for viscoelastic anisotropy is tested on
an example of the P wave propagating in a model of an orthorhombic

viscoelastic medium (see Tables 1 and 2). The velocity anisotropy
corresponds to the Torre Alfina xenolith with parameters taken
from Pera et al. (2003, their table 3). The attenuation anisotropy is
not based on measurements but it is synthetic. The mean P-wave
phase velocity of the model is 7.93 km s−1 and the P-wave velocity
anisotropy is 12.4 per cent. The mean P-wave phase Q-factor is 87.7,
and the P-wave Q-factor anisotropy is 84.0 per cent. The density of
the Torre Alfina xenolith is 3.31 g cm−3.

The intrinsic phase and ray velocities, attenuations and Q-factors
(see Fig. 1) for the synthetic model are calculated using equations
from Sections 2.1 and 2.2. The quantities are evaluated in a reg-
ular grid of directions with the incidence ranging from −90◦ to
90◦ and with azimuth from 0◦ to 180◦. The grid step is alterna-
tively 5◦, 10◦, 15◦, 20◦ and 30◦. Hence, in total of 1260, 306,
132, 72 and 30 independent measurements describe the directional
variation of the velocity and attenuation. The ray velocity and at-
tenuation values are used for calculating the complex phase ve-
locity (see Section 3.3) which is inverted for the WAA parameters
of the medium. The inversion is performed with noise-free and
noisy data. Noise is random with a uniform distribution. The noise
level is different for the real and imaginary parts of the complex
phase velocity c reflecting that the propagation velocity is usually
measured with much higher accuracy than attenuation. The noise
level for the real part of c varies from 0 to ±3 per cent with step of
0.2 per cent, and the level for the imaginary part of c varies from 0
to ±15 per cent with step of 1 per cent. To get statistically robust
results, the random noise is generated 100 times and the results
of the inversion are averaged over all noise realizations. Since the
convergence of the iterative process is quite fast (see Fig. 2), we
performed the inversion with six iterations only.

The inversion is run for the velocity and attenuation measured
along phase normals (Fig. 3) or along rays (Fig. 4). Fig. 3 shows the
maximum errors of the predicted phase velocity V phase and phase
attenuation Aphase for various grid steps. The maximum value is cal-
culated over all directions and it is further averaged over noise real-
izations. As expected, the higher the number of input measurements,

Table 1. Elastic and attenuation parameters of the numerical model.

Elastic parameters
AR

11 AR
22 AR

33 AR
44 AR

55 AR
66 AR

12 AR
13 AR

23
(km2 s−2) (km2 s−2) (km2 s−2) (km2 s−2) (km2 s−2) (km2 s−2) (km2 s−2) (km2 s−2) (km2 s−2)

56.74 72.66 62.39 21.21 18.31 20.21 21.36 22.30 22.05

Attenuation parameters–
–Q11 Q22 Q33 Q44 Q55 Q66 Q12 Q13 Q23
–
–160 90 120 50 60 65 40 50 60

Notes: The two-index Voigt notation AR
K L and QK L , K, L = 1, . . . , 6 is used for density-normalized elastic parameters aR

i jkl and quality-factor parameters

qi jkl = −aI
i jkl/a R

i jkl (no summation over repeated indexes). The elastic and attenuation parameters not shown in the table are identically zero.

Table 2. P-wave velocity and attenuation anisotropy of the synthetic model.

V̄ phase (km s−1) aphase
V (%) Āphase (s km−1) aphase

A (%) Q̄phase aphase
Q (%)

7.93 12.4 7.48 × 10−4 79.6 87.7 84.0

Notes: V̄ phase, Āphase and Q̄phase are the mean P-wave phase velocity, attenuation and Q-factor;

aphase
V , aphase

A and aphase
Q are the P-wave phase velocity anisotropy, attenuation anisotropy and

Q-factor anisotropy. The anisotropy is calculated as a = 200 (UMAX − UMIN)/
(UMAX + UMIN), where UMAX and UMIN are the maximum and minimum values of the respec-
tive quantity.
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Figure 1. Stereographic plots of the P-wave velocities, attenuations and Q-factors in the model of the Torre Alfina xenolith. Left: phase intrinsic quantities
and right: ray intrinsic quantities. For parameters of the model, see Table 1.

the lower the sensitivity of the results to noise. The attenuation er-
rors are significantly higher than the velocity errors because they
comprise errors produced by eliminating effects of the inaccurately
determined elastic Green’s function. Fig. 4 shows similar results as
Fig. 3 but for the inversion of ray quantities. The attenuation errors
in the inversion of noise-free ray data are due to the recalculation
of ray to phase quantities before the inversion of the complex phase
velocity c. In the case of a denser grid of ray measurements, this
error decreases. For an increasing noise level, the role of the errors
due to the recalculation of ray to phase quantities is suppressed.
The upper and lower panels in Fig. 5 display the errors in the WAA

parameters inverted using the phase and ray quantities for step of
15◦ in the grid of directions. The numbers identifying the WAA
parameters are defined in Table 4 (first two columns). Since the
velocity anisotropy is much weaker than the attenuation anisotropy,
the real parts of the WAA parameters are more sensitive to noise
and thus less accurate than their imaginary parts. Nevertheless, the
accuracy of predicted quantities is satisfactory even when inverting
data with the highest noise level (Fig. 6). Again, the accuracy of
the results is worse for the inversion of ray quantities (Figs 1 and
6) because of the necessity to recalculate the ray to phase quantities
before the inversion.
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Figure 2. The relative error between the true and predicted complex phase velocity as a function of the number of iterations of the inversion. The error is
calculated as the maximum over all directions. The inversion is run for (a) the phase quantities and (b) the ray quantities. Blue/red: the real/imaginary part of
the complex phase velocity. The higher errors in (b) than in (a) are due to the recalculation of ray to phase quantities in a sparse grid of directions (step of 15◦)
before the inversion.

Figure 3. Errors of the predicted (a) phase velocity and (b) attenuation using
the inversion of phase quantities. The errors for several alternative grid steps
(5◦, 10◦, 15◦, 20◦ and 30◦) are displayed as a function of noise in input data.
The real part of noise (0–3 per cent) is five times lower than its imaginary
part (0–15 per cent) expressing higher uncertainties in measurements of
signal amplitudes than in traveltimes.

Figure 4. Errors of the predicted (a) phase velocity and (b) attenuation using
the inversion of ray quantities. The errors for several alternative grid steps
(5◦, 10◦, 15◦, 20◦ and 30◦) are displayed as a function of noise in input data.
The real part of noise (0–3 per cent) is five times lower than its imaginary
part (0–15 per cent) expressing higher uncertainties in measurements of
signal amplitudes than in traveltimes.
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Figure 5. Errors of the real (left) and imaginary (right) parts of the retrieved weak-anisotropy-attenuation (WAA) parameters. The errors are displayed as a
function of noise in input data. The inversion is run for (a) the phase quantities and (b) the ray quantities in a grid of directions with step of 15◦.

5 L A B O R AT O RY M E A S U R E M E N T S

5.1 Setup of the experiment

The determination of viscoelastic anisotropy is exemplified using
an experimental facility that allows a measurement of the P-wave
ray velocities and P-wave amplitudes on spherical rock samples. A
diameter of the analysed rock sample is 45.5 mm but the equipment
is capable of measuring also spherical samples of other diameters
using specially designed arms. These arms enable insertion of a
setting ring to adapt a different diameter of individual spherical
samples (see Fig. 7). The sample was measured at room tempera-
ture being exposed to confining pressures of 0.1 and 20 MPa. Two
piezoceramic sensors had a plain contact surface that resulted in a
point contact between the sensor and the sphere.

The ultrasonic signals were excited and recorded by a piezo-
ceramics sensor pair with a resonant frequency of 2 MHz. The
equipment allows for an ultrasonic sounding of rock samples in
132 independent directions with a pair of the P-wave sensors where
both transmitter and receiver are polarized along the radial direction.
The waveforms of ultrasonic signals were recorded using an A/D

convertor with the dynamic range of 8 bits and with the sampling
frequency of 100 MHz. Each waveform was recorded 10 times and
then averaged in order to reduce noise. The sensitivity of the conver-
tor was set up to record individual signals without any distortion and
with the maximum possible dynamics. During the measurement, the
point contact between the spherical sample and the transducers was
established by a metal spring that acted by constant force at every
direction. Transform oil was used as pressure medium.

5.2 Rock sample

We measured a sample of serpentinite from Val Malenco, North-
ern Italy, which comes from the block of serpentinite with the Kiel
sample number 987 (Kern et al. 2015). At ambient conditions, the
bulk density of the serpentinite derived from the volume and the
mass of the sample sphere is 2.71 g cm−3. The constituent min-
erals are 83 vol.% antigorite, 13 vol.% olivine, 2 vol.% magnetite
and 2 vol.% chromite. The average grain size is about 200 μm.
The porosity is rather low; the volume compaction of 1.63 per cent
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Figure 6. Stereographic plots of the predicted P-wave phase velocities, attenuations and Q-factors in the model of the Torre Alfina xenolith retrieved by the
inversion in a grid of directions with step of 15◦. Left: inversion of the phase quantities and right: inversion of the ray quantities. The noise level was up to ±3
and ±15 per cent in the real and imaginary parts of the complex phase velocity, respectively.

represents mainly the crack porosity. The sample displays a pro-
nounced lattice preferred orientation of antigorite, that has been
documented by 13.2 and 13.6 m.r.d. maxima for (001) pole figures
in Kern et al. (2015), values that are consistent with other foliated
serpentinites. To protect the pore space against the oil, the spherical
surface of the sample was covered by a thin layer of an epoxy resin.

The P- and S-wave velocity and attenuation anisotropy of this
rock has also been studied by Kern et al. (1997). In that study,
the authors used a cubic sample with axes of the cube referring to
macroscopic fabric coordinates: x parallel to the lineation, y normal

to the lineation within the foliation plane and z normal to the foli-
ation plane. The velocity and attenuation has been measured as a
function of pressure up to 600 MPa and temperature up to 600 ◦C.
The most prominent changes have been detected for pressure rang-
ing from 0 to 100 MPa related to the closure of grain boundary
cracks. While the mean velocity slightly increased, the mean atten-
uation remarkably decreased with increasing pressure (see Kern
et al. 1997, their fig. 9a). Obviously, this dependence must be
visible also in the measurements performed on the spherical sample
in this paper.
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Figure 7. The experimental setup and measurement geometry shown in the horizontal plane; TP and RP are the radial transmitter and receiver, respectively
(mostly generating and sensitive to the P waves). The axis of rotation is vertical. The red colour marks the setting ring for adapting a different diameter of
individual spherical samples.

5.3 Data processing

The ultrasonic measurements provide waveforms in 132 indepen-
dent directions (see Fig. 8). The waveforms consist of a direct P
wave followed by scattered coda waves produced by multiple re-
flections and conversions at the surface of the sample. As a con-
sequence, the complete waveforms are complex and difficult to
interpret (Fig. 8a). Nevertheless, the analysis of the direct P wave
is rather simple because the secondary reflections arrive at times
sufficient for separation of the direct P wave. The P-wave onset is
usually noise-free and well distinguished and its determination can
be performed using an automatic picking algorithm (Allen 1982;
Sedlák et al. 2009; Svitek et al. 2010). The amplitude of the P wave
is defined as the amplitude of the first maximum (or minimum) after
the P-wave arrival and its automatic measurement is reliable with
an error less than few samples (see Fig. 9).

Since the piezoceramics pair of sensors used for emitting and
receiving the ultrasonic waves are planar, they touch the spherical
sample at an area of about 2 × 2 mm or less. Since the size of the
contact is much smaller than the radius of the sample, the contact
between the sensors and the rock sample is considered to be point-
like. Consequently, the wave front of excited waves is not planar
but curved and the velocity and amplitude of the signals are not
measured along a phase normal but along a ray. Completing mea-
surements of the traveltime and amplitude of the ultrasonic signal
propagating through the sample in all directions, we construct a
directional dependence of the ray velocity and ray amplitude for
both pressure levels (see Fig. 10). As expected, the average velocity

is slightly higher for confining pressure of 20 MPa because of a
closure of cracks (see Table 3). This effect is even more pronounced
in amplitudes indicating distinctly lower attenuation at this pressure
level. The directional patterns of velocities and amplitudes are, how-
ever, similar for both pressure levels. Only, the amplitude variations
seem to be slightly rotated relative to each other.

5.4 Results

The determination of parameters of viscoelastic anisotropy from
measured velocities and amplitudes is performed in the following
steps. First, the elastic anisotropy must be calculated from the direc-
tional variation of ray velocities. The procedure is quite analogous
to that described in Section 3.4, but all quantities are real in the
inversion. Second, the radiation pattern of a point source in elastic
anisotropy is calculated (see Section 3.2). Third, the directionally
dependent amplitudes of the signal emitted by the source and the
amplitudes recorded at the receiver (Figs 8 and 9) are used for
calculating the corrected amplitude decay along a ray and the ray
attenuation (see Section 3.2). Fourth, an additional effect of a thin
layer of an epoxy resin on the surface of the sample must be taken
into account. The layer of the epoxy resin causes a uniform diminu-
tion of amplitudes in all directions and thus affects the scale of the
determined ray attenuation and Q-factor. Therefore, the scale was
adjusted by measurements of Kern et al. (1997) carried out for the
same rock in the directions of the symmetry axes. The resultant
ray attenuation and Q-factor patterns (see Fig. 11 and Table 3)
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Figure 8. Ultrasonic signals observed for the serpentinite sample at confining pressure of 0.1 MPa. The waveforms are recorded in all directions at two different
timescales. The origin of the timescale corresponds to the excitation time of the signal.

Figure 9. Example of one trace taken from the set in Fig. 8 showing how
the amplitude of the direct P wave was measured.

confirm a remarkable decrease of attenuation for the pressure of
20 MPa compared to the atmospheric pressure. However, the at-
tenuation anisotropy and the Q-factor anisotropy increase. The in-
crease of anisotropy strength indicates that the effects of aligned
structure elements and inhomogeneities are more pronounced un-
der confining pressure. Finally, the phase velocity and attenuation
were calculated from the ray quantities according to Section 3.3 (see
Fig. 12) and inverted for the parameters of viscoelastic anisotropy
(see Table 4).

The predicted phase velocity, attenuation and Q-factor are dis-
played in Fig. 13. The predicted quantities are very similar to
the input phase data indicating that the inversion was successful.
The basic pattern of the predicted quantities at two pressure lev-
els is also similar with some minor differences in attenuation and
Q-factor. In particular, we observe a clockwise rotation of attenua-
tion and Q-factors patterns by about 30◦. Since the velocity pattern
is unchanged for both pressure levels, the difference in attenuation
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Figure 10. Directional variations of ray velocity and ray amplitude measured for the serpentinite sample at confining pressure of (a) 0.1 MPa and (b) 20 MPa.
The amplitudes in (a) and (b) are normalized to the maximum amplitude measured at 0.1 MPa.

Table 3. P-wave velocity and attenuation anisotropy of the serpentinite rock sample.

Pressure (MPa) V̄ phase (km s−1) aphase
V (%) Āphase (s km−1) aphase

A (%) Q̄phase aphase
Q (%)

0.1 6.51 22.9 11.0 × 10−4 33.2 69.5 16.6
20 6.57 21.5 8.8 × 10−4 38.5 92.1 32.1

Notes: For the definition and meaning of the quantities, see Table 2.

and Q-factors could not be produced by a misorientation of the sam-
ple in the two measurements, but it should be a real stress-induced
effect. This indicates that anelastic properties of rocks are more
sensitive to confining pressure than their elastic properties.

6 D I S C U S S I O N A N D C O N C LU S I O N S

An accurate and correct determination of anisotropic attenuation
of rocks in laboratory is not an easy task. It needs an experimental
facility that allows for measurement of the traveltime and ampli-
tude decay of waves propagating along a dense grid of directions.
The determination of viscoelastic parameters is simpler if we use
measurements of plane waves than of waves generated by a point
source. For plane waves propagating through the rock sample, we
measure the traveltime and amplitude decay along the phase nor-
mal. Subsequently, we calculate the real phase velocity and phase
attenuation, construct the complex phase velocity and invert for
viscoelastic anisotropy.

For waves generated by point sources, we measure the traveltime
and amplitudes along a ray. In order to calculate the amplitude decay

and subsequently the ray attenuation, we have to measure wave am-
plitudes at two points along a ray. This can be realized by measuring
amplitudes for two samples of a different size or by measuring am-
plitudes just for one sample provided we know the amplitude of the
wave emitted at the source. In this case, however, the amplitude at
the source must be corrected for geometrical spreading and for the
radiation pattern of a point source in anisotropic media. Knowing
the ray velocity and ray attenuation, we can construct the complex
energy velocity. This velocity is further recalculated to the complex
phase velocity using the polar reciprocity relation. After that we can
invert for the viscoelastic anisotropy.

Using measurements of P waves we cannot determine the com-
plete tensor of viscoelastic parameters. The six of the 21 viscoelastic
parameters related to propagation of the S waves cannot be deter-
mined. The inversion for viscoelastic anisotropy is non-linear, but it
can be linearized. The linearization and elimination of the S-wave re-
lated parameters can conveniently be performed using the so-called
WAA parametrization. Since the inversion is run in iterations, it is
applicable even to strong attenuation anisotropy.

Numerical tests on synthetic data proved that the inversion for
the WAA parameters worked well. The convergence of the iterative
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Figure 11. The ray attenuation and ray quality factor for the serpentinite sample at confining pressure of (a) 0.1 MPa and (b) 20 MPa. The attenuation and
quality factor are determined from the ray amplitudes shown in Fig. 10 and from the radiation pattern of the point source in the anisotropic serpentinite rock
(see Section 3.2).

Figure 12. The phase velocity, attenuation and quality factor for the serpentinite sample at confining pressure of (a) 0.1 MPa and (b) 20 MPa. The phase
quantities were calculated from the measured ray quantities and served as the input data for the inversion for parameters of viscoelastic anisotropy.
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Table 4. WAA parameters of the serpentinite rock sample.

No. WAA Pressure 0.1 MPa Pressure 20 MPa

Real Imaginary Real Imaginary
part (10−3) part (10−4) part (10−3) part (10−4)

1 εx −115.4 −54.1 −109.9 −41.5
2 εy 13.8 −76.4 18.1 −58.3
3 εz 87.0 −80.7 79.0 −61.9
4 ηx 16.5 −11.1 28.9 −6.1
5 ηy −151.7 −19.8 −148.2 −28.3
6 ηz 1.8 −1.2 −1.1 −4.8
7 ε16 −7.9 2.4 −5.1 2.9
8 ε15 4.9 −2.7 4.1 −2.3
9 ε24 −4.4 0.1 −5.1 0.8

10 ε26 −9.9 4.1 −7.8 5.7
11 ε35 3.6 −4.0 3.6 −4.7
12 ε34 −5.2 −1.4 −5.7 0.0
13 χx −1.6 −0.2 −3.3 1.4
14 χy 6.2 −4.9 7.9 −7.7
15 χz 3.5 −5.7 7.7 5.8

process was quite fast. The accuracy of the retrieved parameters was
higher if the phase velocity and attenuation were inverted. Utilizing
ray velocity and attenuation worked slightly worse because of the
necessity of recalculating the ray to phase quantities before the
inversion. In both inversions, the accuracy of the individual WAA
parameters significantly varied. The lowest accuracy was achieved
for parameters ηx , ηy and ηz reflecting a rather low sensitivity of the
P-wave velocity and attenuation to them.

The applicability of the proposed methods was exemplified by
determining anisotropic attenuation of a serpentinite rock from Val
Malenco, Northern Italy. The ray velocity and ray attenuation were
measured on a spherical sample of the rock with the diameter

of 45.5 mm in 132 independent directions at the room tempera-
ture and under two pressure levels: 0.1 and 20 MPa. First, elastic
anisotropy of the rock sample was determined and then attenuation
anisotropy was inverted for. To our knowledge, the results obtained
for the serpentinite rock sample represent the first accurately deter-
mined triclinic anisotropic attenuation from lab measurements. The
measurements confirmed that anisotropic attenuation is remarkably
sensitive to confining pressure. Since cracks are closing with in-
creasing pressure, attenuation decreases. If cracks are preferentially
oriented, the crack closure can diminish also the velocity anisotropy.
However, changes in pressure acting on a rock with preferentially
oriented crack systems can also induce changes in the directional
variation of attenuation and a rotation of anisotropy axes.

We applied the proposed method to determination of anisotropic
attenuation of a dry rock sample from lab measurements, but the ap-
plicability of the approach is broader. The approach can be applied
to measurements of saturated rock samples to study fluid-driven at-
tenuation and fluid flow in rocks. Attenuation effects similar to those
measured in the lab will probably be observed also in seismic field
experiments. Since the Earth’s crust and the mantle are anisotropic
and attenuating, future detailed seismological tomographic studies
will include effects of anisotropic attenuation. Such studies can ad-
vantageously apply the model of viscoelastic anisotropy and follow
the inversion schemes presented in this paper after adapting them
to a different configuration and scale of the experiment and to a
different frequency range of studied waves.
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V. Filler and V. Nemejovský is greatly appreciated. This study was
supported by the Grant Agency of the Czech Republic, projects
P210/12/1491 and 16-19751J, by the Ministry of Education, project
Kontakt II LH13102 and by The Czech Academy of Sciences,
project RVO 67985831.

R E F E R E N C E S

Allen, R., 1982. Automatic phase pickers: their present use and future
prospects, Bull. seism. Soc. Am., 72(6), S225–S242.

Auld, B.A., 1973. Acoustic Fields and Waves in Solids, Wiley.
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