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Calculation of acoustic axes in triclinic elastic anisotropy is considerably more complicated than for
anisotropy of higher symmetry. While one polynomial equation of the 6th order is solved in
monoclinic anisotropy, we have to solve two coupled polynomial equations of the 6th order in two
variables in triclinic anisotropy. Furthermore, some solutions of the equations are spurious and must
be discarded. In this way we obtain 16 isolated acoustic axes, which can run in real or complex
directions. The real/complex acoustic axes describe the propagation of homogeneous/
inhomogeneous plane waves and are associated with a linear/elliptical polarization of waves in their
vicinity. The most frequent number of real acoustic axes is 8 for strong triclinic anisotropy and 4 to
6 for weak triclinic anisotropy. Examples of anisotropy with no or 16 real acoustic axes are
presented. © 2005 Acoustical Society of America. �DOI: 10.1121/1.1954587�
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I. INTRODUCTION

Acoustic axes �singularities, degeneracies� in anisotropic
media are the directions in which phase velocities of two or
three plane waves coincide.1–4 These directions are important
in studying acoustic, seismic, or electromagnetic waves, be-
cause they cause anomalies in the field of polarization
vectors,5,6 and they are associated with energy focusing due
to caustics in the wave surface.7–14 Acoustic axes also pose
complications in tracing rays15,16 and in wave field modeling
because of coupling of waves.17–22

Acoustic axes form single isolated points on the slow-
ness surface, or they join into lines. The isolated acoustic
axes can exist in all anisotropy symmetries, the line acoustic
axes typically occur in transverse isotropy. The maximum
number of isolated acoustic axes is:23–31 16 in monoclinic,
orthorhombic, and trigonal symmetry, 13 in tetragonal sym-
metry, 7 in cubic symmetry, and 1 in transverse isotropy. The
directions of the acoustic axes in the mentioned symmetries
are calculated by solving polynomial equations in one vari-
able. The highest degree of the polynomials is 6 for mono-
clinic symmetry, or less for other symmetries, hence solving
the polynomials numerically does not pose any difficulty.
However, as regards triclinic anisotropy, the problem is more
involved. Khatkevich23 proved that the acoustic axes in tri-
clinic anisotropy can be calculated by solving two polyno-
mial equations of the 6th order in two variables. This implies
that the number of acoustic axes in triclinic anisotropy can-
not exceed 36. However, Khatkevich23 did not discuss
whether the actual maximum number of acoustic axes is less
than 36 or not. Later on, Darinskii28 proved that typical tri-
clinic anisotropy �when S1 and S2 waves are degenerate�
cannot have more than 16 acoustic axes, and Holm27 proved
that generic triclinic anisotropy �anisotropy with stable
acoustic axes� also possess no more than 16 acoustic axes.
Here it is proved that the maximum number of acoustic axes
is 16 under no restrictions on triclinic anisotropy. Several
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approaches to determining the acoustic axes in triclinic an-
isotropy are presented and it is discussed which scheme is
optimum for numerical calculations. Examples of triclinic
anisotropy with no and 16 acoustic axes are presented, and
the most frequent number of acoustic axes in triclinic media
and its dependence on anisotropy strength is investigated.

II. THEORY

The Christoffel tensor ��n� is defined as20,24,32

� jk�n� = aijklninl, �1�

where aijkl are the density-normalized elastic parameters and
n is the unit vector defining the slowness direction. The Ein-
stein summation convention over repeated subscripts is ap-
plied. The elastic parameters aijkl must satisfy the stability
conditions, if the medium is to be physically realizable:

a11 � 0, �a11 a12

a12 a22
� � 0,

�a11 a12 a13

a12 a22 a23

a13 a23 a33
� � 0, . . . ,det�a��� � 0, �2�

where the two-index Voigt notation a��, � ,�=1, . . . ,6 has
been used �see Musgrave,32 Eq. �3.13.4��. These conditions
correspond to the requirement that the strain energy of the
medium must be positive �see Payton,33 Eqs �1.4.3.� and
�1.4.4��.

The Christoffel tensor ��n� has three eigenvalues G�M�

and three unit eigenvectors g�M�, which are calculated from

� jkgk
�M� = G�M�gj

�M�, M = 1,2,3, �3�

where M denotes the type of the wave �P, S1, or S2�. The
eigenvalues correspond to the squared phase velocities, G
=c2, and the eigenvectors describe the polarization vectors of
the waves.

Acoustic axes are defined as the directions in which two

eigenvalues of the Christoffel tensor coincide
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G�1��n� = G�2��n� � G�3��n� , �4�

and thus the Christoffel tensor is degenerate. Exceptionally,
all three eigenvalues can coincide

G�1��n� = G�2��n� = G�3��n� , �5�

but this type of the acoustic axis is unstable and very rare.
In the following, I will present three different ap-

proaches to determining acoustic axes in anisotropic media:
the Fedorov approach24 based on solving one 12th-order
multivariate polynomial equation, the Khatkevich approach23

based on solving two 6th-order multivariate polynomial
equations, and the Darinskii approach28 based on solving six
multivariate quadratic equations.

A. The Fedorov equation

Calculating the eigenvalues G of the Christoffel tensor
��n� from

det�� jk − G� jk� = 0, �6�

we obtain the following cubic equation:

G3 − PG2 + QG − R = 0, �7�

where P, Q, and R are invariants of ��n�,

P = �11 + �22 + �33, �8�

Q = �11�22 + �11�33 + �22�33 − �12
2 − �13

2 − �23
2 , �9�

R = �11�22�33 + 2�12�13�23 − �11�23
2 − �22�13

2 − �33�12
2 .

�10�

The cubic equation �7� has three real roots, of which at least
two are equal, if �see Fedorov,24 Eq. �18.18��

4P3R − P2Q2 − 18PQR + 4Q3 + 27R2 = 0. �11�

Equation �11� is the 12th-order homogeneous polynomial
equation in three unknowns n1, n2, and n3. It has an infinite
number of complex-valued solutions, but the number of real-
valued solutions is finite.

B. The Darinskii equations

Using the spectral decomposition of ��n�

� jk = G�1�gj
�1�gk

�1� + G�2�gj
�2�gk

�2� + G�3�gj
�3�gk

�3�, �12�

and applying the condition for the acoustic axis, G�2�=G�3�,
we obtain

� jk = �G�1� − G�2��gj
�1�gk

�1� + G�2�� jk, �13�

where � jk is the Kronecker delta and the following identity
was used:

� jk = gj
�1�gk

�1� + gj
�2�gk

�2� + gj
�3�gk

�3�. �14�

If G�1��G�2�=G�3�, the S1 and S2 phase velocities coincide
�1� �2� �3�
at the acoustic axis, if G �G =G , the P and S1 phase
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velocities coincide at the acoustic axis. Equation �13� can be
expressed as follows �see Darinskii,28 Eq. �4��:

aijklsisl = gjgk + � jk, �15�

where s=n /�G�2� is the slowness vector of the degenerate
wave and g=g�1���G�1�−G�2�� /G�2� is an eigenvector of the
nondegenerate wave of a generally nonunit length. The
vectors s and g may be real- or complex-valued. Equation
�15� is a system of six quadratic equations for six un-
knowns: s= �s1 ,s2 ,s3�T and g= �g1 ,g2 ,g3�T. The number of
solutions is 26=64. If we take into account that solutions
of different signs: ±s, ±g, correspond to the same acoustic
axis, the maximum number of acoustic axes is reduced
from 64 to 16. This number comprises acoustic axes with
real-valued as well as complex-valued slowness vector s.

C. The Khatkevich equations

Eliminating eigenvalues and eigenvectors in Eq. �13�,
we obtain:28

�11 −
�12�13

�23
= �22 −

�12�23

�13
= �33 −

�13�23

�12
, �16�

and subsequently �see Khatkevich,23 Eq. �11��

��11 − �22��13�23 − �12��13
2 − �23

2 � = 0, �17a�

��11 − �33��12�23 − �13��12
2 − �23

2 � = 0, �17b�

��22 − �33��12�13 − �23��12
2 − �13

2 � = 0. �17c�

Equations �17a�–�17c� represent a system of 6th-order equa-
tions for three unknown components of the unit direction
vector n: n1, n2, and n3. The three equations ��17a�–�17c��
are not independent, hence we solve only two of them. We
obtain 72 solutions, which are generally complex-valued.
Taking into account that ±n describes the same direction, the
number of directions reduces from 72 to 36.

Since Eq. �15� yields only 16 acoustic axes, 20 of the 36
directions calculated from Eqs. �17� must be spurious and do
not describe acoustic axes. In fact, the spurious directions
were incorporated into the solution, when Eq. �16� was mul-
tiplied by terms �12�13, �12�23 or �13�23 in order to derive
Eqs. �17�. Therefore, we should eliminate from the solutions
of Eqs. �17a�–�17c�, the directions for which

�13 = 0, �23 = 0, �18a�

or

�12 = 0, �23 = 0, �18b�

or

�12 = 0, �13 = 0. �18c�

Equations �18a�–�18c� describe three systems of quadratic
equations, each of them having 8 solutions which reduce to 4
directions when omitting different signs of n. Hence, we
obtained a total of 12 spurious directions. Furthermore, 8 of
the 12 spurious directions appear in Eqs. �17� twice. Which 8
spurious directions are doubled, depends on the pair of Eqs.

�17a�–�17c� we actually solve. For example, when solving
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Eqs. �17a� and �17b�, the solutions of Eqs. �18a� and �18b�
are doubled, when solving Eqs. �17b� and �17c�, the solu-
tions of Eqs. �18b� and �18c� are doubled. Hence, the total
number of spurious directions in Eqs. �17� is 20. This con-
firms that only 16 acoustic axes can exist in triclinic aniso-
tropy.

III. NUMERICAL CALCULATION OF ACOUSTIC AXES

In principal, all three above-mentioned approaches can
be used for determining acoustic axes in triclinic anisotropy.
However, they are differently efficient from the point of view
of programming and numerics. The numerical tests show that
the acoustic axes in triclinic anisotropy can be conveniently
calculated using the Khatkevich approach, because it repre-
sents a standard problem of solving two polynomial equa-
tions in two unknowns. The Darinskii approach requires
elaborating with higher number of equations, and the Fe-
dorov approach yields real-valued acoustic axes but not
complex-valued acoustic axes �for details, see Sec. IV�.
Moreover, the Fedorov approach is rather untypical, because
we have to solve one polynomial equation in two unknowns.

The Khatkevich equations �17a�–�17c� are homogeneous
polynomial equations of the 6th order in three unknown
components n1, n2, and n3 of the unit direction vector n.
Using the substitutions u=n1 /n3 and v=n2 /n3, we obtain in-
homogeneous polynomial equations of the 6th order in un-
knowns u and v. The roots of the equations can be calcu-
lated, for example, using Gröbner bases,34 implemented in
symbolic algebra packages. Solving Eqs. �17a�–�17c� we ob-
tain 36 solutions, from which we have to exclude 20 spurious
solutions defined by Eqs. �18a�–�18c�. To identify and elimi-
nate the spurious solutions, we can either solve Eqs.
�18a�–�18c� or we can simply check at which of the 36 di-
rections calculated from Eqs. �17a�–�17c� the Christoffel ten-
sor is nondegenerate. Using this approach, we obtain real as
well as complex acoustic axes in triclinic anisotropy. For
anisotropy of higher symmetry, it is not convenient to use
this approach, because it is too complex and it may even fail
when the true or spurious solutions are not isolated. Instead,
much simpler systems of algebraic equations designed for
each specific symmetry are used.23,29 Equations �17a�–�17c�
can also fail when triclinic anisotropy is extremely weak. In
this case, the left-hand sides of Eqs. �17a�–�17c� are very
close to zero for all directions n, hence the solution can be
distorted by numerical errors.

Finally, I should also mention a possibility to calculate
acoustic axes using a direct numerical approach. This ap-
proach is based on minimizing the square of the difference
between numerically calculated eigenvalues of the Christof-
fel tensor. The minimization can be performed using some
standard inversion technique like the gradient method. Since
the misfit function has several minima, we have to invert
repeatedly for varying initial guesses of the position of the
acoustic axis. Not to skip some solutions, the initial positions
of the acoustic axes should cover the whole hemisphere in a
regular grid and the grid should be sufficiently dense. This
approach is applicable to any type of anisotropy and is also

reasonably fast. However, it does not yield complex acoustic
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axes and sometimes it may skip some solutions, for example,
in situations when two acoustic axes are very close each to
the other.

IV. REAL- AND COMPLEX-VALUED ACOUSTIC AXES

As mentioned earlier, the 16 acoustic axes in triclinic
anisotropy can lie along a real-valued or complex-valued di-
rection n. The real-valued acoustic axis corresponds to the
propagation of a homogeneous plane wave:

uk�x,t� = Agk exp�− i��t − sjxj�� , �19�

where u is the real-valued displacement, A is the scalar real-
or complex-valued amplitude, and s=n /�G is the real-
valued slowness vector. Since the Christoffel tensor � and
its eigenvalues G and eigenvectors g are real-valued, the
polarization near the acoustic axis is linear. Strictly at the
singularity, the polarization is not defined because of the
degeneracy of �.

If the acoustic axis is complex-valued, the correspond-
ing plane wave solution describes an inhomogeneous wave:

uk�x,t� = Agk exp�− i��t − sjxj��
= Agk exp�− ajxj�exp�− i��t − pjxj�� , �20�

where A is the scalar real- or complex-valued amplitude, s is
the complex-valued slowness vector, s=n /�G=p+ ia, and p
and a are the real-valued propagation and attenuation
vectors.35 Subsequently, the Christoffel tensor � and its
eigenvalues G and eigenvectors g, calculated by Eqs. �1�
and �3�, are complex-valued, and the polarization near the
acoustic axis is elliptical. The ellipticity depends on the
direction and magnitude of attenuation vector a. Similarly
as for homogeneous waves, the polarization is not defined
at the acoustic axis because of the degeneracy of �. Since
the problem of degeneracy is more involved for complex-
valued tensors than for real-valued tensors, Eqs. �15� and
�17� do not describe all acoustic axes for inhomogeneous
waves, but only the so-called “semisimple” axes �degen-
eracies�. The “nonsemisimple” degneracies cannot be in-
vestigated by these equations. For more details about the
semisimple and nonsemisimple degeneracies, see Ting36

and Shuvalov.37

The polarization properties of homogeneous and inho-
mogeneous waves near real and complex acoustic axes are
exemplified for triclinic anisotropy generated from an isotro-
pic medium with �=1, 	=1, by adding small perturbations.
The elastic parameters are as follows:

A = �
3.004 1.004 1.004 0.004 0.002 − 0.001

3.004 1.002 − 0.002 − 0.001 0.001

3.000 0.003 − 0.001 0.004

1.001 0.001 − 0.001

1.000 0.003

1.000

	 .
�21�
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The positions of the acoustic axes over the unit sphere are
shown in Fig. 1. The medium contains 6 real and 10 complex
acoustic axes. For complex axes, their positions on the
sphere are calculated from the real parts of complex direc-

FIG. 1. Positions of real �circles� and complex �triangles� acoustic axes for
triclinic anisotropy described by Eq. �21�. The plus sign marks the vertical
axis. The open circle and open triangle show the acoustic axes, for which the
polarization field in their vicinities is shown in Figs. 2 and 3. Equal-area
projection is used.

FIG. 2. Polarization field near a real acoustic axis for �a� S1 wave, and �b�
S2 wave. The topological charge is −1/2. The dot marks the position of the

acoustic axis.
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tions n. Since the complex axes always appear in complex
conjugate pairs, Fig. 1 shows 5 instead 10 positions. Figure 2
shows the polarization of homogeneous waves near the real
acoustic axis marked in Fig. 1 by an open circle. The field of
polarization vectors displays a singularity with the topologi-
cal charge −1/2. Figure 3 shows the polarization of inhomo-
geneous waves near the complex acoustic axis marked in
Fig. 1 by an open triangle. The field of polarization vectors
displays a singularity with the topological charge +1/2.

V. STABLE AND UNSTABLE ACOUSTIC AXES

Acoustic axes can be either single or multiple. The
single/multiple acoustic axis corresponds to a nondegenerate/
degenerate solution of Eqs. �17a�–�17c�. The single axis is
stable, because it cannot split or disappear under a small
perturbation of elastic parameters. The axis only slightly
changes its direction. The multiple axis is unstable, because a
small perturbation of elastic parameters removes its degen-
eracy and splits the axis into two or more single axes. The
real-valued multiple axis can split into real-valued and/or
complex-valued single axes. The topological charge of the
multiple real acoustic axis is equal to the sum of the topo-

28

FIG. 3. Polarization field near a complex acoustic axis for �a� S1 wave, and
�b� S2 wave. The topological charge is +1/2. The dot marks the position of
the acoustic axis.
logical charges of split single real axes.
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The properties of the multiple acoustic axes will be ex-
emplified on a transition from cubic to triclinic anisotropy by
a small perturbation of elastic parameters. The cubic aniso-
tropy is characterized by 4 single real-valued axes in the
directions 
±1, ±1, ±1� and three multiple real-valued axes

±1,0 ,0�, 
0, ±1,0�, and 
0,0 , ±1�. The multiple axes are 4
times degenerate. The total number of real-valued acoustic
axes is 7. However, if we consider multiplicities, we obtain
16 real-valued axes, which is the maximum number of
acoustic axes in anisotropy. This implies that no other
complex-valued axis can exist in cubic anisotropy. The topo-
logical charge of each multiple axis is +1. If we perturb
elastic parameters from cubic to triclinic anisotropy, the
single axes slightly change their directions and each multiple
axis splits into two real-valued and two complex-valued
single axes. Each split real-valued single axis has a topologi-
cal charge of +1/2.

VI. FREQUENCY OF ACOUSTIC AXES

Now let us address the problem of the balance between
the numbers of real- and complex-valued acoustic axes, and
how this balance depends on the strength of anisotropy. The
number of real and complex acoustic axes will be studied
numerically on randomly generated triclinic anisotropy. The
triclinic anisotropy with elastic parameters aijkl is obtained
by perturbing an isotropic medium in the following way:

aijkl = aijkl
0 + 
aijkl

1 , �22�

where

aijkl
0 = ��ij�kl + 	��ik� jl + �il� jk� . �23�

Parameters � and 	 define the Lamé coefficients of an iso-
tropic medium, tensor aijkl

1 defines perturbations into triclinic
anisotropy, and 
 is a measure of the anisotropy strength.
Parameters � and 	 are fixed at values �=1, 	=1, perturba-
tions aijkl

1 are generated randomly with a uniform nonzero
probability in the interval 
−3,3�, and 
 is 0.01 or 1. The
generated triclinic media were checked to stability using Eq.
�2�, and the unstable media were discarded. For 
=0.01, all
the media were stable, for 
=1, approximately one hun-
dredth of the media were stable. To obtain statistically
relevant results, the number of randomly generated stable
triclinic media is 1000 for each 
.

Figure 4 shows the frequency of occurrence of acoustic
axes in the studied triclinic media. The figure shows that the
number of acoustic axes depends on the strength of aniso-
tropy. For weak anisotropy, defined by 
=0.01, the randomly
generated triclinic anisotropy contains most frequently 4 to 6
real and 10 to 12 complex axes. For strong anisotropy, de-
fined by 
=1, the most frequent number is 8 real and 8

TABLE I. Examples of triclinic anisotropy with 16 real and 16 complex ac

a11 a12 a13 a14 a15 a16 a22 a23 a24 a2

Ia 137 52 57 −13 32 −20 147 18 −6 2
IIb 31 −5 −32 2 −2 −3 9 −11 2 5

aI—anisotropy with 16 real acoustic axes.
b
II—anisotropy with 16 complex acoustic axes.
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complex axes. Media with no real or no complex axis are
admissible, but they are very rare. To demonstrate their ex-
istence, elastic parameters of two media are presented in
Table I: anisotropy I with 16 real axes, and anisotropy II with
16 complex axes. Figure 5 shows the distribution of axes
over the sphere. For complex axes, their positions on the
sphere are calculated from the real parts of complex direc-
tions n. Since the complex axes always appear in complex
conjugate pairs, Fig. 5�b� shows 8 instead 16 positions. An-
isotropy I was generated in a similar way as other randomly
generated triclinic media in the above-described numerical
tests. Anisotropy II was derived from orthorhombic aniso-
tropy with no real acoustic axes, presented by Boulanger and
Hayes29 by perturbing it into the triclinic anisotropy.

VII. POSITIONS OF ACOUSTIC AXES AS A FUNCTION
OF ANISOTROPY STRENGTH

Here, variations in positions of acoustic axes will be
studied in dependence on anisotropy strength. The variations
will be shown on two examples of triclinic anisotropy de-

c axes.

a26 a33 a34 a35 a36 a44 a45 a46 a55 a56 a66

−9 100 22 −15 5 52 26 −7 75 −40 30
4 90 5 −1 −2 12 1 −3 35 −2 10

FIG. 4. Frequency of occurrence of real �solid line� and complex �dashed
line� acoustic axes in randomly generated triclinic anisotropy with strength:
�a� 
=0.01, and �b� 
=1.
ousti

5

0

Václav Vavryčuk: Acoustic axes in triclinic anisotropy 651



fined by the Lamé coefficients of the isotropic background
medium �=1, 	=1, and by the perturbations aijkl

1 :

A1 = �
1.083 1.200 0.966 0.954 0.483 − 0.474

1.062 0.435 − 0.630 − 0.474 0.105

0.000 0.684 − 0.570 1.017

0.282 0.207 − 0.387

− 0.009 0.609

0.000

	 ,

�24�

FIG. 5. Positions of acoustic axes in: �a� anisotropy I with 16 real and no
complex acoustic axes, and �b� anisotropy II with 16 complex and no real
acoustic axes. The acoustic axes are marked by dots, the vertical axis is
marked by the plus sign. Equal-area projection is used. Note that the near-
horizontal directions of all complex acoustic axes in �b� are rather untypical
and not frequently observed.
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A1 = �
− 0.114 0.309 − 1.347 − 0.585 1.125 − 1.452

0.204 − 0.252 0.804 1.413 1.473

0.000 0.867 − 0.183 − 0.003

0.885 − 0.858 0.432

− 1.320 − 0.537

0.000

	 .

�25�

The anisotropy strength 
 ranged from −1000 to 1000 with a
varying step. The step was small enough to map densely
changes in the directions of acoustic axes. Figure 6 shows
the positions of the real acoustic axes in the equal-area
projection. The blue/red points mark the axes for stable/
unstable media. The figure shows that: �1� The positions
of the acoustic axes depend on strength of anisotropy. �2�
The acoustic axes are not distributed randomly around a
sphere but form a complicated line which can intersect
itself. Some segments of the line correspond to the acous-
tic axes of stable media, the other segments correspond to
the axes of unstable media. �3� For high absolute values of

, the directions of acoustic axes become insensitive to
anisotropy strength, and for 
 close to ±1000, the positions
of the acoustic axes are almost constant. �4� Since the
acoustic axes for 
→ ±� coincide, the line is closed.

The complex acoustic axes display a similar pattern. Ob-
viously, for anisotropy of higher symmetry, the form of the
line simplifies.

VIII. CONCLUSIONS

The acoustic axes in triclinic anisotropy can be conve-
niently calculated by solving two coupled polynomial equa-
tions of the 6th order in two unknowns. From the 36 direc-
tions obtained, 20 of them are spurious and must be
eliminated. The spurious directions are solutions of three
systems of quadratic equations in two unknowns. Hence, the
maximum number of isolated acoustic axes in triclinic aniso-
tropy is 16. These axes can be real or complex, and single or
multiple. If we count both real and complex acoustic axes
and their multiplicities, the total number of isolated axes is
always 16 regardless of symmetry or strength of anisotropy.
The real axes correspond to the degeneracy directions of the
real-valued Christoffel tensor, which describes the propaga-
tion of homogeneous plane waves. The complex axes corre-
spond to the semisimple degeneracy directions of the
complex-valued Christoffel tensor which describes the
propagation of inhomogeneous plane waves. The inhomoge-
neous waves can also possess other types of acoustic axes
called nonsemisimple. The real-valued acoustic axis is asso-
ciated with a linear polarization in its vicinity, which is sin-
gular at the axis. The complex-valued �semisimple� acoustic
axis is associated with an elliptical polarization, which is
also singular at the axis. Numerical simulations indicate that
the most frequent number of real acoustic axes is only 4 to 6
for weak anisotropy and 8 for strong anisotropy. A medium
with no or 16 real acoustic axes is admissible, but it is very
rare. Positions of the acoustic axes depend on strength of
anisotropy. If we fix the perturbation matrix aijkl

1 and change
anisotropy strength 
, the positions of acoustic axes form a

one closed curve.
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