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Applicability of higher-order ray theory for $ wave propagation 
in inhomogeneous weakly anisotropic elastic media 

V•tclav Vavry•uk 
Geophysical Institute, Academy of Sciences of the Czech Republic, Prague 

Abstract. Modeling of S waves propagating in inhomogeneous, weakly anisotropic, 
elastic media creates complications for the zeroth-order ray theory. These complications 
are caused mainly by the so-called S wave coupling. If the S wave coupling is significant 
in the wave field, then the zeroth-order ray theory is inapplicable. In this case, 
modifications of the zeroth-order ray theory such as the coupling ray theory or the quasi- 
isotropic ray theory have so far been used to reproduce the S waves correctly. We show 
that the failure of the zeroth-order ray theory can also be overcome by higher-order ray 
theory. If we consider not only the zeroth-order term of the ray series but also higher- 
order terms, we can obtain correct results. On a simple example of a plane S wave 
propagating in a weak transversely isotropic medium with a rotating axis of symmetry, 
we study how the accuracy of higher-order ray theory depends on the number of higher- 
order ray approximations considered in the solution. 

1. Introduction 

Recently, several authors demonstrated difficulties of the 
zeroth-order ray theory (ZRT) when modeling S waves 
propagating in inhomogeneous, weakly anisotropic, elastic 
media [Chapman and Shearer, 1989; Coates and Chapman, 
1990; Guest et al., 1992; Thomson et al., 1992]. These 
complications arise due to the interaction of split S waves, 
called "S wave coupling." The S wave coupling can be quite 
remarkable, when polarization vectors of the split S waves 
change rapidly along a ray (e.g., near S wave singularities), 
and the anisotropy of the medium is weak. Then the S wave 
coupling significantly affects the split S waves, and ZRT can 
only approximate a true solution very roughly, or it can even 
yield quite erroneous results. Moreover, the zeroth-ordet ray 
solution for an anisotropic medium may not necessarily 
converge to the zeroth-order ray solution for an isotropic 
medium, when anisotropy diminishes to isotropy. We can 
illustrate this surprising and very unwelcome property of ZRT 
on propagation of S waves in a one-dimensional (l-D) 
inhomogeneous anisotropic medium previously studied by 
Lakhtakia [1994] and by R•impker and Silver [1998]. We 
shall assume a vertically inhomogeneous, transversely 
isotropic medium, where the inhomogeneity is caused by the 
symmetry axis of the medium rotating around the vertical axis 
(see Figure 1). If a plane S wave propagates in the vertical 
direction, ZRT predicts that the polarization of the S wave 
rotates coincidently with the rotation of the symmetry axis 
(see Figure 2). The rotation of the S wave polarization is 
independent of the strength of the anisotropy of the medium. 
Therefore, when we gradually diminish anisotropy to 
isotropy, ZRT always predicts the rotating S wave 
polarization as the wave propagates along the z axis. This is 
obviously an unphysical result, which contradicts the results 
of ray theory for an isotropic medium. The "isotropic" ray 
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theory predicts constant S wave polarization, since the above 
mentioned medium becomes homogeneous when anisotropy 
vanishes (see Figure 2). We shall refer to this phenomenon as 
the "failure of ZRT." An analogous failure of ray theory can 
also occur in a strongly anisotropic medium, when the S wave 
propagates near the S wave singularity direction. In this case, 
the S wave coupling is also remarkable, and ZRT yields 
contradictory results. Thus ZRT can fail in weakly as well as 
in strongly anisotropic media, in the latter case, specifically 
for the directions near the S wave singularities. 

Chapman and Shearer [1989] proposed to overcome the 
difficulties of ZRT by developing the S wave coupling theory 
valid for 1-D inhomogeneous anisotropic media. This method 
eliminates the failure of ZRT by incorporating the S wave 
coupling into the solution. Coates and Chapman [1990] 
modified the above mentioned approach and developed an 
extension of asymptotic ray theory valid for 3-D 
inhomogeneous anisotropic media called the coupling ray 
theory. Sharafutdinov [1994], P•end[k [1998], and Zillmer et 
al. [1998] use an another modification of ZRT called the 
quasi-isotropic approximation. This method again takes into 
account the S wave coupling to obtain correct results for S 
wave propagation in inhomogeneous weakly anisotropic 
media. All these modifications of ray theory eliminate the 
failure of ZRT, and their results converge smoothly to the ray 
results for isotropic media when anisotropy diminishes to 
isotropy. 

In this paper we propose another ray-based approach for 
studying S waves propagating in inhomogeneous anisotropic 
media, called higher-order ray theory (HRT). We suggest 
consideration of not only the zeroth-order term of the ray 
series but also higher-order terms [Vavry•uk and Yomogida, 
1996; Vavryduk, 1997]. Using this approach, we shall solve 
the problem of propagation of the plane S wave in the weakly 
transversely isotropic medium with a rotating axis of 
symmetry. We shall simplify the problem to be able to 
calculate the ray solution analytically. By applying first-order 
perturbation theory we shall express explicitly formulae for 
all higher-order ray approximations and thus obtain the 
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TI with rotating axis of symmetry 

Figure 1. Vertically inhomogeneous transversely isotropic 
medium. Direction of the symmetry axis depends on the z 
coordinate and rotates around the z axis. 

complete ray solution. We shall illustrate that the failure of 
ZRT can be removed by HRT, and that the S wave coupling 
ignored by ZRT can be reproduced well by HRT. Using 
numerical examples, we shall study the accuracy of the ray 
solution by comparing the ray solution with the exact solution 
obtained by the finite difference (FD) method. The accuracy 
of the ray solution will be studied via its dependence on the 
number of higher-order ray terms, on the strength of 
anisotropy, and on the strength of inhomogeneity, meaning 
the rate of rotation of the symmetry axis of the medium along 
the z axis. 

K denotes the order of the ray approximation, U(•:)(x) is the 
ray amplitude vector, and r(x) is the travel time. Equation 
(2) describes the ray expansion of only one wave. Since P, $1, 
or S2 waves can propagate in anisotropic media, we have to 
sum the ray expansions of these three waves. If we consider 
only the first term of the ray expansion (2), we shall speak of 
the ZRT solution. If we sum the higher-order terms (K = 
1,..., o• ) in equation (2), we shall speak of the complete HRT 
solution. The complete ray solution is then a sum of the ZRT 
and HRT solutions. 

Inserting (2) into (1) leads to the system of basic equations 
of ray theory for the ray amplitudes U (•:)' 

Ni(U © ) - M,(U (•:-•)) + L,(U (•:-2)) = 0 , (3) 

where N, M, and L are differential operators defined as 
[•erven)5, 1972, equation 6] 

where 

Ni (U(•:)) = r tr(•:) (•:) ß .jk,..•k -- U'j , 

Mi (U(g) ) = au•ap i c•U• •:) 1 c• +--•(pa _ r r(g) 0X t p 0Xi •m?• •'k ) , (4) 

Lj (U(•:)) = 7•x• pa•k, 
•T 

F• = aqup•p• , p• 
F is the Christoffel tensor and p is the slowness vector. 
Solving (3), we obtain the ray amplitude U © as the sum of 
the additional component U (K)• and the principal component 
U(K) II: 

U © = U (•)• + U (•)11 , (5) 

which can be calculated from the system of recursive 
equations. For the S1 wave expansion we can put [•erven)5, 
1972, equations 21, 22, and 29a,b] 

2. Ray Theory for Inhomogeneous Anisotropic 
Media 

The elastodynamic equation for an inhomogeneous, 
anisotropic, elastic medium, when no sources are considered, 
reads 

piii -(pa•,u•.,),•= O, i= 1,2,3, (1) 
where u = u(x, t) is the displacement, p is the density of the 
medium, a•a are the density-normalized elastic parameters, 
and t is time. We assume that elastic parameters aura and 

.density p and their derivatives are continuous functions of 
coordinates. Solving (1) using ray theory, we seek a solution 
in the form of the ray series [•erven)5, 1972, equation 3; 
•erven)5 et al., 1977, equation 5.2] 

ui(x, t) = •'•U•g)(x)f(g)(t-r(x)), (2) 
K=0 

where 

d f(•:)(t) = f(•:-')(t) . 
dt 

Isotropy Anisotropy 

z I z 

y 
Figure 2. Ray theoretical polarizations of a plane S wave 
propagating along the z axis (left) in a homogeneous isotropic 
medium and (right) in an anisotropic medium with a rotating 
axis of sym'netry. 
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For K<0 

For K=0 

U• •(•:)• = U•(•:)11 = 0 , (6a) 

U• '(ø)• = 0 , (6b) 

The only difference between this simple transverse isotropy 
and isotropy is that the phase velocity of the SH wave is 
directionally dependent having the following form: 

c s" = •a66 sin 2 0 + a44 cos 2 0 , (9) 

For K>0 

u•S•(O)11 = g• 4 • s• cS•(O) (6c) poVo , p 

x gi g• gi g-•• (6d) G s2 _ G s• • G • _ G s• , 

•pvS,jS, PoV• •o 
s 

1 f /• ifS1 (U$I(K-1) K)• +- [• )-M,(U s'( )]gf'ds 2 J• v s• ' 
So 

(6e) 
where v is the •oup velocity, g is the polmzmion vector, G 
is the eigenvalue of the Chhstoffel tensor F, s is the arc len•h 
of the ray, and ½m= ½m (g•,g2) is the inte•mion constant of 
the Kth-order ray approximation. •e inte•ation constant 
depends on ray parameters h and •2 and should be dete•ined 
kom the boundary conditions. J denotes the ray Jacobian, 
which is defined as the Jacobian of the Wansfo•mion •om 

the Caaesian coordinmes x, y, z to the ray coordinates s, h, 
and •2. Quantities with subschpt zero are taken m the initial 
point of the ray; the other quantities are taken m the 
obse•ation point. 

Equmion (6) is very general, valid for arbiwary wave fields 
in 3-D inhomogeneous anisoWopic media. We only do not 
consider phase shffis due to caustics. Analogous equations 
can be •itten also for the P or S2 wave expansions. 

3. Weak Transverse Isotropy With Rotating 
Axis of Symmetry 

Let us consider transversely isotropic medium with a 
vertical axis of symmetry with the following density- 
normalized elastic parameters: 

-a• a• - 2%6 a• -- 2a44 
a• • a• - 2a44 

all 

o o o 

o o o 

o o o 

a44 0 0 

a44 0 

a• _ 

(7) 

where the 2-index Voigt notation has been used. This medium 
represents a special type of transverse isotropy, which is ver5 
simple and in many aspects similar to isotropy. For example, 
polarization vectors of P, SV, and SH waves in the medium 
are identical to those in isotropic media. Also phase velocities 
of P and SV waves are constant and the same as for isotropic 
media 

c c ß 

where 0 is the angle between the phase normal and the 
symmetry axis. For the symmetry axis direction (0 = 0 ø) the 
$V and $H waves have coincident phase velocities and form a 
kiss singularity [Crampin, 1991]. For other directions the $V 
and $H waves propagate with different phase velocities, thus 
splitting into two independent waves. If parameters a44 and %6 
have similar values, la**- a441 << a44, the transverse isotropy 
becomes weak. Equation (9) can then be linearized as 

where 

c s": ax•44(l+2'sin20), (10a) 

2': a6•--a4.•_ 4 , Irl << ß (0b) 
2a44 

Parameter 2' is the well-known Thomsen [1986, equation 8b] 
parameter, the other Thomsen [1986, equations 8a and 17] 
parameters e and • are zero in our case. 

The above mentioned weakly transversely isotropic (WTI) 
medium will serve to construct the 1-D inhomogeneous 
anisotropic medium under study. First, we shall incline the 
symmetry axis of the WTI medium from the vertical by 
constant and nonzero angle $. Second, the axis of symmetry 
will rotate uniformly around the vertical in dependence on the 
z coordinate (see Figure 1). Thus the unit direction vector of 
the symmetry axis will be expressed as 

--sins cos{o (z)] 
N(J)= sinSsinqo(z) [, (11) 

cos$ J 

where $ is the deviation of the symmetry axis from the 
vertical, q• = bz is the angle of rotation of the symmetry axis 
which is measured in the x-y plane, and b is the parameter 
expressing the rate of rotation. We assume b being constant 
and positive, b > 0. 

In this way we obtain a vertically inhomogeneous WTI 
medium called the WTI medium with a rotating axis of 
symmetry. The expressions for the elastic parameters a' u of 
this medium are given in Appendix A. The density of the 
medium is constant. 

4. Propagation of Plane $ Waves Along the z 
Axis by Higher-Order Ray Theory 

In this section we shall study the properties of plane 
$ waves propagating in the above defined medium along the z 
axis by applying higher-order ray theory. The wave will 
propagate from z = 0 in the positive direction. At the initial 
point, z = 0, the S wave will be linearly polarized in the 
direction of the x axis and will have the form of the Dirac 

delta function in time. In ray theory the studied S wave is 
composed of two elementary S waves: SR (radial S) and ST 
(transverse S). Both S waves are polarized in the x-y plane. 
Polarization vector of the SR wave is parallel to the horizontal 
projection of the symmetry axis of WTI, and polarization 
vector of the ST wave is perpendicular to this projection (see 
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ST 

axis 

Figure 3. Definition of the SR and ST waves. Dotted line is 
projection of the symmetry axis of the medium into the x-y 
plane. 

We emphasize that contrary to the SR wave where (12) holds 
exactly, (14) and (15) for the ST wave are approximate, being 
valid only under a weak anisotropy condition. For strong 
anisotropy, phase and group velocities c sr and v sr differ, and 
ray Jacobian jsr is different from unity. 

4.2. Zeroth- and Higher-Order Ray Approximations 

Since the $ wave has the form of the Dirac delta function at 

z = 0, we can express time functions f(•:)(t) in (2) as 
follows: 

t/•-• 

f(ø)(t)=G(t), f(•:)(t)=(K_l)-••H(t ), K>0. (16) 
Taking into account (6), (12), and (15), we obtain for the 
zeroth-order ray approximation of the $R and $T waves 

=C gt, 5 t-- •k ' (17a) 

Figure 3). We shall now express analytically the basic ray 
quantities and, subsequently, the zeroth-order term and all the 
higher-order terms of the ray expansions of these waves. 

4.1. Ray Fields and Ray Jacobians of the SR and ST 
Waves 

Ray fields of the SR and ST waves are different. For the SR 
wave the ray field is very simple because the phase and group 
velocity vectors are independent of ray direction and, in fact, 
are constant. Therefore the rays are straight lines parallel to 
the phase normal, and the ray Jacobian is unity: 

cSR SR •44 = v = , dS,• = l , (12) 

where c s'• and v sR are the phase and group velocities of the SR 
wave and ds,• is the ray Jacobian. 

For the ST wave the ray field is more complicated. Since 
the deviation between the phase normal and the symmetry 
axis of WTI is constant, •9 = const, the magnitude of the 
group velocity of the ST wave is also constant for all points 
on the ray. However, the group velocity direction depends on 
the symmetry axis direction that rotates along the z axis. This 
results in rays forming a circular helix (see Figure 4): 

X=Xo+rosinq• , y= yo+roCOSq•, z=cSrt=b-•q• , (13) 
where 

r 0 = b -• sin 6 , 

where x0 and Y0 are ray parameters, (p is the monotonically 
increasing angle of rotation of the symmetry axis of WTI, b is 
the rate of rotation, c sr is the phase velocity of the ST wave, 
and 5 is the angle between the z axis and the ray. Phase and 
group velocities c sr and v sr and deviation 5 can be 
approximately expressed in WTI as follows: 

c sr = v sr = ax•44 (1 + 7sin 2,9), sin5 = 27sin$cos$, (14) 
where 7 is the Thomsen parameter defined by (10b) and $ is 
the angle between the z axis and the symmetry axis of WTI. 
Similar to the $R wave, the ray Jacobian is constant and unity, 

dsr = 1 . (15) 

where 

=C gk c, t- U k , (17b) 

We can see from (17) that polarization of the SR and ST 
waves rotates in coincidence with the rotation of the 

symmetry axis of WTI. This rotation is independent of the 
strength of the anisotropy controlled by the Thomsen 
parameter y. The Kth-order ray approximations for K > 0 read 

k '• (K- 1)! "(,-rsr), (18a) 

H(t-rs•). (18b) 

Figure 4. Geometry of rays of the $R and ST waves. 
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Using (17) and (18) for the zeroth- and higher-order terms of 
the ray expansion and (6) for ray amplitudes, we can 
recursively calculate the complete ray series for the $R and ST 
waves. Although the medium is very simple and we are 
studying the propagation of a plane wave, the procedure of 
analytical calculation of higher-order ray approximations 
involves extensive manipulation with rather complex 
formulae. Therefore we performed the calculations by using 
symbolic manipulation software REDUCE [Hearn, 1991 ]. In 
the sections 4.3-4.4, we shall not present a detailed derivation 
but only basic steps and the final formulae. 

4.3. Integration Constants 

The fundamental problem in calculating the higher-order 
ray approximations is to determine the zeroth- and higher- 
order integration constants. The integration constants should 
be determined from the boundary conditions imposed on the 
$ wave at z = 0. Since the incident $ wave has the form of the 

Dirac delta function polarized in the x axis, 

we conclude that 

u•(z = 0,,) = (•(,), 0, 0) • , 

C sR(ø)=l, C st(ø) =0 . 

(19) 

(2O) 

The higher-order integration constants of the SR and ST 
waves are determined from 

(21) r I u•(•' (z = 0,,)+ u •' (z = 0,,)] = 0, 
K=I 

expressing the fact that the higher-order ray approximations 
of the $R and ST waves cancel each other at z = 0. Obviously, 
if (20) and (21) are satisfied, the boundary conditions are also 
satisfied. Since travel times r sR and r sr are zero at z = 0, (18) 
and (21) yield 

r [ U*"•'" (z = 0) + u *•'• (z = 0) ] ,•-' = 0, 
K=I 

(22a) 

r [ U•'•)" (z = 0) + u •'• (z = 0) ] ,•-' = 0. 
K=I 

(22b) 

Equation (22) should be valid for all times t, and thus we can 
decompose it into a system of recursive equations for the 
higher-order integration constants: 

u •(•'" (z = o) + u •(•'• (z = o) = o, (23a) 

u•(•'" (z = 0)+ u •(•'• (z = 0)= 0. (23b) 

Using (23), we can express the first-order integration 
constants as follows' 

(24a) 

and the other higher-order integration constants as follows 
(K > 0): 

C $r(2K) = 0, (24b) 

cSa(2K ): (2K- 1)! a•44b [1 + 3Ky sin 2 $] K!(K-1)! ysin2$ 
, (24c) 

C s•(2K+') = 0, (24d) 

t----- \2K+l cSr(2K+l ) _ 2(2K-1)! 4a44b / [1 (3K + 1)7sin 2 $] - K! (K-1)! 7 sin2 $) + ' 
(24e) 

4.4. Complete Ray Solution 

The final formulae for the SR and ST wave ray series are 
expressed as follows: 

K-1 

Sr(z,t ) st(o) (t r sr oo l'l 'st(K) (t_r st) H(t r sr U• 5 )+E (K- 1)! K=I '-' k , 
(25a) 

K-1 

. -_ '•'• 
(25b) 

Ray amplitudes U sR(K) and USr(K)read 

SR(K) __ USR(K)II...$R USR(K)_L ST (26a) 

U&sr(x) = Usr(x) ll_sr uSr(X)ñ s• g• + g• , (26b) 

For K=0 

U $T(ø)11 -- U $T(ø)-L --0 , U $R(ø)11 -- 1, U sn(ø)-L -0, (26c) 

For K>0 

U s•(K)11= l+-•Krsin2,9 [7sin2,9 ) (K-l)! 
2 q)K-2N 

x Z •(• • •)• (• 2•)•' (26d) 

US'•(K)-L=--1+3 (3K-1)ysin2$ [rsin'•9 (K-l)! 
N<_ K-1 

2 (pK-2N-1 
x Z N'(K- N-1)' (K- 2N-1)" N=0 ß ß ß 

(26e) 

uSr'K'II=(--1)K-'[l+•(3K--1)7sin=,9) bax• (K- 1), 7 sin•- $ 

NgK-1 
2 •l) K-2N-1 

x Z •)• (K 2,v •)• N=0 N!(K- N- - - ' 
(260 

V st(K)ñ =(-1) K-' l+•K7sin20 (K-l)! 7 sin2 $ 

N<K-2 
2 09 K-2N-2 

x Y' •v•(•: •v •)• (•: :•v •)• (26g) 
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t) 

ST 

coupling 
ST 

[ SR 

t 

Figure 5. Schematic diagram of the ST and SR zeroth-order 
waves (with waveforms of the Dirac delta function) together 
with the S wave coupling (bold line). 

where K is the order of the ray approximation, b is the rate of 
rotation of the symmetry axis ( b > 0 ), $ is the angle between 
the synm•etry axis and the z axis, anisotropy parameter y is 
defined in (10b), ½ = bz is the angle of rotation, and gSR and 
gSr are unit polarization vectors defined in (17c). Travel times 
r sR and r sr in (25) are expressed as follows: 

rs ,= z st= z (1_7sin25) . (27) 

Note that for infinitesimally weak anisotropy (y--> 0), ray 
amplitudes in (26) diverge. It is caused by the denominator 
G sn- G sr in (6d), which is proportional to y. Although the ray 
amplitudes diverge for y --> 0, the complete ray solution (25) 
can converge and thus can yield the true solution. It 
converges, namely, in the time interval defined by arrivals of 
ST and SR zeroth-order waves, where the S wave coupling can 
occur [see Chapman and Shearer, 1989]. Therefore we apply 
(25) only for this time interval. For the other times, we simply 
put the solution being zero (see Figure 5). 

Note that (25) and (26) are valid for the $wave 
propagating not only in a weakly anisotropic medium but also 
in a strongly anisotropic medium supposing that angle $ 
between the symmetry axis and the z axis is small. In fact, the 
term, which should be small in (26), is y sin2$. This term 
vanishes either for y --> 0 or for $ --> 0. The latter case 
corresponds to the strongly anisotropic medium, in which the 
plane S wave propagates near the S wave singularity. 

4.5. Limit From Anisotropy to Isotropy 

If the anisotropy is very weak, the higher-order ray 
amplitudes (26) become very high, but they are concentrated 
in a very narrow time interval (see Figure 6). For vanishing 
anisotropy ( y --> 0 ) the ray amplitudes diverge, but the width 
of the time interval vanishes. Hence the waveform of the HRT 

solution becomes the Dirac delta function similarly to the 
ZRT solution. Thus the complete ray solution in the limit 
from anisotropy to isotropy can be expressed as 

/ x ) uiSø(z,t)- = limu(z,t)=uisø(z)6 t- a•44 x_•O ' 
(28) 

where amplitude UiSø(z) is calculated as the sum of the zeroth- 
order ray amplitude and the time integral of the HRT solution 
of the faster S wave over the time interval between the SR and 

ST wave arrivals (see Figure 6, hatched area). If anisotropy 
parameter y is positive, the faster wave is the ST wave and 
amplitude Wsø(z) can be expressed as follows: 

TsR 

ui*ø(z)=gSn+ lim I uSr(z't) dt=gSn 
y--•O Ts r 

1 

+ lim gSrusr•f) II + gSR Usr•f)•_) (K- 1)! rsr r->0 = l(t-rsr dt 

r-*0 = LK! 

+gSn 1+ lim 1 Usr(g) z(rsn_rsr)g r•0 = •.• . (29) 
Taking into account that 

T SR _ T ST = • 

and using (26), we obtain 

y sin 2 ,9 

b a•44 (p (30) 

limK.• '-•-lusr(K)ll(rSn--rsr)K = y',(--1)K• r->0 = [K! K=0 
(p2K+l 

(2K + 1)! 
= sin ½, 

(31a) 

COS ½ . 

(3lb) 

u (z, t), 

... 

T ST • T SR t 
: 
: 

5 

sr/ t 

Figure 6. Schematic diagram of two HRT solutions at the 
same observation point but for different anisotropy models 
descibed by parameters Yl and 72' Yl > 72 > 0. Travel time z sn 
is independent of y. 
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Thus 

U'Sø(z,t)=(1, O,O) r 

and the final formula for the complete ray solution in the 
isotropic limit u isø (z, t) is expressed as follows: 

U isø (Z, t)= (1, 0, 0) r a t- a•44 . (32) 
Obviously, we found a true solution. In a homogeneous 
isotropic medium the plane S wave propagates with a constant 
amplitude and is polarized identically as the incident S wave 
independently of the z coordinate. A similar result is obtained 
for a negative anisotropy parameter y, when the faster wave is 
the SR wave. 

5. Numerical Example 

In this section we shall give a numerical example of 
applying the ray theoretical formulae derived in section 4. We 
shall calculate the ray solution for a number of higher-order 
ray approximations and compare with the reference solution 
called also the exact solution and obtained by the finite 
difference (FD) method described in Appendix B. 

Accordingly to section 4 we shall assume that the incident 
plane $ wave is polarized at z = 0 along the x axis and thus 
being the pure SR wave at z = 0. The incident $ wave will 
have a unit amplitude, and the waveform will be a one-sided 
pulse expressed as 

u(z = 0, t) = sin 2 ,0, 0 for t e< 0, T > . (33) 

For other times, u(z = 0, t) will be zero. For pulse width T we 
use the value T= 1 s. 

The $ wave will propagate in two medium models. The 
first model is called the "weak anisotropy" model and is 
specified by values a44 = 6.00 and 2' = 0.15. The second 
model is called the "very weak anisotropy" model being 
specified by values a44 = 6.00 and 2' = 0.003. The ST wave 
anisotropy (defined as the directional variation of the ST wave 
phase velocity) attains 13% for the weak anisotropy model 
and 0.3% for the very weak anisotropy model. The latter 
model displays 50 times weaker anisotropy than the first 
model, thus almost approaching isotropy. Note that we do not 
need to specify parameter a• for the $ wave propagation. The 
symmetry axis deviates from the z axis by angle •9 = 60 ø. For 
the rate of rotation of the symmetry axis we use values b = 
0.032, 0.064, 0.096, and 0.128, which correspond to the 
rotation of the symmetry axis through angle cp = •r over 
distances z = 40A s'•, 20A sR, 13.3A sR, and 10A s'•, where ,gs• 
denotes the wavelength of the incident S wave, 

gs• = cS'•T = •44 T = 2.45 km. 
The propagating S wave will be calculated using the ray 

method by (25)-(26) and using the FD method by (B5). In the 
FD calculations we have used the following values of the 
space and time steps: Az = 0.02 km and At = 0.004 s. 

Figure 7 shows a comparison of the ZRT solution with the 
exact solution for four receivers in the weak and very weak 
anisotropy models. We can see from the left-hand diagrams 
that the incident S wave is polarized at z = 0 along the x axis, 

thus being the pure SR wave. As the wave propagates through 
the medium, the exact waveforms and particle motions 
(Figure 7, solid line) change. The changes are more distinct 
for weak anisotropy than for very weak anisotropy. In very 
weak anisotropy the predominant $ wave polarization remains 
unchanged, and the quasi-ellipticity of the wave increases 
only slightly. In weak anisotropy, however, the quasi- 
ellipticity of the $wave is approximately constant, but the 
predominant polarization direction rotates in coincidence with 
the rotation of the symmetry axis of the medium. For the most 
distant receiver (right-hand diagrams) we observe the forming 
of an another $wave, which is faster having a smaller 
amplitude and being polarized perpendicularly to the 
polarization of the predominant and slower $ wave. 

For both anisotropy models, ZRT predicts the same results 
(Figure 7, dashed line): the propagating $ wave is a pure SR 
wave for all receivers, it is linearly polarized, and it has a unit 
amplitude. In the weak anisotropy model, polarization of the 
ZRT wave coincides with the predominant polarization 
direction of the exact $ wave. In the very weak anisotropy 
model, however, the waveforms and particle motions of the 
ZRT solution are distinctly different from the exact solution. 
Therefore ZRT fails totally in this case. However, if we 
include 10 higher-order ray approximations, we obtain a 
result identical with the exact solution (Figure 7, solid line). 
Hence ZRT fails, but HRT yields correct results. 

Figure 8 shows the behavior of the ray solution when a 
different number of higher-order ray approximations is 
considered. Waveforms and particle motions are shown for 
the receiver at z = 13.3A sR. For both anisotropy models the fit 
between the exact and ray solutions improves rapidly if the 
higher-order ray approximations are included. The more 
approximations we consider, the better fit we obtain. For the 
configuration used, the six higher-order ray approximations 
are sufficient to reproduce the exact solution within the width 
of the line. 

Figure 9 displays the comparison of the exact and ray 
solutions for anisotropy models with a different rate of 
rotation of the symmetry axis. The waveforms and particle 
motions are displayed for the receiver at z = 6.6A s'•. The rate 
of the symmetry axis rotation increases in the diagrams from 
left to fight. Comparing the diagrams with the different rates 
of rotation, we observe that the fit between the exact and ray 
solutions decreases with increasing rate of rotation. Therefore, 
for higher rates of rotation we have to consider a higher 
number of ray approximations to obtain a solution of 
reasonable accuracy. Specifically, for the rate of rotation 
b = •c/10 A? the differences between the exact solution and 

the ray solution with seven higher-order ray approximations 
are quite large for both anisotropy models, but the ray 
solution with 10 higher-order approximations coincides with 
the exact solution quite well (within the width of the line). 

6. Conclusion 

Studying a simple problem of a plane S wave propagating 
in a weakly transversely isotropic medium with rotating axis 
of symmetry by ray theory, we have demonstrated that the $ 
wave coupling ignored by zeroth-order ray theory (ZRT) can 
be successfully reproduced by higher-order ray theory (HRT). 
We have shown that ZRT can fail totally, while HRT yields 
the true solution. We have studied the accuracy of ray 
solution depending on number of the higher-order ray 
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Figure 7. Waveforms and particle motions of the S wave propagating in (a) weak and (b) very weak 
anisotropy models. Diagrams are shown for four receivers with positions at z = 0, 6.6A s*, 13.3A s*, and 
20.0A s*, where A s* =2.45 km. The rate of rotation is b = go/z = zc/40A s* = 0.032. Solid line is FD solution 
and/or ray solution with ! 0 higher-order approximations. Dashed line is the ZRT solution. 
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Figure 8. Waveforms and particle motions of the S wave propagating in (a) weak and (b) very weak 
anisotropy models. The receiver is at z = 13.3,;17 and the rate of rotation is b = •r/40 ,;17 = 0.032. Diagrams 
are shown for ray solutions with a different number of higher-order approximations: N = 0, 2, 4, and 6 
(dashed line). Solid line is FD solution and/or ray solution with 10 higher-order approximations. 
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Figure 9. Waveforms and particle motions of the S wave propagating in (a) weak and (b) very weak 
anisotropy models. The receiver is at z = 6.6A sR. Diagrams are displayed for the rates of rotation (from left to 
right): b = nr / 40 AsR, b = 2nr / 40 2sn, b = 3nr / 40 2sn, and b = 4nr / 40 2sR. Solid line is FD solution and/or ray 
solution with 10 higher-order approximations. Dashed line is ray solution with seven higher-order 
approximations. Dotted line is projection of the symmetry axis into the x-y plane. 
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approximations considered, and we found that the accuracy 
increases with increasing number of higher-order ray 
approximations. This observation is valid even for very weak 
anisotropy almost approaching isotropy that is the most 
complicated case in ray theory. Furthermore, the accuracy 
decreases when the rate of rotation of the symmetry axis of 
the medium increases. For high values of the rate of rotation 
the elastic properties of the medium change significantly over 
distance comparable with the predominant wavelength of the 
propagating wave, and the basic condition for validity of ray 
theory is violaged. Nevertheless, if we include a sufficient 
number of higher-order ray approximations, we can still 
obtain correct results. This implies that a condition of a large- 
scale inhomogeneity in a medium is not always an ultimate 
condition for the applicability of ray theory. We should stress, 
however, that for short-scale inhomogeneities the number of 
higher-order ray approximations having to be considered can 
be fairly high and thus computationally unrealizable even for 
a simple model. Finally, we observed that the accuracy of the 
ray solution decreases with increasing length of the ray of the 
propagating S wave. For more distant observers we have to 
include more terms of the ray series to obtain a comparable 
accuracy for all receivers. 

The conclusions made for weak transverse isotropy are 
also valid for strong transverse isotropy if the S wave 
propagates near a kiss singularity. This occurs if the deviation 
between the rotating axis of symmetry and the vertical axis is 
small. If we limit this deviation to zero, the zeroth-order ray 
solution fails, but considering a sufficiently high number of 
higher-order ray approximations yields correct results. 

Finally, we have to mention that we studied the S wave 
propagation in an extremely simple and in many aspects 
unrealistic structure. We did not discuss the aspects of 
computing the higher-order ray approximations in more 
realistic inhomogeneous anisotropic media. Therefore this 
paper should be viewed as a contribution to a general 
understanding of the problem of applicability of HRT rather 
than as an instruction how to apply HRT to modeling the 
S wave field in realistic situations. It can be expected that in 
many cases, when HRT works in principle, it need not to be 
practical or efficient or even possible to apply it in numerical 
computations. Nevertheless, it seems that further development 
of HRT, in particular, the development of its computing 
aspects, would be desirable. 

a'•2 = a•l - 2a44 (1 + 27 cos 2 $) , 

a'13 = all - 2a44 (1 + 2y sin 2 ,9 sin 2 

a'14 = 4a44Ysin`9 cos`9 sincp , 

a '23 -- a• - 2a44 (1 + 2y sin 2 ,9 cos 2 (p) , 

a '25 = -4a447 sin 19 c08`9 cos(p , 

a'36 =-4a447sin 2 ̀9 sincp coscp , 

a '4s = 2a447 sin2 `9 sin {o cos{o, 

a'46 = 2a44Ysin`9 cos`9 coscp , 

a 's6 = -2a447 sin,9 cos,9 sin • , 

a'ls = 0, a'•6 = 0, a '24 -- 0 , a '26 --' 0 , a '34 --' 0 , a'35 --' 0 . 

Appendix B: Propagation of Plane S Waves 
Along the z Axis by Finite Differences (FD) 

Since we are considering a vertically inhomogeneous 
medium in which a plane wave propagates along the z axis, 
displacement u will depend only on the z coordinate, 
u - u(z, t). Equation (1) then simplifies to 

/•l--(assUl,3+a45u2,3),3 -'0, iJ2--(a45ul,3+a44u2,3),3 -'0, 
(B1) 

/•3-(a33u3,3),3 -'0 ß (B2) 
Both (B 1) and (B2) are independent. Equation (B 1) represents 
a system of two coupled partial differential equations 
describing the propagation of plane S waves. Equation (B2) 
describes the propagation of a plane P wave. Since parameter 
a33 is constant (see Appendix A), the plane P wave behaves in 
the same way as in a homogeneous isotropic medium. 
Equation (B 1) can be transformed into a system of four first- 
order partial differential equations 

9• = t•,3 ' 1) 2 = t2, 3 , (B3a) 

Appendix A: Elastic Parameters of WTI 
With Rotating Axis of Symmetry 

Elastic parameters a't, ! of the WTI medium with rotating 
axis of symmetry can be expressed by parameters a•, a44, and 
7 of the WTI medium with the vertical axis of symmetry (see 
equations (7) and (10)), by angle ,9 between the symmetry 
axis and the z axis, and by rotation angle (p as follows: 

a •11 = all, a •22 -- all , a •33 = all , 

a'44 = a44 (1 + 27 sin 2 ,9 COS2 (P) , 

a'ss = a44 (1 + 2r sin 2 ,9 sin 2 (p) , 

a '66 = a44 (1 + 27 COS2 ,9) ' 

il --' a55•"1,3 +a45¾2,3, i2 -' a451"1,3 +a441"2,3 , (B3b) 

where v• and v2 are the horizontal components of the particle 
velocity and tl and t2 are components of the density- 
normalized stress tensor. We can write (B3) in a more 
compact matrix form as 

where 

A • 

d A d •y= dzy, (B4) 

0 0 1 0 v• 
0 0 ! 122 . ass a45 0 ' Y = tl 

La45 a44 0 t 2 

This equation is a time domain version of the matrix equation 
used by Woodhouse [1974, equation 2.9], Fryer and Frazer 
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[ 1984, equation 2.1 ] or Chapman [ 1994, equation 6], which is 
further simplified by considering the TI medium with a 
rotating axis of symmetry and by confining oneself only to 
the vertical direction of wave propagation. 

Converting the derivatives in (B4) into finite differences by 
using the standard central difference formulae of second-order 
accuracy [Aki and Richards, 1980, p. 775] and using the 
explicit scheme, we obtain the system of FD equations in the 
following form: 

y(t + At, z) At IA Y(t'z + Az)- Y(t'z- Az) 1 = + y(t- At,z) Az ' 

where At and Az are the time and space steps, which should 
satisfy the stability condition: 

At $ • . (B6) 
v $ 

Here v s denotes the maximum value of the S wave group 
velocity. The size of the FD model is chosen in such a way 
that the studied wave field is not affected by the waves 
reflected from the boundary. Therefore we apply the simplest 
boundary conditions by specifying the rigid boundary. The 
S wave propagating in the model is initiated by applying the 
nonzero initial conditions at z = 0. 
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