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[1] An inversion method for retrieving seismic anisotropy from non-double-couple
components of seismic moment tensors is presented. The method requires a set of highly
accurate moment tensors of earthquakes that occurred in a homogeneous anisotropic
focal area on differently oriented faults. In contrast to standard methods retrieving
anisotropy from travel times or from shear wave splitting, which yield an overall
anisotropy averaged along a whole ray path, the presented method yields a local value
of anisotropy just in the focal area. The method is robust, being able to retrieve the
orientation as well as strength of anisotropy even for low anisotropy symmetries as for
orthorhombic symmetry. The method can utilize the moment tensors constrained to have
zero trace, but using unconstrained moment tensors is advantageous. The method is
applied to retrieving anisotropy in the Tonga subduction zone using moment tensors of
deep-focus earthquakes reported in the Harvard centroid moment tensor catalog. The
inversion is complemented by tests on synthetic data to assess its stability and the accuracy
of the results. The inversion indicates that the subduction zone is anisotropic with
orthorhombic symmetry. The orientation of the intra-slab anisotropy is defined by axes
(azimuth/dip) a1 = 320�/54�, a2 = 121�/38�, and a3 = 223�/81�. The errors in the azimuth
and dip are about 5�. The first and second axes lie along the downdip motion of the
slab and along the normal to the slab, respectively. The strength of the P, S1, and S2
anisotropy is of 7.3 ± 1.5%, 13.4 ± 2.5%, and 12.6 ± 3.5%, respectively. The errors of
anisotropy strength are only rough estimates, which reflect random but not systematic
errors in the moment tensors used in the inversion. The values for anisotropy strength in
the slab are remarkably higher than those observed in the surrounding mantle. The
symmetry axes of anisotropy coincide with the principal stress directions in the slab. This
manifests a primary impact of stress on anisotropy formation. The retrieved anisotropy in
the slab can serve as an additional constraint on its structure and mineralogical
composition. INDEX TERMS: 7260 Seismology: Theory and modeling; 7215 Seismology: Earthquake

parameters; 7218 Seismology: Lithosphere and upper mantle; 8164 Tectonophysics: Stresses—crust and
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1. Introduction

[2] The non-double-couple (non-DC) components in mo-
ment tensors of earthquakes are frequently observed and are
attributed to various causes [Frohlich, 1994; Julian et al.,
1998; Miller et al., 1998]. They can be spurious, being a
product of unmodeled path effects [Kuge and Lay, 1994;
Šı́lený and Vavryčuk, 2000, 2002], of a poor station coverage,
or of an oversimplification of the source process in a moment
tensor inversion [Sipkin, 1986; Kuge and Kawakatsu, 1992,
1993]. But they can also be real, reflecting specific properties
of a source or of a focal area. The true non-DC components
can be caused by landslides [Hasegawa and Kanamori,
1987], inflation or deflation of magma chambers in volcanic

areas [Mori and McKee, 1987], or tensile faulting owing to
high pore fluid pressure in geothermal or volcanic areas
[Vavryčuk, 2001, 2002]. The non-DC components have also
been reported for rock bursts in mines [Rudajev and Šı́lený,
1985; Feignier and Young, 1992].
[3] Another mechanism causing non-DC components of

moment tensors is faulting in an anisotropic medium
[Kawasaki and Tanimoto, 1981]. This mechanism could
occur quite frequently because anisotropy seems to be a
pervasive property of geological structures [Babuška and
Cara, 1991]. Usually, anisotropy is not very strong, but it
can still generate non-negligible non-DC components in
moment tensors of earthquakes. The non-DC components
can thus contain information on anisotropy in a focal area,
and, in principle, non-DC components could be used to
determine the anisotropy.
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[4] In this paper, I propose an inversion for anisotropy
of a focal area from non-DC components of moment
tensors. I present a mathematical description of the inver-
sion and demonstrate its power on synthetic tests. Finally,
I discuss applications to deep-focus earthquakes in the
Tonga-Kermadec subduction zone, the most active zone in
the world, which offers a large data set of moment tensors
of deep earthquakes. The deep earthquakes are particularly
suitable for this study because (1) the moment tensors of
deep earthquakes are determined with a higher accuracy
than those of shallow earthquakes; (2) deep earthquakes
often display non-DC components; and (3) deep earth-
quakes occur in subducting slabs, which are assumed to
be anisotropic [Fukao, 1984; Kendall and Thomson, 1993;
Hiramatsu et al., 1997; McNamara et al., 2002]. It
is speculated that anisotropy in the slab is caused by
an alignment of metastable olivine and its polymorphs
wadsleyte and ringwoodite or the ilmenite form of pyrox-
ene [Anderson, 1987; Mainprice et al., 2000]. The intra-
slab anisotropy can also be induced by strain due to large
stresses generated when a rigid slab encounters the
670 km discontinuity [Wookey et al., 2002]. Therefore it
is worth applying the proposed inversion to earthquakes
in a slab to decide whether the intra-slab anisotropy
is really significant and appreciably contributes to the
non-DC components of deep earthquakes or whether the
non-DC components have only other causes, such as
numerical errors due to unmodeled path effects and
complex shear faulting at faults or subfaults with different
orientations [Miller et al., 1998; Estabrook, 1999; Tibi et
al., 2003].

2. Theory

2.1. Moment Tensors of Earthquakes
in Anisotropic Media

[5] A seismic moment tensor M describing shear faulting
in an isotropic medium is expressed as [Aki and Richards,
2002, equation 3.22]

Mkl ¼ muS nknl þ nlnkð Þ: ð1Þ

Equation (1) is the common double-couple representation of
the earthquake source, which can be inverted for the fault
normal n, the slip direction N, and the product muS of the
slip u, the shear modulus m, and the fault area S. Obviously,
m, u, and S cannot be separated from one another.
[6] Contrary to equation (1), the seismic moment tensorM

of an earthquake in anisotropic media is more complicated,
being expressed as [Aki and Richards, 2002, equation 3.19]

Mkl ¼ uScijklninj; ð2Þ

where cijkl are the elastic parameters of the medium
surrounding the fault and the Einstein summation conven-
tion over repeated subscripts is applied. This moment tensor
comprises the double-couple (DC) and also the isotropic
(ISO) and the compensated linear vector dipole (CLVD)
components [Knopoff and Randall, 1970; Jost and
Hermann, 1989]. The non-DC components (ISO and
CLVD) can be nonzero even for shear earthquakes
[Kawasaki and Tanimoto, 1981]. In general, the higher

the strength of anisotropy, the higher are the values of the
non-DC components that can be expected.
[7] Next, the percentage of the ISO and CLVD compo-

nents will be calculated according to Vavryčuk [2001,
2002]:

ISO ¼ 1

3

Trace Mð Þ
M maxj j
�� �� 100%ð Þ ð3Þ

CLVD ¼ �2
M minj j*

M maxj j*
�� �� 100%� ISOj jð Þ ð4Þ

DC ¼ 100%� ISOj j � CLVDj j; ð5Þ

where Trace(M) denotes the trace of M and Mjmaxj denotes
the eigenvalue of M which has the maximum absolute
value. Tensor M* denotes the deviatoric part of the moment
tensor M,

M* ¼ M� I

3
Trace Mð Þ; ð6Þ

where I is the 3 � 3 identity matrix. Quantities M jmaxj* and
M jminj* are the eigenvalues of M* with the maximum and
minimum absolute values, respectively.

2.2. Inversion for Anisotropy

[8] Equation (2) can be used for the inversion for elastic
parameters of a medium in the focal area. If we know the
moment tensors of N earthquakes that occurred in an
anisotropic focal area with constant elastic parameters,
equation (2) represents a system of 6N equations for 5N
unknown parameters describing unit vectors n and N and
product uS for each earthquake and for m elastic parameters
describing anisotropy in the focal area. If the earthquakes
under study are due to shear faulting (N ? n), the number of
unknown parameters is reduced from 5N to 4N. The extent
and quality of the moment tensor data set limit the number
of anisotropic parameters m which can be inverted for. A
general triclinic anisotropy is described by 21 elastic
parameters cijkl. However, two of them must always be
fixed to overcome the problem of the coupling between
elastic parameters cijkl, slip u, and fault area S and the
problem of special geometry in shear faulting. For example,
for isotropy, which is described by two parameters, no
information on the medium can be gained from the moment
tensors of shear earthquakes, but one parameter (e.g., the
ratio of the Lamé coefficients l/m) can be determined from
the moment tensors of tensile earthquakes [Vavryčuk, 2001].
Hence one can invert at most for 19 elastic parameters
describing anisotropy. This task requires at least moment
tensors of 10 shear earthquakes. However, because of noise
in data it is more plausible to invert for anisotropy of higher
symmetry and use a much larger number of moment
tensors. For example, inverting for orthorhombic symmetry
reduces the number of unknown parameters from 21 to 12
(three angles define the orientation of the principal axes, and
nine elastic parameters define orthorhombic anisotropy).
Inverting for transverse isotropy (TI) reduces the number
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of unknown parameters from 21 to 7 parameters (two angles
define the direction of the symmetry axis, and five param-
eters define TI).

2.3. Misfit Function

[9] For the purpose of the inversion, equation (2) can be
modified as follows:

m ¼ uSCd; ð7Þ

where C is the 6 � 6 matrix of the elastic parameters in the
two-index Voigt notation [Musgrave, 1970, equation 3.13.4]
and m and d are the six vectors defined as

m ¼ M11;M22;M33;M23;M13;M12ð ÞT ð8Þ

d ¼ n1n1; n2n2; n3n3; n2n3 þ n3n2; n1n3ð þn3n1; n1n2 þ n2n1ÞT :
ð9Þ

The left-hand side of equation (7) represents observations;
the right-hand side of equation (7) is unknown, being a
product of unknown elastic parameters C and unknown
geometry of faulting d. The elastic parameters C are
common for all earthquakes, while vector d is specific for
each earthquake. Therefore it is convenient to separate them
and to invert only for elastic parameters C,

d ¼ u�1S�1C�1m: ð10Þ

The six vector d is closely related to the symmetric dyadic
tensor D = nN + Nn

D ¼
2n1n1 n1n2 þ n2n1 n1n3 þ n3n1

n1n2 þ n2n1 2n2n2 n2n3 þ n3n2
n1n3 þ n3n1 n2n3 þ n3n2 2n3n3

2
4

3
5; ð11Þ

to which the following conditions should apply:

Trace Dð Þ ¼ n1n1 þ n2n2 þ n3n3 ¼ 0 ð12Þ

Det Dð Þ ¼ 0: ð13Þ

Equation (12) is a condition for shear faulting; equation (13)
follows from the fact that a dyadic product of two vectors
has one zero eigenvalue. Conditions (12) and (13) apply to
moment tensors of each earthquake and can be employed
when inverting for elastic parameters C. In the inversion we
search such elastic parameters C that satisfy

XN
j¼1

Trace D j
� ��� ��þ Det D j

� ��� ��	 

¼ min; ð14Þ

where

D ¼
2d1 d6 d5
d6 2d2 d4
d5 d4 2d3

2
4

3
5: ð15Þ

Superscript j means that the quantity is evaluated for the jth
earthquake, and N stands for the total number of moment
tensors inverted. Since the inversion cannot yield absolute
values of elastic parameters C (two elastic parameters must
always be fixed), we can equally invert either for elastic
parameters C (if we fix two elastic parameters) or for the
density-normalized elastic parameters A = C/r, where r is
the density of the medium (if we fix two normalized elastic
parameters). Using equations (10), (14), and (15), we can
invert for elastic parameters C or for the normalized
parameters A without the necessity to determine fault
normal n and slip direction N for each earthquake.

2.4. Inversion of Moment Tensors With Zero Trace

[10] The moment tensors are often determined under
the assumption that their trace is zero:

Trace Mð Þ ¼ M11 þM22 þM33 ¼ 0: ð16Þ

This condition is used because it is justified for shear
earthquakes in isotropic media and stabilizes moment
tensor inversions. However, if the focal area is anisotropic
or the earthquake is not shear [Miller et al., 1998;
Vavryčuk, 2001], such inversion yields distorted results
and has undesirable consequences. First, the number of
independent parameters of the moment tensor of each
earthquake is reduced from 6 to 5. This reduces the
number of independent equations in the inversion for
anisotropy from 6N to 5N, where N is the total number of
moment tensors used. This implies that when inverting
for anisotropy, we should employ a higher number of
zero-trace moment tensors than the moment tensors
calculated without any constraint. Second, the inversion
procedure for anisotropy must be modified to be
applicable also to the zero-trace moment tensors.
[11] Assume that only the deviatoric part M* of moment

tensors M can be utilized. Using the six-vector notation

m* ¼ M11
*;M22

*;M33
*;M23

*;M13
*;M12

*
� �T ð17Þ

and inserting equation (7) into equation (6), we obtain

m* ¼ uS Cd� i

3
Trace Cdð Þ

� �
¼ uSBd; ð18Þ

where quantity i is the unit six vector, i = (1,1,1,1,1,1)T, and
the components of matrix B read

BIJ ¼ CIJ �
1

3
C1J þ C2J þ C3Jð Þ ð19aÞ

for I = 1, 2, 3, J = 1, . . ., 6 and

BIJ ¼ CIJ ð19bÞ

for I = 4, 5, 6, J = 1, . . ., 6. Consequently,

d ¼ u�1S�1B�1m*: ð20Þ

B07306 VAVRYČUK: INVERSION FOR ANISOTROPY

3 of 13

B07306



This equation together with conditions (14) and (15) defines
the inversion of zero-trace moment tensors.

3. Application to the Tonga Subduction Zone

3.1. Data

[12] The proposed inversion is applied to moment tensors
of deep earthquakes in the Tonga-Kermadec subduction
zone. This zone displays the most intense deep seismicity
in the world, which is caused by the subduction of the
Pacific Plate under the Australian Plate. The rate of the
subduction is 10.5 cm/yr [DeMets et al., 1990; Gripp and
Gordon, 1990]. The direction of motion is N300�E, being
perpendicular to the strike of the slab and of the Tonga-
Kermadec Trench. The geometry of the slab is complicated,
in particular, at the northern end of the deep part of the slab
[Hamburger and Isacks, 1987; Giardini, 1992]. The slab
subducts steeply with a dip of about 60�. The subducting
slab displays high P and S velocity anomalies of several
percent [Zhou, 1990a; Deal et al., 1999; Koper et al., 1999]
because the slab is about 800�C cooler than the surrounding
mantle [Anderson, 1987].
[13] I use moment tensors of earthquakes available in the

Harvard centroid moment tensor (CMT) catalog [Dziewonski
et al., 2001, 2003]. This global earthquake catalog seems
best in the completeness and accuracy of its solutions
[Kagan, 2003]. Since the inversion used in this paper is
data demanding, I do not use data from other less compre-
hensive catalogs such as the United States Geological
Survey (USGS) catalog [Sipkin et al., 2002] or the catalog
of the Earthquake Research Institute in Tokyo [Kawakatsu,
1995]. Neither do I combine data from different catalogs to

avoid mixing moment tensors that are of different quality
and that are determined using different methods. All the
catalogs mentioned produce the zero-trace moment tensors
and use isotropic Green functions in the inversion. The
use of isotropic Green functions is justified by the fact
that the inversion employs large wavelengths, which are
sensitive not to local variations of anisotropy in the
mantle but rather to an overall mantle anisotropy which
is small, probably not exceeding 2% [Savage, 1999].
The justifiability of the zero-trace constraint is disputable
for shallow earthquakes but seems to be reasonably satisfied
for deep earthquakes, as was proven by several authors
[Kawakatsu, 1991, 1996; Hara et al., 1995].
[14] I selected earthquakes with magnitudes Mw > 5 that

occurred in the period 1980–2002 and were located at
latitudes 19.5�–27�S, longitudes 177�E–177�W, and depths
between 500 and 700 km (see Figure 1). The southern part of
the Tonga active zone was selected to avoid complexities in
earthquake parameters due to the sharp bending of the
subducted slab in the north [Hamburger and Isacks, 1987;
Giardini and Woodhouse, 1984; Giardini, 1992; Northard et
al., 1996]. The selected moment tensors are of different

Figure 1. Epicenters of earthquakes in the Tonga subduc-
tion zone. Black circles mark the deep-focus earthquakes
under study (depth >500 km, southern cluster); gray circles
mark the other earthquakes in the region (depth >100 km).

Figure 2. Histograms of (top) relative errors and (bottom)
CLVD of moment tensors for the Tonga earthquakes in the
southern cluster.
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accuracy and display a different amount of the CLVD
component (see Figure 2). In order to analyze the most
reliable moment tensors, I further selected from the total
number of 310 moment tensors only those with an absolute
value of CLVD less than 40% because an extremely high
value of CLVD indicates either an anomalous mechanism
(e.g., the mechanism which changed during rupture) or
difficulties in the moment tensor inversion. Furthermore,
the moment tensors were selected to have a relative error less
than a threshold value. The relative error is defined as the
ratio of the largest singular value of the standard error E
reported in the catalog and of the largest singular value of the
moment tensor M. To assess the influence of errors present
in moment tensors on the inversion results, threshold values
0.08, 0.09, 0.10, 0.11, and 0.12 were set up. The threshold
value could not be smaller than 0.08 because the number of
moment tensors satisfying such a strict constraint was too
low for a reliable inversion. Also, the threshold value could
not be higher than 0.12 because the inversion started to be
unstable, probably because of the rather high noise in the
data. Hence five different data sets of different extent and
quality were analyzed, and the results were compared. The
data sets comprised moment tensors of 70, 82, 95, 105, and
113 earthquakes (see Table 1).

3.2. Slab Geometry and Stress in the Slab

[15] The foci of selected earthquakes cluster in a belt
oriented in accord with the subducting slab. Interpolating
the foci by a plane, we infer that the strike of the slab is
N210�E, and the dip is 50� (see Table 2). The error of the
strike/dip is about 5�/10�. The strike N210�E corresponds to
the strike of the Tonga-Kermadec Trench. The dip of 50� is
slightly less than the 60� determined for shallower depths.
Variations in the dip of the slab with depth have also been
reported by other authors [Zhou, 1990b; Northard et al.,
1996; Karato et al., 2001]. Note that the geometry of the
northern part of the slab (Figure 1) is remarkably different
[Hamburger and Isacks, 1987; Giardini, 1992].

[16] Stress in the focal area is inferred from focal mech-
anisms by applying the Gephart and Forsyth inversion
method [Gephart and Forsyth, 1984; Michael, 1987;
Gephart, 1990; Lund and Slunga, 1999] to the selected
earthquakes. The majority of the studied mechanisms are
normal or reverse with subvertical and subhorizontal nodal
lines (Figure 3). The P axes form a concentrated cluster
(with some exceptions), but the T axes are more scattered. In
the inversion the stress tensor is sought over a grid by
minimizing the sum of deviations between the predicted
shear traction directions and the observed slips at the faults.
The method is able to retrieve three angles defining the
directions of the three principal stress axes s1, s2, and s3
and shape ratio R, which bounds the size of the principal
stresses: R = (s1 � s2)/(s1 � s3). The inversion for the
optimum stress was performed using a 5� grid in searching
through the principal stress directions. The values of the
resultant stress are summarized in Table 2; the misfit

Table 1. Data Sets of Moment Tensorsa

Data Set
Moment
Tensors

Relative
Error, %

Mean
DC, %

Mean
CLVD, %

Mean
jCLVDj, %

A 70 0.08 84.7 �9.4 15.2
B 82 0.09 84.4 �9.2 15.6
C 95 0.10 85.2 �8.7 14.8
D 105 0.11 85.3 �8.5 14.7
E 113 0.12 85.2 �7.2 14.8
Originalb 310 0.65 75.7 �7.3 24.3

aDC and CLVD percentages were calculated using equations (3)– (5).
bOriginal moment tensors have no constraints on the CLVD and on the

relative error.

Table 2. Slab Orientation and Stress in the Slaba

Data Set
Moment
Tensors

Relative
Error, %

Slab
Strike/Dip,

deg.

Slab Normal
Azimuth/Dip,

deg.

Sigma 1
Azimuth/Dip,

deg.

Sigma 2
Azimuth/Dip,

deg.

Sigma 3
Azimuth/Dip,

deg. Shape Ratio

A 70 0.08 210/54 120/54 310/50 122/40 217/86 0.74
B 82 0.09 210/54 120/54 315/45 121/46 218/83 0.72
C 95 0.10 209/51 119/51 310/45 123/45 216/86 0.70
D 105 0.11 209/50 119/50 310/50 115/41 214/82 0.70
E 113 0.12 209/43 119/43 310/50 115/41 214/82 0.70

aAzimuth is measured from the north, and dip is measured from the vertical.

Figure 3. (top) P-T axes and (bottom) nodal lines for the
focal mechanisms of data set C. The P axes are marked by
circles; the T axes are marked by plus signs. Lower
hemisphere equal-area projection is used.
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function for data set C is shown in Figure 4. The stress
found is consistent with results obtained by other authors
[Isacks and Molnar, 1971; Frohlich, 1989; Zhou, 1990b;
Guest et al., 2004]. The maximum compression and tension
axes are parallel to the subducting slab: The compression
axis follows the subduction flow, and the tension axis is
mostly horizontal and parallel to the trench. The intermedi-
ate stress axis is perpendicular to the slab. The downdip
compression in the deep parts of slabs is frequently ob-
served and is interpreted as resistance to subduction due to
resisting forces at the tip of the slab [Zhou, 1990b].

3.3. Non-DC Components

[17] The presence of the non-DC components in moment
tensors and their accuracy are essential for the anisotropy
inversion. Several authors studied the accuracy of the DC
and non-DC (CLVD) components reported in the CMT and
other catalogs [Helffrich, 1997; Frohlich and Davis, 1999;
Kagan, 2003]. They showed that the DC components are, in
general, much better constrained than the CLVD compo-
nents. The errors in the CLVD components are frequently
high and can easily be exemplified by correlating the CLVD
of the earthquakes reported jointly in the CMT and USGS
catalogs. Surprisingly, this correlation is almost zero when
all jointly reported earthquakes are considered. However,
the correlation increases for deep earthquakes. For example,
data set E contains 56 jointly reported moment tensors, and
the correlation coefficient between the CLVD is 0.303. The
average correlation between the full moment tensors is
0.935. The correlation coefficient between moment tensors
M(1) and M(2) is defined as

c ¼
M

1ð Þ
ij M

2ð Þ
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M
1ð Þ

kl M
1ð Þ

kl

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

2ð Þ
mn M

2ð Þ
mn

q : ð21Þ

Figure 5 indicates that the non-DC components in the
selected moment tensors are real but are appreciably

affected by noise. The noise is probably generated by
unmodeled path effects due to a complex velocity structure.
[18] Figure 6 and Table 1 show the CLVD and DC

components in the studied data sets. The CLVD takes
positive as well as negative values, but the negative values
slightly prevail. With a decreasing accuracy of moment
tensors in a data set this imbalance tends to vanish. No
dependence of the CLVD on the depth of earthquake foci is
observed. The CLVD is slightly reduced for earthquakes
with magnitudes higher than 6.

3.4. Inversion Algorithm

[19] I assume anisotropy in the slab of orthorhombic
symmetry, which is typical for mantle minerals such as
olivine, wadsleyite, or ringwoodite [Mainprice et al.,
2000]. Special cases of orthorhombic symmetry are cubic
symmetry (typical for garnet) or transverse isotropy, which
could be generated, for example, by laminations in the slab.
More general anisotropy is not considered because of
limitations of input data. Orthorhombic symmetry is

Figure 4. Inversion for stress using moment tensors of
data set C. The plot shows the misfit function for the stress
axis s1, defined as an average deviation (in degrees)
between predicted shear traction directions and observed
slips at the faults. The misfit function is displayed in the
lower hemisphere equal-area projection. The optimum
directions of the principal stresses are marked by circles.

Figure 5. (top) Correlation coefficient between moment
tensors and (bottom) the CLVD components in moment
tensors for 56 earthquakes jointly reported in the CMT and
USGS catalogs. N denotes the sequential number of the
earthquake sorted by origin time. The dashed/solid line
shows the USGS/CMT data.
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described by 12 parameters: by nine density-normalized
elastic parameters A11, A22, A33, A44, A55, A66, A12, A13,
and A23 and by three angles defining the orientation of the
system of the symmetry axes. Since two elastic parameters
must be fixed, we can invert for 10 parameters. To calculate
the misfit function (14), formula (20) designed for the
moment tensors with zero trace was used. The minimum
of the misfit function is determined by combining a simple
grid search with algorithms of the MATLAB Optimization
Toolbox [Branch and Grace, 1996] designed for solving
constrained nonlinear optimization problems [Powell, 1978;
Gill et al., 1991]. The constrained nonlinear optimization is
used for seeking elastic parameters; the grid search is used
for finding the optimum orientation of anisotropy axes.
Hence to each orientation of the system of symmetry axes
I applied the nonlinear optimization search for optimum
values of elastic parameters and for evaluating the
corresponding misfit function. The global optimum solution
was found at the global minimum of the misfit function
sought over a grid of all directions of symmetry axes. The
constrained rather than unconstrained optimization for seek-
ing elastic parameters was used to avoid false minima related

to unrealistic anisotropy. In order to stabilize the results of
the inversion and to obtain statistically more relevant results,
I do not present parameters of the only optimum solution, but
I have averaged the parameters over the 25 best solutions.

3.5. Synthetic Tests

[20] Synthetic tests were performed to demonstrate that the
inversion method is capable of retrieving anisotropy from a
data set similar to that under study. I assumed an orthorhom-
bic anisotropy in the focal area with the elastic parameters
given in Table 3. The symmetry axes were inclined by angles
(azimuth/dip) a1 = 313�/50�, a2 = 125�/40�, and a3 =
220�/86�. The azimuth is measured from the north and
the dip from the vertical. For this medium, synthetic
moment tensors were generated in the following way. The
DC components of 70 moment tensors grouped with data
set A were used. Then synthetic non-DC components
caused by the prescribed anisotropy were generated, and
the complete synthetic moment tensors were constructed.
Then random noise was superimposed on the moment
tensors to simulate the moment tensors observed. Noise is
supposed to simulate spurious non-DC components caused
by a poor station coverage or complex velocity structure
used in the moment tensor inversion and true non-DC
components caused by other effects than anisotropy (e.g.,
complex source mechanism).
[21] Three levels of random noise were used to assess the

stability of the inversion: The first level was comparable
with the noise in the observed moment tensors; the second
level was slightly higher; and the third level was more than
two times higher than the observed noise (see Figure 7). The
data sets obtained were inverted for anisotropy. The elastic
parameters A33 and A44 were fixed at true values. The values
of the other parameters were sought within the intervals
given in Table 3. The orientation of the system of symmetry
axes was searched over a sphere in a grid with a step of 10�.
[22] Table 4 summarizes the results of the inversion. The

optimum values presented (i.e., the orientations of the
symmetry axes and strength of anisotropy) were calculated
as medians of the 25 best solutions found by the inversion.
The optimum values of anisotropy strength are presented
together with their standard deviations. The most stable
parameters recovered are the directions of symmetry axes of
anisotropy. All noise levels yielded their reasonable esti-
mates: The deviations of the optimum symmetry axes from
the true axes were always less than 15�. Contrary to the
orientation, the strength of anisotropy is more sensitive to
noise in the data. The recovered strength yields a reasonable
estimate of the true anisotropy strength for noise-free data
and for data with noise levels I and II. Interestingly, the
inversion of the noise-free data did not yield the true

Figure 6. Histograms of (top) DC and (bottom) CLVD
components in the moment tensors of data set C. The ISO
components are identically zero because the moment
tensors are constrained to have zero trace.

Table 3. Synthetic Tests: Model and Inversion Constraintsa

A11 A22 A33 A44 A55 A66 A12 A13 A23

True values 106 108 110 33 27 38 50 45 40

Limits in the Constrained Optimization
Starting model 110 110 110 33 33 33 44 44 44
Lower limit 90 90 110 33 15 15 20 20 20
Upper limit 130 130 110 33 50 50 65 65 65

aLower/upper limits define the intervals for sought optimum parameters;
true values are parameters of synthetic anisotropy. Density-normalized
elastic parameters are in km2/s2.
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anisotropy strength but slightly underestimated values. This
is caused by the slightly misoriented anisotropy axes found
by the grid search (the true anisotropy axes do not coincide
with any grid node). Also, the inversion for noise level I
yielded slightly underestimated values. However, the an-
isotropy strength is significantly overestimated for noise
level III, indicating that the inversion becomes unstable.
Hence the inversion for no noise or very small noise in the
data tends to underestimate the anisotropy strength, but for
higher noise levels the inversion becomes unstable, and the
retrieved strength rapidly increases.
[23] Summarizing the synthetic tests, we can conclude

that the inversion should be capable of yielding reliable

estimates of anisotropy orientation and rough estimates of
anisotropy strength in the Tonga subduction zone from the
observed moment tensors. Since noise in the synthetic tests
was simple and could not simulate actual properties of noise
in the observed data (e.g., potential systematic errors in the
moment tensors), the errors of retrieved values may be
underestimated in the synthetic tests.

3.6. Inversion From Observed Data

[24] The inversion was performed analogously to syn-
thetic tests. Parameters A33 and A44 were fixed in the
inversion, even though it is difficult to estimate their values
in the Earth, because isotropic velocity models yield spa-

Figure 7. Synthetic and observed noise. The plots show histograms of relative errors of moment tensors
observed in data set A and generated for synthetic tests.

Table 4. Synthetic Tests: Orientation and Strength of Anisotropy

Data Set
Axis 1

Azimuth/Dip, deg.
Axis 2

Azimuth/Dip, deg.
Axis 3

Azimuth/Dip, deg.
P Wave

Anisotropy, %
S1 Wave

Anisotropy, %
S2 Wave

Anisotropy, %

True values 313/50 125/40 220/86 6.0 13.0 11.8
Noise free 310/50 130/40 220/90 6.1 ± 0.8 12.4 ± 1.3 10.6 ± 1.2
Noisy data I 320/50 130/40 220/84 6.0 ± 0.8 12.0 ± 0.9 9.6 ± 1.3
Noisy data II 310/51 130/40 220/90 5.3 ± 1.4 10.3 ± 1.3 12.9 ± 1.8
Noisy data III 320/60 120/36 225/81 9.7 ± 2.2 21.8 ± 4.5 15.6 ± 5.1
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tially averaged P and S velocities but not values of specific
elastic parameters of the elasticity tensor. Therefore a series
of inversions was performed with different values of A33

and A44. For the found models the averaged P and S
velocities were calculated and used as a criterion to select
an optimum model. The optimum model was characterized
by values of 110 and 33 km2/s2. These values were derived
from the squares of the P and S velocities of model AK135
[Kennett et al., 1995], averaged over the depth range 500–
660 km and increased by 5% to reflect a high-velocity
anomaly in the slab [Zhou, 1990a; Zhao, 2001]. I performed
the inversions for data sets A–E. The values of the elastic
parameters were sought within the intervals given in Table 5.
The orientation of the symmetry axes was sought over a
sphere in a grid with a step of 10�.
[25] The results are summarized in Tables 5 and 6. The

orientations of the symmetry axes found are consistent for
all data sets used. Figure 8 shows the misfit function
evaluated for each direction of symmetry axis a3 of ortho-
rhombic anisotropy when inverting data set C. The misfit
function is normalized so that it equals 1 for an isotropic
medium. The best solutions lower the misfit function from 1
to 0.8; hence anisotropy is able to explain only a part of the
non-DC components in the moment tensors. The function
displays three distinct minima. The directions of the minima
are mutually perpendicular and correspond to directions of
the symmetry axes. Two symmetry axes lie within the slab;
the third axis is close to the direction of the normal to the
slab. The directions of the symmetry axes coincide with
directions of the principal stresses (see Figure 9). Compared
with the orientation, the estimates of strength of anisotropy
are less consistent for the different data sets used. The
strength is probably slightly underestimated for data set A
but is overestimated for data sets D and E. This is confirmed
by another inversion of data set A performed using a denser
grid around the minimum of the misfit function found
by previous inversions. The angles defining symmetry axis
a3 were limited to vary within the intervals (azimuth/dip)

320� ± 20�/50� ± 20� with step of 2�. The direction 320�/
50� defines the minimum of the misfit function corres-
ponding to the downdip motion of the slab. Since data set A
consists of the most accurate moment tensors and the grid
search is very dense, the estimates of anisotropy strength
(see Table 6) and of elastic parameters (see Table 5) are
probably most reliable.
[26] In contrast to the absolute value of anisotropy

strength, which is rather uncertain, the ratio of the S-to-P
anisotropy strength is stable for all inversions. The anisot-
ropy of S waves is always more pronounced, being about
twice as high as the anisotropy of P waves. The ratio does
not depend on values of the fixed averaged P and S wave
velocities. Similarly, the spatial variation of the P, S1, and
S2 velocities is stable and consistent for different data sets.
The velocities of the resultant anisotropy vary within
the following intervals (see Figure 10): 10.0 km/s < VP <
10.8 km/s, 5.5 km/s < VS1 < 6.3 km/s, and 5.3 km/s < VS2 <
6.0 km/s. The average P, S1, and S2 velocities are 10.5, 6.0,
and 5.6 km/s, respectively. The spatial variation of the P
velocity has two distinct maxima: One is in a nearly vertical
direction, and the other is nearly horizontal, being perpen-
dicular to the trench. The S1 velocity has its maximum
along the downdip compression and along the normal of the
slab. The S2 velocity has a minimum along the downdip
compression and also along the s3 axis. The maximum of
the S2 velocity is broad and close to the normal of the slab.

Table 5. Observed Data: Inversion Constraints and Optimum

Density-Normalized Elastic Parametersa

A11 A22 A33 A44 A55 A66 A12 A13 A23

Limits in the Constrained Optimization
Starting model 110 110 110 33 33 33 44 44 44
Lower limit 90 90 90 15 15 15 20 20 20
Upper limit 130 130 130 50 50 50 65 65 65

Dense Grid
Optimum values 107.6 114.1 103.3 28.2 39.5 34.3 37.0 48.2 38.0

aLower/upper limits define the intervals for sought density-normalized
elastic parameters (in km2/s2).

Table 6. Observed Data: Orientation and Strength of Anisotropy

Data Set
Axis 1

Azimuth/Dip, deg.
Axis 2

Azimuth/Dip, deg.
Axis 3

Azimuth/Dip, deg.
P Wave

Anisotropy, %
S1 Wave

Anisotropy, %
S2 Wave

Anisotropy, %

A 332/56 114/41 230/70 4.7 ± 1.4 10.4 ± 2.5 9.3 ± 1.7
B 320/53 121/40 227/80 7.3 ± 2.0 15.0 ± 3.0 14.1 ± 3.3
C 326/51 122/40 228/80 7.1 ± 2.1 13.7 ± 3.7 11.5 ± 3.3
D 313/51 130/40 220/84 8.7 ± 1.7 16.8 ± 3.3 14.0 ± 3.0
E 320/51 130/40 225/82 8.2 ± 2.0 16.3 ± 3.7 11.8 ± 3.2

Dense Grid
A 320/54 121/38 223/81 7.3 ± 1.4 13.4 ± 2.5 12.6 ± 3.5

Figure 8. Inversion for orthorhombic anisotropy using
moment tensors of data set C. The plot shows the misfit
function for symmetry axes of orthorhombic anisotropy,
normalized to the misfit for an isotropic medium. The misfit
functions are displayed in the lower hemisphere equal-area
projection. The optimum directions of the symmetry axes of
anisotropy are marked by circles.
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[27] The retrieved anisotropy can be used to predict the
CLVD and ISO components caused by shear faulting in
the anisotropic slab (Figure 11). The predicted values of the
CLVD are asymmetric similarly to the observed ones: For
data set A the mean value is �4.8%, and the mean of the
absolute values is 8.8%. Although the observed and pre-
dicted values follow in average similar trends (see Figures 6
and 11), their coincidence for individual earthquakes is
rather poor. The correlation between the predicted and
observed CLVD is only 0.3. This confirms that anisotropy
itself cannot fully explain the observed CLVD. The ISO
component is significantly smaller than the CLVD. The
mean value is only �1.2%, and the mean of the absolute
values is 1.2%. The small predicted values of the ISO are
of particular interest because they could explain why
the ISO components have not been reliably detected yet
[Kawakatsu, 1991, 1996; Hara et al., 1995]. It should be
emphasized that the predicted insignificant ISO components
are not a consequence of the zero-trace moment tensors
used in the inversion because the inversion only exploited
the information on the CLVD.

4. Discussion

[28] The proposed inversion for anisotropy has the fol-
lowing advantages and limitations.
[29] 1. In contrast to the standard determination of

anisotropy from travel times or from shear wave splitting,
which yields an overall anisotropy averaged along a whole
ray path, the proposed method gives a local value of
anisotropy just in a focal area. Hence it should, in principle,
be capable of retrieving the anisotropy of a focal area that is
surrounded by a differently anisotropic or by an isotropic
medium. The case when the surrounding medium is differ-
ently anisotropic is particularly complicated for standard
methods because the effects of focal anisotropy can easily be
masked by those of the surrounding medium. Of course, if
the surrounding medium displays a remarkable anisotropy,
the moment tensors must be determined using anisotropic
Green functions.

[30] 2. The method is applicable under the following
assumptions: Anisotropy must be uniform in the focal area;
the earthquakes must occur on faults with varying orienta-
tions; and the earthquakes must be produced by shear
faulting. If earthquakes are generated by tensile faulting
[Vavryčuk, 2001], the method should be modified.
[31] 3. The accuracy of moment tensors must be very

high because non-DC components, which are essential for
this method, are very sensitive to errors in the moment
tensors. This is a rather severe limitation because the

Figure 9. A comparison of slab, stress, and anisotropy
orientations. The directions of the slab normal (cross), of the
principal stress axes (triangles), and of the symmetry axes of
anisotropy (circles) were calculated for moment tensors of
data set C. Lower hemisphere equal-area projection is used.
The dashed line shows the intersection of the slab with the
hemisphere.

Figure 10. Spatial variation of the velocity predicted by
the optimum anisotropy model for (a) P, (b) S1, and (c) S2
waves. Lower hemisphere equal-area projection is used.
Directions of the symmetry axes are marked by circles.
Velocities are in km/s.
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non-DC components can easily be distorted by using
inaccurate Green functions or foci locations in the moment
tensor inversion.
[32] 4. The method is very robust. If a large set of high-

quality moment tensors is available, the inversion can
retrieve the orientation and strength of anisotropy even for
low anisotropy symmetries as for orthorhombic symmetry.
[33] 5. The method cannot yield the complete elasticity

tensor. Because of coupling between the slip, fault area, and
elastic parameters and because of special geometry of
faulting (shear faulting), two elastic parameters must always
be fixed. Fortunately, the strength of anisotropy and the
spatial variation of velocities are not very sensitive to
the actual values of the parameters fixed. Of course, if the
estimates are significantly biased from the correct values,
the inversion can fail.
[34] 6. The method allows utilizing the moment tensors

constrained to have zero trace, but using unconstrained
moment tensors is advantageous. Assuming the zero trace
of the moment tensor, the inversion for anisotropy is limited
to inverting the CLVD components only. If full moment

tensors are available, the method can invert for anisotropy
using not only the CLVD but also the ISO components.
Even the zero ISO components found, but not assumed,
bring valuable information, which can be utilized in the
inversion. Therefore reporting full moment tensors in global
or regional moment tensor catalogs is highly desirable.
[35] The proposed inversion for anisotropy has been

applied to moment tensors in the Tonga subduction zone.
The results suggest that one of the causes generating
non-DC components in the moment tensors of the deep
earthquakes in the Tonga subduction zone is anisotropy of
the slab. The other causes generating the non-DC compo-
nents are probably mechanisms that changed during rupture
and the errors produced by the moment tensor inversion due
to unmodeled path effects. The presence of anisotropy in the
slab is supported by the following observations.
[36] 1. The anisotropy found can explain an appreciable

part of the CLVD components in the moment tensors.
[37] 2. In accordance with observations, the anisotropy

generates no ISO components or very small ISO components.
[38] 3. The anisotropy is oriented consistently with stress

in the slab. This is a reasonable and expected result
[Savage, 1999], which manifests a success of the inversion.
This success is conditioned by inverting highly accurate
moment tensors. If less reliable data are used, the inversion
fails.
[39] The orientation of the retrieved intra-slab anisotropy is

defined by axes (azimuth/dip) a1 = 320�/54�, a2 = 121�/38�,
and a3 = 223�/81�. The errors in the azimuth and dip are about
5�. The first and second axes lie along the downdip motion of
the slab and along the normal to the slab, respectively. The
strength of the P, S1, and S2 anisotropy is of 7.3 ± 1.5%,
13.4 ± 2.5%, and 12.6 ± 3.5%, respectively. The errors of
anisotropy strength are only rough estimates, which reflect
random but not systematic errors in the moment tensors used
in the inversion. For example, the systematic errors can be
produced by using the isotropic Green functions in the
moment tensor inversion or by confining moment tensors
to have the zero trace. Therefore the true errors may be larger.
In future studies a thorough analysis of the systematic errors
in the CMT catalog and their influence on the anisotropy
inversion will be necessary to achieve more reliable and more
accurate estimates of retrieved anisotropy.
[40] Although the actual accuracy of the retrieved anisot-

ropy strength is disputable, it is clear that the intra-slab
anisotropy is remarkably higher than the estimates reported
for the surrounding mantle. The S wave anisotropy in the
mantle wedge is assumed to be varying, but its strength
probably does not exceed 4% [Ando et al., 1983; Fischer
and Wiens, 1996]. The upper transition zone (410–520 km)
is assumed to be weakly anisotropic with strength less than
0.5% [Fouch and Fischer, 1996; Savage, 1999]. The lower
transition zone (520–660 km) and the lower mantle are
reported to be nearly isotropic [Fouch and Fischer, 1996;
Fischer et al., 1998]. Anisotropy may also exist near the
660 km discontinuity with strength up to 3% [Wookey et al.,
2002]. Compared with these results, the retrieved intra-slab
anisotropy is strong and indicates anomalous properties of
the subducting slab. It points to the presence of highly
anisotropic minerals with a high degree of alignment in the
slab. Since the orientation of anisotropy coincides with the
orientation of stress in the slab, the stress is probably a key

Figure 11. Histograms of (top) theoretical CLVD and
(bottom) theoretical ISO components in the moment tensors
of data set A predicted by the optimum anisotropy model
(see Tables 5 and 6, dense grid).
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factor in formation of anisotropy. Stress may cause align-
ment of anisotropic minerals that produces an overall
anisotropy of the slab.
[41] The proposed inversion can find other attractive

applications. Collecting a sufficiently high number of care-
fully determined moment tensors, we can probe anisotropy
in various slabs or explore variations of anisotropy along a
slab. This could help us to understand better the changes in
the composition and structure of a slab owing to the 220,
410, and 520 km discontinuities.
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Šı́lený, J., and V. Vavryčuk (2002), Can unbiased source be retrieved from
anisotropic waveforms by using an isotropic model of the medium?,
Tectonophysics, 356, 125–138.

Sipkin, S. A. (1986), Interpretation of non-double-couple earthquake
mechanisms derived from moment tensor inversion, J. Geophys. Res.,
91, 531–547.

Sipkin, S. A., C. G. Bufe, and M. D. Zirbes (2002), Moment-tensor solu-
tions estimated using optimal filter theory: Global seismicity, 2000, Phys.
Earth Planet. Inter., 130, 129–142.

Tibi, R., G. Bock, and D. A. Wiens (2003), Source characteristics of large
deep earthquakes: Constraint on the faulting mechanism at great depths,
J. Geophys. Res., 108(B2), 2091, doi:10.1029/2002JB001948.
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