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Energy Balance of Simple Elastodynamic Sources 

VACLAV VAVRY~UK 1'2 

Abs t rac t - -Comple te  relations are derived for energy and energy flux of elastic waves generated by 
an isotropic and double-couple source in a perfectly elastic, homogeneous, isotropic, and unbounded 
medium. In the energy balance of elastodynamic sources near-field waves play an essential role, 
transforming static energy into wave energy, and vice versa. For explosive and dislocation sources, the 
source surface radiates a positive wave energy that is partially distributed to the medium transforming 
into static energy. For implosive and antidislocation sources, the source surface generates eiastic waves, 
but it does not necessarily imply that it also radiates a positive wave energy. The energy transported by 
waves can originate in gradual transformation of the static-to-wave energy during propagation of waves 
through a stressed medium. 

Key words: Double-couple, earthquake, elastodynamics, energy balance, isotropic source, near-field 
waves, wave energy. 

I. Introduction 

REID (1910) mentioned, for the first time, the idea of an earthquake as a process 
of sudden release of static strain energy, accumulated extendedly in the medium 
surrounding a fault. According to this concept, the released energy is partially 
expended in breaking up material and crack growth on the one hand, and radiated 
away into a distant medium on the other. Each part of energy is transported by 
seismic waves: 1) by near-field waves from a surrounding medium to the fault; and 
2) by far-field waves from the surrounding medium into a distant medium. In 
deliberations of energy balance of  earthquake sources, the energy transported by both 
wave types (i.e., the complete elastodynamic solution) should be taken into acc- 
ount (KOSTROV, 1974; HUSSEINI et al., 1975; KOSTROV and DAS, 1989; FREUND, 

1990). However, the energy balance of earthquake sources is quite complex, 
preventing the study of near-field and far-field wave energy separately and providing 
a clear physical interpretation of individual terms. To simplify the problem, the 
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near-field wave energy can be neglected as is widely done in works on radiated 
energy (RANDALL, 1973; BOATWRIGHT, 1980; RUDNICKI and FREUND, 1981; 
VASSILIOU and KANAMORI, 1982; BOATWRIGHT and FLETCHER, 1984; BOAT- 
WRIGHT and CHOY, 1986; MADARIAGA, 1986; KIKUCHI and FUKAO, 1988). This 
approach can produce 'reasonable estimates of the energy transported by a wave- 
field for a wide range of distances from a source. In this paper we will follow 
another approach to the energy balance of wavefields. It applies to all distances, 
enabling us to study the energy of far-field waves as well as near-field waves and to 
thoroughly discuss their physical properties and mutual relations. We will simplify 
the problem, adopting basic sources in a plain medium: isotropic or double-couple 
sources situated in a perfectly elastic, homogeneous, isotropic, unbounded and pre- 
stress free medium. The first source is the simplest in elastodynamics and also was 
used by many other authors (ESHELBY, 1957; YOSHIYAMA, 1963; RANDALL, 1964; 
RUDNICKI, 1983); the second source is the most frequently applied in seismology. 
Since an exact elastodynamic solution exists for each source (ACHENBACH, 1975; 
ERINGEN and SUHUBI, 1975; AK~ and RICHARDS, 1980), the problem of energy 
flow can be solved analytically. Physical interpretation of the energy of near-field 
and far-field waves is therefore straightforward and well-comprehensible and can 
also offer an insight into the energy balance of wavefields generated by more 
complex sources such as a real earthquake source. 

2. Notation 

The following list presents the notation used in this paper. Physical units for 
selected quantities are given in brackets. 

h(2, t) 
hK(~, O, h~(~c, t) 
p(2, t) 
I4(S, t) 
HK(S , t), H u ( S  , t) 
H s, H D , H r, H R 

P(S, t) 
po,  pr ,  p c  

E(V, t) 
E A r ,  t) 

r(O 
T~(t) 

Te0, T~I 

elastic energy density [J/m 3] 
kinetic and potential elastic energy densities 
energy flux density [W/m 2] 
surface elastic energy distributed over the surface S [J/m] 
kinetic and potential surface elastic energies 
static, dynamic, transient and residual parts of the surface 
energy H(S, t) 
energy flux over the surface S [W] 
dynamic, transient and residual parts of the energy flux P(S, t) 
elastic energy contained in the volume V [J] 
elastic energy contained in the volume V outside of a small 
spherical cavity at the origin of coordinates with radius 
total elastic energy contained in the medium [J] 
total elastic energy in the medium outside of a small spherical 
cavity at the origin of coordinates 
initial and final values of the total elastic energy T~(t) 
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T s T D T[ ,  T~ 8 '  8 '  

w(v) 
W z>, W r, W R 

M,+(t) 
M(O 
Mo, MI 
M~ = M ( t  -- r/~), 
M~ = M(t  - r/~) 
T 

~,fl  
2 e =  ~zT 

Cijkl  , I~, [1, [ 

a(~, t) 
zv(~:, t) 
ei/(~ , t) 
gv 

6(t) 

r 

static, dynamic, transient and residual parts of Ts(t) 
wave elastic energy flowing out of the volume V [J] 
dynamic, transient and residual parts of the wave energy W(V) 
moment tensor 
source-time function 
initial and final values of M(t)  

retarded source-time functions 
source process duration 
P- and S-wave velocities 
wavelength of the P wave 
elasticity tensor, Lam6's constants, density of the medium 
displacement vector 
stress tensor 
(infinitesimal) strain tensor 
Kronecker delta 
Dirac delta function 
radius of the small cavity radiating elastic waves 
direction vector of an observer 
distance of an observer from the source 

If  the volume is a sphere with radius r, the variable r is used in place of variables 
V o r  S. 

3. Definitions and Basic Formulae 

Let us assume a linearly elastic medium. The elastic energy density h(~, t) and 
the energy f lux  density fi(Y, t) can be expressed as follows (BEN-MENAHEM and 
SINGH, 1981) 

1 1 - �9 1 h(~, t) = hx + hv  = �89 + ~zijeij = ~puiui + ~c~jgtu~duk, ~, (1) 

p , ( : ~ ,  0 = - ~i+~+ = - <+k,"k, , '~+,  ( 2 )  

where h~:?, t) and hv(:~, t) are the kinetic and potential (strain) energy densities, 
z~j(:~, t) denotes the stress tensor, c;je+ is the elasticity tensor, eij(:~, t) is the strain 
tensor, fi(:~, t) is the displacement vector, and p is the density of the medium. Dots 
over quantities mean time derivatives, indices after the comma denote spatial 
derivatives. The Einstein summation convention is applied. If  we assume the 
absence of any energy sources in the medium, the energy flux density is related to 
the elastic energy density as 

Oh 
p,,/+ ~ = O, (3) 
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which expresses the local conservation of energy. Assuming a volume V is bounded 
by a surface S and integrating formulae (1) and (2) over S, we will introduce 
surface elastic energy H(S, t) and energy flux P(S, t) 

H(S, t) = f f  h(s t) dS, (4a) 

s 

t) = Ifpi (2, t)n~ dS, (4b) P(S, 
d O  
s 

where fi is the outer normal of the surface S. Consequently, elastic energy E(V, t) 
contained in the volume V, total elastic energy T(t) of the whole elastic solid, and 
wave energy W(V) flowing out of the volume V over the whole time history, are 
defined 

E(V, t) = f f ( h(Yc' t) dV, (5a) 

v 

r(t) = E(V~, t) -- f [ f h ( ~ ,  t) dV, (5b) 

Voo 

W(V) = P(S, t) dt, (5c) 

where V~ is the volume of a whole elastic solid. 

4. Isotropic Source 

4. I. Displacement Field 

Let us assume an isotropic point source at the origin of coordinates, so that the 
moment tensor has the form 

M i j ( t  ) = 5ijM(t), 

where M(t) is the source-time function. Let the source be situated in an isolated, 
perfectly elastic, homogeneous, isotropic, and unbounded medium. The exact 
solution of the elastodynamic equation reads (ACHENBACH, 1975, p. 102) 

7i M ( t - r / a )  ~i M(t--r /a)  
ui(~, t) = 4rcpa2 r2 -4- 4rcpa3 r ' (6) 

where 7 denotes the direction vector of an observer, r the distance of an observer 
from the source, and a is the P-wave velocity. 
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The first and second terms in (6) are called near-fieM P waves (pU) and far-field 
P waves (P~), respectively. No S waves are generated by this source. If  M(t) is 
time-independent, the elastodynamic equation (equation of motion) reduces to an 
elastostatic equation (equation of  equilibrium), and the solution consists only of the 
first term in (6). Accordingly, the near-field waves are related to the static field or 
more exactly, the near-field waves are responsible for any change of the static field. 
The amplitude of the pN waves decreases as 1/r 2, while that of the pF w a v e s  as 1/r. 
T h e  pN and pF waves are polarized linearly in the ray direction and have spheri- 
cally symmetric radiation patterns. 

To avoid a singularity of physical quantities at the point source, we will consider 
a source of finite size: a small spherical cavity with radius ~, its center being at the 
origin of coordinates. If  formula (6) is to describe the displacement field for the 
cavity as well, the displacement generated by the point source at distance, r = 
must coincide with the displacement at the cavity surface. As a consequence, the 
source process on the cavity surface is retarded by time e/c~, and the time 
dependence of the cavity surface displacement is not identical with the source-time 
function M(t) (see Fig. 2), although it obviously converges to M(t) as e ~ 0 .  

We will consider two forms of source-time function M(t) (Fig. 1) being referred 
to as the explosive and implosive sources. For the explosive source, M(t) is 
increasing from M0 = M(t < 0) = 0 to M1 = M(t > T) > 0, where T is the source 
process duration. That  means that the medium is initially free of stress and 
deformations. During the source process, the source expands in response to external 
forces applied to its surface. After the source process terminates the external forces 
hold the source in an expanded state. The source expansion generates elastic waves 
and effects a transition from an unstressed to a stressed state of a medium. For  the 
implosive source, M(t) decreases from M0 > 0 to M~ = 0, implying that the source is 

S o u r c e - t i m e  f u n c t i o n  
e x p l o s i v e  s o u r c e  

0 M 0 ~  

/~(t) 

M1 

i m p l o s i v e  s o u r c e  

/~(t) 

M1 
T 

Figure I 
Source-time function M(t) and its time derivative for explosive and implosive sources. The vertical 

dotted line denotes the end of  the source process. 
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Displacement at Lhe source surface 
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Figure 2 

scale=O,01 i 

~/a ~/~+T 
Radial displacement at the source surface for the spherical expanding cavity as a function of time and 
cavity radius e, using formula (6). The vertical dotted lines denote the beginning and the end of the 

source process. 

in an expanded state initially, the medium being stressed around the source. No 
prestress or other stress sources are considered to exist in a medium. During the 
source process, the source contracts in response to the weakening or ceasing of 
external forces at its surface. The implosion generates elastic waves and totally 
relaxes the stress in the medium. If the forces are suddenly interrupted, then no 
external forces act during implosion, thus the process is spontaneous. We call this 
source an inner source, because during spontaneous implosion no external power is 
supplied into the medium, thus the total energy in the medium conserves. 

4.2. Energy and Energy Flux 

Formula (6) for the elastodynamic field generated by a spherical cavity gives a 
possibility to express all energy quantities in an exact analytical form, and conse- 
quently to solve exactly the energy balance of the complete wavefield. A derivation 
of h0?, t) and fi(2, t) is tedious, but elementary. Also it can be verified that the local 
energy conservation law (3) holds for solution (6). Next, only formulae for surface 
energy H(r, t) on the sphere S with radius r, its center being at the origin of 
coordinates, and energy flux P(r, t) over S will be presented 

6 M~ 12M~2~/~ 4 M~h;J~ 6 /1)/2 4 3;/~3;~r "( 

P(r, t) = 

) .+2# f  1 M~ 1 21~/~)f~r 1 ..2 ] 
+ M= 

r ' 

# {4 M~A;/~ 4 M~h;/~ 421)/: 4 h)/r21;/~ } 
r 3 - 

+ , ~ + 2 # { 1  2Q~M~+ 1 } 

(7) 

(8) 
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where Ms = M ( t -  r/a). Formulae (7) and (8) are complex, because they consist 
not only of far-field and near-field terms, but also of  interaction terms between the 
far-field and near-field waves. Because of  complexity of  energy balance described by 
(7) and (8), we will study integral energy quantities at first (Sec. 4.3.), and then the 
individual terms of  the energy and energy flux will be discussed in detail (See. 4.4.). 

4.3. Total and Wave Energy 

Total energy can be expressed by integrating (7) over r ( f rom e to oo). Before the 
source process begins, t < e/a, we have 

# 2M02 
T~o = T~(t < e/a) - 47zp2~ 4 e3 , (9) 

and after the source process terminates, t >- e/c~ + T, 

T~l= r~(t >-e/c~ + T ) -  # ~ 5 - -  ~ M2(t) dt , (10) 4gp2~ 4 

where T~ denotes the total energy in the medium beyond the cavity. For the 
explosive source, initial total elastic energy T,o equals zero (Fig. 3); T~(t) increases 
with time, during which the external forces at the source surface supply energy into 
the medium. When the source process terminates (t = e/c~ + T), T,(t) reaches final 
value T~I, being constant thereafter. The final value is the sum of  the static energy 
(first term in (10)) and of the energy of  the far-field waves (second term in (10)) 
radiated by the source. For  the implosive source, T~o equals the static energy 
previously accumulated in the medium. In the final state, T~(t) equals only the 

Total energy 

explosive source implosive source 

0 %  
e/~+T 

~'~(t) 

0 

t 

%o 1 

Te(t) 

e/~+T 

Figure 3 
Total energy T~ as a function of time. The dashed line for times t < e/e + T (right-hand plot) displays 
T~(t) during the source process for the inner source. The vertical dotted line denotes the end of the 

source process. 
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elastic energy of the far-field waves, because the medium has become unstrained. 
The T~o/T~ ratio depends on the form of source-time function M(t). For a 
high-frequency range, T~ is greater than T~o, because of dominance of  the 

~r2(t) dt term, and vice versa for a low-frequency range. For  an inner implosive 
source, the total energy of a medium conserves, so that T~0 = T~ (Fig. 3). 

As regards wave energy W(r), formula (5c) and (8) yield 

W ( r ) -  1 f "  M ~ - M 2 +  ~0+2# fr~12(t) dt} (11) 

The first and second terms in (11) correspond to the wave energies of the near-field 
and far-field waves, respectively. The near-field wave energy can be either positive 
or negative, and depends on the distance, vanishing at long distances. At the cavity 
surface it has exactly the same value as the static energy (formulae (9) and (10)), 
which is loaded into the medium (explosive source) or released (implosive source) 
during the wave propagation through the medium. In contrast, the far-field wave 
energy is always positive and does not depend on the distance. For  the explosive 
source, the wave energy W(r) at r = e equals the work spent by force at the source 
surface. W(r) decreases with increasing distance, because the near-field wave energy 
transforms into static energy. At longest distances, W(r) converges to the wave 
energy of  the far-field waves. For  the implosive source, W(r) is an increasing 
function of  distance, also converging to the far-field wave energy. The increase of  
W(r) results from the static-to-wave energy transformation. The value of the wave 
energy radiated by the source surface depends on the action of  external forces upon 
it. If positive energy is produced at the source surface, then W(r = e) is positive, and 
if the energy is consumed, then wave energy W(r = ~) is negative. For  the inner 
implosive source, no external forces act during the source process, thus, the wave 
energy W(r = e) radiated by the surface equals zero. The zero value of W(r = e) can 
also be obtained directly from (2), if we consider that the surface of the sponta- 
neously implosive source is by definition free of traction. 

4.4. Types of  Energy and Energy Flux: Formulae 

In order to understand the time-space evolution of energy, we will split relation 
(7) for surface energy H into several terms which will represent physically different 
energy forms: 

H = H s+  H D+ H T + H  R, (12a) 

where H s, H D, H r and H R will be called the static, dynamic, transient and residual 
parts of H, respectively, 

HS _ 6p M 2 
41zp20~4 r4 , (12b) 

HD = 2 + 2/2 
47tp2~ 8 M~, (12c) 
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4np2o{5 r3 , (12d) 

/~ {8 M~h:/~ 4M~M~ 63:/~ 4 h)/r2O~} 
H R - - 4 ~  ~-s r 3 -~-0~6 r 2 - ~ 7 - ~ - ~ 7  

2 + 2 #  j" 11_ .~/: 1 35/r~= } 
+ 4zcp2 ~2~6 ~ + ~7 -- (12e) 

Integrating formulae (12) over r we obtain 

Mo 2. M, T~ s - (13a) 47~p20~4 g3 ' T~ s 4zcp2~4 83 ' 

Ty( t  > e/a + T ) -  X + 2~ s  -- 47~p 2~ 8 A~2(t) dt, (13b) 

T•(t -> e/c~ + T) = 0, (13c) 

where T~S0 = TS(t = 0) and T, s = TS(t ~ oe) denote the initial and final total static 
energies; T~ and Tff the total dynamic and residual energies. 

Integrating (12b,d) over r for t >- 8/c~ + T, we get 

2# M~ 
Tf( t )  + TS(t) - - TS~l, (14) 

4~p2~ 4 8 3 

where T r and T s are the total transient and static energies. 
Analogously to (12), we will define the dynamic, transient and residual parts of 

the energy flux P expressed by (8): 

p = pD + p r +  pn, (15a) 

p n  2 +2#  
4np 2~ 7 214~, ( 1 5b) 

pT= 4/, M ,fL 
4np2~z4 r3 , (15c) 

pR l ~4/~M,_a)/~ 4#a;/~ 4#21;/,2~+2+2#29/rdO~} 
=4G7(7 +77+ 6T (15d) 

Integrating (15) over t, we get 

WD 2 + 2# .I r 
-- 4np2cd M2(t) dt, (16a) 

M1 - Mo W r _  2/~ 2 2 
47cp 2~ 4 r3 , (16b) 

W R = 0 ,  ( 1 6 c )  
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where W D, 
respectively. 
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W r, and W R are the dynamic, transient and residual wave energies, 

4.5. Types of Energy and Energy Flux: Discussion 

Formula (12b) indicates that the static energy H s is a nonlocal, potential 
energy, that can be distributed through the whole medium, but mostly concentrated 
near the source, decreasing quickly with the distance (see Fig. 4a). Every loading or 
release of the static energy is performed by the near-field waves implying that any 

(a) SLatic energy 
explosive source implasive source 

1 

7a 

( t - T )  a t r 

\ \  

H s 

I 
x\ r 4 

" i ,, ! 

( t - r )  ~ t r 

(b) Dynamic energy 
explosive source implosive source 

. . . . . . .  ~ _  

H D 

a ( t - T )  ~t 

H D 
0 

(t-T) c~t 

Figure 4 
(a) Schematic plot of  static surface energy H s for the isotropic source as a function of  distance at a 
fixed instant t. The vertical dotted lines delineate the space interval of  the P wave. The dashed line 
shows the envelope of  H s for different times. (b) Dynamic surface energy H e as a function of  distance 
at a fixed instant t. The dashed line shows the envelope of  max imum amplitudes of  H D for different 

times. 
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change of the static energy is gradual in accordance with the causality principle. No 
flux and no wave energy terms correspond to the static energy. 

From (12c) the dynamic energy H D is local, appearing only in the time-space 
interval of waves (Fig. 4b). It can be shown that H D consists equally of potential 
and kinetic energies. The initial value of  total dynamic energy T~ is zero. It 
increases during the source process and becomes constant at all times after it has 
terminated (13b). Dynamic wave energy W ~ is also constant and does not depend 
on the distance from the source (16a). This energy corresponds to the usually 
calculated radiated (seismic) energy, to which the far-field approximation or the 
zero-order approximation of  the ray theory is applied. The common use of  W ~ 
instead of W(r), is justified in practical applications because of the fast convergence 
of  W to W D with distance. 

(a) Transient. energy 
explosive source 

,, 1 
\ r~  x 

a t -T )  ~ t 

i m p l o s i v e  s o u r c e  

H ~ 

/ 
/ 

/ 

I 
i I i 

-- i 

rS i ! 
z i 

( t - T )  (z t F 

(b) R e s i d u a l  energy 
explosive source 

r 

H R 

i 

implosive source 

0 HR 

J 
J 

L "-i-_ r \ 

J 

i 

( t - T  c~ t 

Figure 5 
Schematic plot o f  transient surface energy H r (a) and residual surface energy H R 

source as a function of  distance at a fixed instant t. 
(b) for the isotropic 
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Formulae (12d) and (14) indicate that the transient energy H r is local (see Fig. 
5a), closely related to the static energy. H r is a potential energy, forming a closed 
energy system with the static energy, in which both types of  energy can be trans- 
formed to each other in the course of  time. For the explosive source, Tr(t) is pro- 
duced by external forces during the source process. Once the source process has 
terminated, no external power is supplied into a medium, and Tff(t) decreases, trans- 
forming into static energy until it vanishes (Fig. 6a). Likewise, Wr(r) is a decreasing 
function converging to zero as r ~ oe (Fig. 6b). The decrease of Wr(r) is the result 
of wave-to-static energy transformation related to the loading of static energy in the 
medium. As regards the implosive source, Tr(t) is negative immediately after the 

(a) Tota l  e n e r g y  
e x p l o s i v e  s o u r c e  

......................................................................... T~I 
' \ \ \ ~  

~ ~ ~ ~ T T 

EIa+T t 

i m p l o s i v e  s o u r c e  

E 

W~ 

/ / / / /  

(b) Wave e n e r g y  
e x p l o s i v e  s o u r c e  i m p l o s i v e  s o u r c e  

W 

~ wD 

W D 

w r 

Figure 6 
(a) Total transient energy T~ (dashed line) and total static energy T s (solid line) as a function of time 
for the isotropic explosive and inner implosive source. The functions are plotted for times after the 
source process has ended (t _> z/c~ + T). T, s denotes the limit of  TS(t)  as t ~ oe. (b) Wave energy W 
(solid line), transient wave energy W r (dashed line) and dynamic wave energy W ~ (dotted line) as a 

function of distance. Functions are plotted for distances greater than source radius e. 
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source process has ended. Due to the release of static energy, this energy deficit 
decreases and vanishes when all the static energy has been released (Fig. 6a). For  
the inner implosive source, wave energy Wr(r) is a negative and increasing function 
of  distance (Fig. 6b). The increase of  Wr(r) is due to the transformation of static 
into transient wave energy. Transient energy flux P r(r) (15c) is directed towards the 

source which results in the waves transporting a part of energy in a direction 
opposite to the wave propagation. Wr(r) and Pr(r) vanish once the static energy 

has been released. 
Residual energy H e (12e) is also local (Fig. 5b), consisting of  potential as well 

as kinetic energies. It has a zero total value (13c, 16c), implying that it does not 
contribute to the total energy balance and redistributes energy only among various 

elastic waves. It is noted, however, that due to its relatively slow decrease with 
distance (oc 1/r), H e still considerably affects the time-space form of  the surface 
energy H(r, t) at the distances, at which H s and H T are practically zero. Figures 

7a,b indicate that irregularities A in H(r, t), introduced by H R, can comprise 10% 
of  the peak amplitude of H at distances greater than 5 wavelengths from the source. 

5. Double-couple Source 

5.1. Displacement Field 

Next, we assume a double-couple source at the origin of  coordinates with the 
moment tensor in the form 

Mij(t) = (6~i62j + 61j62i)M(t). 

Displacement field u~(2, t) then is expressed (AKI and RICHARDS, 1980) by: 

1 1 (.r/~ 
u~(2, t) = 4~p (30yi])172 - 671(~i2 - 6726i') ~ Jrl/~ zM( t  - z) dr 

1 
q- ~ ( 12])i71 ])2 -- 2])1 (~i2  - -  2])2~il ) 

M(t  -- r/a) 
r 2 

1 M ( t  - r i f t )  2~i~1 ~2 m ( t  - -  r io  0 
4rcpfl2 (12])i7172 -- 3])16~2 -- 3])26i~) r2 ~ 4~pc~ 3 r 

1 ~ t ( t  - r /~ )  
4~p/~ 3 (27i7, 72 -- 7, 6i2 -- 72 6~, ) - - r  (17) 

The first three terms in (17) are called near-field waves, and we will denote them I u, 

p u  and S u waves, respectively. The last two terms in (17) represent far-field P 
waves (P~) and far-field S waves (S~). The amplitude of  far-field waves decreases as 
1/r, and 1/r z or faster for near-field waves. The p u  and p r  waves propagate with 
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(a) explosive source 
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Surface energy H(r, t) for the isotropic source as a function of  time (left) and difference A between peak 
amplitudes of H as a function of  r/2 (right). A = 2(~ 1 -ctz)/(c q + ~2)" 100%, where cq(~2) is the first 
(second) peak amplitude of H. The time function of H is shown at distances: (1) r/2 P = 1, (2) r/). P = 5, 
(3) r/2 P = 10, (4) r/2 p = 15. Other parameters used: ~ = 5.6 kin/s, T = 0.5 s, ).P = 2.8 kin. The dotted 
line denotes the 10% level of  A, which can be considered as the lower limit of  the significant 

contamination of  the wavefield by near-field waves. 

velocity ~, the S N and S F waves with ft. The I N w a v e s  lack a single propagation 
velocity but are intrinsically dispersed. The pF and S F waves are linearly polarized, 
pF w a v e s  being purely longitudinal and S v waves purely transverse. The I N, pN and 
S N waves are also polarized linearly, but their polarization is oblique to their 
propagation direction. The radiation patterns of p F  and S F waves have the 
well-known quatrefoil form, while the polarization and radiation patterns of the 
total wavefield are more complicated. See VAVRY~UK (1992) for details. 
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Source-time function M(t )  will be chosen identically for the isotropic source 
(Fig. 1). Instead of explosive and implosive sources, we will address dislocations 
and antidislocations (ANDREWS, 1975). By the dislocation source we understand a 
double-couple source effecting a transition from an unstressed to a stressed state of 
the medium, and vice versa for the antidislocation source. By the inner antidisloca- 
tion we will understand a spontaneous antidislocation, i.e., an antidislocation which 
forms an isolated system with the medium. 

5.2. Total and Wave Energy 

The formulae for energy density h(2, t), for energy flux density fi(:~, t), surface 
energies H~c(r, t) and Hu(r ,  t), and energy flux P(r, t) can be established analogously 
to those for the isotropic source. However, the double-couple derivation is rather 
long and the resulting formulae are exceedingly more complicated. Some complete 
forms are given in the Appendix. In this section only the final analytical formulae 
for total energy T~(t) and wave energy W(r) will be discussed. 

For t -< e/a, (4a) and (5b) together with (A1) and (A2) yield 

K M~ 
T~o = T~(t <- g/a) - 60gp 2 ~3 , (18) 

where 

62 32p 27# 48# 
K = ~ - ~ + - ~ - +  fl~- azfl2. (19) 

After the source process has ended, t > ~/fl + T, 

1 _(KM~ 4 ( 2 + 2 # ) ~  r ~  6#f0T } 
T~t = T~(t >- ~/fl + T)  - 60~zP 2 ~ - ~  + Jo h;12(t) dt + ~7 A/12(t) dt . 

(20) 

For the dislocation source, the first term in (20) expresses the static potential 
energy, which is loaded into the medium by external forces during the source 
process. The second and the third terms denote the energy of P and S far-field 
waves, respectively, radiated outwards from the source into infinity. For the 
antidislocation source, the first term in (20) equals zero, consequently the final total 
energy equals the energy of P and S far-field waves only. 

For wave energy W(r) formulae (A3) and (5c) yield 

1 ~ K ( M ~ u M ~ ) 4 ( 2  + 2/z) for ,6/~ T } W(r) - + J~12(t) at A;12(t) dt (21) 
60~p2 t r 3 a7 *~  Jo " 

The first term in (21) expresses the near-field wave energy, while the second and 
third terms express the P and S far-field wave energies, respectively. 
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5.3. Types o f  Energy and Energy Flux: Formulae 

In analogy with the isotropic source, we can split the elastic energy into a sum 
of static, dynamic, transient and residual energies: 

H = H s +  H D+ H r + H  R, (22a) 

{ 144.M M   H S =  1 182 + 96.._~_~ 8 1 . M ~  (22b) 
60~zp2 ~4 r 4 174 r 4 ~ ~ J '  

HD 1 { 4 ( 2 + 2 . )  6./l~r~ } (22c) 
60rip 2 o~ s M 2  + -fig , 

.T_ L 12 +64"M M  54. U#tp 48" t Mp 48. (22d) 
607zp2 [ ~ 5 r3 -4 175 r 3 ~3fl2 r 3 a2173 r 3 j ,  

where M~ = M ( t  - r/~). and M B = M ( t  - r/l?). Formula for H R is very complex and 
omitted here. Integrating H s, H D and H R over r, we get 

s K M ~  1 K M ~  1 
T~o = ~ ~3 TSl = (23a)  

' 60rip 2 ~ 3 '  

- - • Jo ~'I2(t) dt , (23b) 

Tf(r _> ~/l? + T) = 0. (23c) 

Integrating (22b,d) for t -> e/l? + T, we get 

T s + T [  = T s . (24) 

Analogously to (15) we will define the dynamic, transient and residual parts of 
energy flux P as follows: 

p = p . +  p r +  pR, (25a) 

pD 1 { 4 ( 2 + 2 . )  6. / f j f~} (25b) 
60z~p2 ~7 ) ~  + ~5 , 

p r  = 1 f122 -4- 64 .  M#I;/~ 54p M~_~/~ 48 .  ~)/~M~ 48 .  M~_~/~'( 
607~p2 - ~4 r 3 -~ 174 r 3 c~2172 r 3 ~2172 r-3 j .  (25c) 

pR can be derived from (A3) and (25) but not presented here. Integrating pD, p r  
and pR over t, we get 

WD 60~Zp21{4(~+2")f0Tffl2(t)dt'6/~['Tet 7 -~__  } -1- J0 M2(t) dt , (26a) 

K M ~ - M o  z 
W r (26b) 

60~zp 2 r 3 ' 

W R = O. (26c) 
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5.4. Types o f  Energy and Energy Flux: Discussion 

Formula (22b) indicates that the static energy H s consists of the energy related 
to pN and S u waves and the energy related to the interaction between them. The 
terms for the interactions of p N p N  and s N - - s  u are always positive, while the 
pN--sN interaction term is always negative (see Fig. 8a). Any change of static energy 
can be effected in time-space intervals r/~ < t < r/c~ + T or r/[3 <- t < r/[3 + T. 

The dynamic energy H D (22c) splits into two terms: the dynamic energies 
transported by pr  w a v e s  and S F waves. Both terms are always positive (Fig. 8b). 
The dynamic term for the interaction of pF- - sF  is zero. 

(a) S t a t i c  energy 
dislocation source 

/ 

( t -T) ~ ~ ( t -T)  a t 

a n t i d i s l o c a t i o n  s o u r c e  

0 i _ --"_----J- . . . .  

-- "r -- q" 

~6(t-T) f i t  ~ ( t -T )  t 

( b )  D y n a m i c  e n e r g y  

d i s l o c a t i o n  s o u r c e  

7~- 
(t-T) ~ tx (t-T) ~ t 

Figure 8 

a n t i d i s l o c a t i o n  s o u r c e  

.... i 
(t-T) c~ (t-r) 

(a) Schematic plot of  static surface energy H s for the double-couple source as a function of  distance at 
a fixed instant r H s is divided into two parts: P - S  interaction term (dotted line) and the sum of  P - P 
and S - S  terms (solid line). The vertical dotted lines delineate the space interval of  the P and S wave. 
The dashed line shows the envelope of  H s for different times. (b) Dynamic  surface energy H ~ as a 

function of  distance at a fixed instant t. 
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The transient energy H r (22d) is local energy, either positive or negative (Fig. 
9a). Comparing (14) with (24), we conclude that the static-to-transient energy 
transformation for the double-couple is quite analogous to that for the isotropic 
sources. However, not only the P-wave energy but also the S-wave energy or the 
interaction energy of P - S  exist in the energy balance. 

As for the isotropic source the residual energy H R (Fig. 9b) does not contribute 
to the total energy balance (23c, 26c) and, therefore, it is responsible only for the 
redistribution of the energy among elastic waves. However, Figures 10a,b show that 
irregularities A in H(r, t), introduced by H R, are considerably more pronounced 
than for the isotropic source, nearly 10% of peak amplitude of H at distances 
greater than 20 wavelengths from the source. 

(a) Transient e n e r g y  
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Schematic plot of  transient surface energy H r (a)  and residual surface energy H e (b) for the 
double-couple source as a function of  distance at a fixed instant t. 
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Surface energy H(r, t) as a function of time (left) and difference A between peak amplitudes of H as a 
function of r/2 (right) for the double-couple source. The time function of H is shown at distances: (1) 
r/)+ p = 5, (2) r/2 e = 10, (3) r/2 p = 15, (4) r/2 P = 20. Other parameters used: ~ = 5.6 kin/s, fl = c~/x/-3 , 

T = 0.5 s, 2 e = 2.8 km. For other details see the caption of Fig. 7. 

6. C o n c l u s i o n  

The  elastic energy  r ad i a t ed  by  the  i so t rop ic  as well as by  the d o u b l e - c o u p l e  

source  consis ts  o f  several  phys ica l ly  different  energy  forms:  static, d y n a m i c ,  t r an -  

s ient  a n d  res idual  energies.  The  s ta t i c  energy  is a n o n l o c a l  po t en t i a l  energy  re la ted 

to stat ic  d e f o r m a t i o n s .  In  a n  e q u i l i b r i u m  state  it is d i s t r i bu ted  t h r o u g h o u t  the m e d -  

i um,  be ing  m a i n l y  c o n c e n t r a t e d  a r o u n d  a source.  Sta t ic  surface  energy  H s is a lways  

pos i t ive  a n d  decreases  wi th  the f o u r t h  power  o f  d i s t ance  f rom the source.  The  

d y n a m i c  e n e r g y  is a local  o n e  t r a n s p o r t e d  by  far-field waves  a n d  cons i s t ing  equa l ly  
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of potential and kinetic energies. This energy is always positive, and its total 
amount contained in the elastic waves remains constant regardless of distance and 
time. The dynamic energy corresponds to a usually determined radiated energy. The 
transient energy is a local potential energy transported by the near-field waves. It 
can be either positive or negative, and it is responsible for loading or releasing the 
nonlocal static energy. The residual energy is local, a sum of potential and kinetic 
energies, originating in the mutual interaction of the near-field and the far-field 
waves. Residual surface energy H R decreases as l/r, affecting the time-space form of 
elastic surface energy H(r, t) at relatively large distances from the source. The 
kinetic as well as potential parts of  total energy T R and wave energy W R equal zero. 
Since the static and transient energies are potential energies, and the kinetic part of  
the residual wave energy equals zero, we can draw an interesting conclusion that the 
kinetic part of the wave energy W equals exactly a kinetic part of the dynamic wave 
energy W e. Kinetic wave energy of the complete wavefield does not therefore 
depend on the distance from the source and equals exactly the kinetic wave energy 
of the far-field waves. It opens a possibility, of determining exactly the far-field 
wave energy, which equals double their kinetic energy, from the wavefield measured 

at any distance from the source, including its close vicinity. 
For the explosive isotropic source, the work carried out by the external forces at 

the source surface is stored in waves immediately after the source process termina- 
tion. Wave energy has its maximum at the source surface, and it decreases with 
increasing distance, converging to the far-field wave energy. The decrease of  the wave 
energy is due to the transformation of the wave-to-static energy. Loading of the static 
energy into the medium is gradual, in accordance with the causality principle, 
performed by the near-field waves. For the implosive isotropic source, all the energy 
is stored in the form of static energy prior to the source process. This energy is not 
concentrated at the source but in the medium surrounding it. During the implosion 
the source surface generates elastic waves without requiring additional radiation of 
positive wave energy. For  an inner source, the source surface generates waves, but 
radiates no wave energy. Waves propagating from the source release the static energy 
stored in the medium and transform it into the wave energy. The wave energy 
increases, converging to the far-field wave energy in infinity. 

The formulae for the elastic energy and the energy flux of waves generated by 
the double-couple source have a substantially more complicated form. The radiation 
patterns of the elastic energy density and the energy flux density are not spherically 
symmetrical. The energy flux density is not radial, with nonzero values not only at 
times of the P waves (r/a <- t <- r/a + T)  and of the S waves (r/fl <- t <-- r/fl + T),  
but also at times between them (r/a + T <- t <- r/fl). The static and transient ener- 
gies consist of three terms: the energies related to P waves, to S waves, and to their 
mutual interaction. The dynamic energy is divided into the energies transmitted by 
the P and S waves. Their interaction term is identically zero. Although more energy 
terms are involved in energy balance compared to the isotropic source, general 
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principles of energy balance remain the same. For the dislocation source, dynamic 
energy is radiated by the far-field P and S waves outwards from the source into 
infinity; transient energy is transformed into the static energy by the near-field 
waves. For the inner antidislocation, wave energy is zero at the source surface, 
increasing with distance due to the static-to-wave energy transformation. The 
transient wave energy is negative and the transient energy flux is directed towards 
the source, in the direction opposite to the wave propagation, vanishing at large 
distances. Simply, for explosive and dislocation sources, the near-field waves trans- 
port and distribute the static energy into the medium, with the result that the wave 
energy decreases. In contrast, for implosive and antidislocation sources, the near-field 
waves propagating through a stressed medium release the static energy from the 
medium, transforming it into wave energy, so that it increases. 
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Appendix 

Analytical Formulae for Energy and Energy Flux: Double-couple Source 

Formulae for HK(r, t), H~(r, t) and P(r, t) can be established by substituting 
(17) to (1), (2), (4a) and (4b) 

H K (r , t )= 2+Zk t~27012+540M~I i  540M~II+216M~11 216 )l~/pll 
60r~p~ ( a 2  r 6 g3 r 5 ~=fl ~ ~4 r 4 0r r 4 

270 M 2 270 M} 540 MaM a 36 )f~r=Ii 36 )l;lfll 
-~ ~4 r 4 ~-~/~2 r 4 Oc3fl r ~ -{-0~5 r 3 a2f13 r 3 

216 M=~/~ 216 M~3~/~ 216 M=3)/~ 216 21)/~M~ 36 M=M= 
-t- - -  t r 3 ~ 3 f l 2  r 3 c~4fl r3  Jr- r2 

+ 

O~ 5 r 3 0~2/~ 3 (z 6 

36 M~3~t~ 36 M~3~t~ 36 M~M~ 443)/2 45 ~/~ 

r= r r 2 

84  lS  12 

O~ 4 fl ~ r ~ + cd r + a 2 fl 5 r 0~4fl 3 r 

12 ~Q~21)/e+ 2 "'2 3 )l~r2" ~ 
(A1) 
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H~(r, t) - 2 f18  M~ 36 M~_~/, 12 M~M~ 
60~zp 2 l ~ - g ~  - + a 5 r ~ "~- a6 r 2 

/~/-2 18 _,_~+ 12 2~/~M~ 
+ ~-~ r 2 a 7 r 

+ 2--~-25 ~[15120 .~ + - -  _ _  
60rcp ( r 

12960 Mflo 12960 Mflo 2880 3)/flo 
52 F6 f12 1.6 a 3 /,5 

2880 ~/alo q 288 M~,Io 288 Mr 2796 M 2 2781 M~ 
f13 ~ 44 r 4 f14 r r ~ 44 r 4 + f l ~  r 4 

+ 

5544 M~Ma + 
a2fl 2 r 4 

1272 M~3J/~ 1242 Ma~ /a  1224 M~3J/a 
45 r 3 + f15 r 3 52fl3 r 3 

1224 3J/~M~ 
53fl 2 r 3 q- - -  

136 M,h~t~ + 126 M~Ma 120 M~3~t~ 
46 ~- f16 r z 52fl4 r 2 

120 3~t~ Me  
54fl 2 r 2 + - -  _ _  

156 h)/2 141 21~/~ 264 3)/~21J/~ -t 40 3)/~3;~t~ 
a 6 r 2 ~ f16 /,2 53fl 3 ~-  57 r 

303~/~_~ra  24 ~;/~r 24 h~r~5)/~ 

/~ r a~/~ 4 r a4/~ ~ r 

P(r, t) = 2 ,J108 M~II 108 ~/~I~ 108 M 2 108 M~M~ -~ 36 M ~ I  1 

60rcp 2 ( 5 ---3- r 5 + - - +  52fl V 54 r 3 

(A2) 

53 r 4 53 r 4 

156 M~)I;/~ 108 A:/~M~ 36 M~3)/a 48 M ~ 3 ~  36 3~t~Ma 

+ a~- r ~ - a 3 f l  r 3 - 52fl2 r ~ -~- 45 r 2 54f l  r 2 

48 3)/2 36 21)/~21~/~ -t 28 3)/~3;if~ 12 21~t hJ/~ + 4 h;~t~ 1 
-+ a 5 r z a3fl 2 V 56 r a4fl 2 r 

{ ,,,o 43:0  ,o 4 :oM ,o 
+ 4320 7 -  + 5 r 6 fl r 6 ~ a 2 r 5 

1728 A;/flo + 1944 Mill 1836 Mill 288 -M~Io 288 3~talo 

t~2 7~ + 42 r 5 f12 r 5 43 r 4 f13 r 4 

504 )1;/~I1 396 3)/fll 1944 M ] 1836 M~ 1836 M~,Ma 
d- 43 r4 f13 r4 -[ a 3 r4 -k- f l ~  r4 5fl 2 r4 

1944M~M~ 72h;it~I, 362f~rfl, 1288M~2f/~ l134MBhJ/~ - - +  + - - - - +  - -  
a2fl /,4 54 F3 f14 r3  5 4 r 3 f14 r 3 

768 M ~ / a  396 M~h;/~ 732 )~/,Ma 504 5;/~M~ 
42f12 F3 aft3 r 3 42f12 r 3 ~3fl r 3 

208 M~3~f~ 162 M ~ t ~  120 M ~ r ~  36 M~h~t~ + - - +  
45 r 2 f15 r 2 42f13 r 2 aft4 r 2 
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where 

120 _s e 72 M , M  e 208/1;/2 162 5;/~ 192 ~/,h;/e 
-J - - - t  

~ / ~  r ~ ~ / ~  r ~ ~ r 2 /~  r ~ ~ / ~  r2 

156 )1)/~5;/e 72 h;/~_/f~ 48 h;/e~/" ~ 24 h~/~r e 
- -  -~/~6 ~3/~3 ~2fl3 r 2 -~-0~ 6 r r r 

24 .~r~h;/e 24 .~r 8 6 "'2] 
~3]~3 r 0~4]~ 2 r + ~ ~r + ~ Me ~ ' 

12 ./~r~ A~r e 
~2~4 F 

Irl~ rM(t I r/e Io = - ~) dr, I~ = M ( t  - -  r )  c l~ ,  
dr/ct dr/c~ 

M~ = M ( t - - r / m )  a n d  M e = M ( t - r / f l ) .  

(A3) 

REFERENCES 

ACHENBACH, J. D., Wave Propagation in Elastic_Solids (North-Holland, Amsterdam 1975). 
AKI, K., and RICHARDS, P. C3., Quantitative Seismology, Theory and Methods I, II (W. H. Freeman, 

San Francisco 1980). 
ANDREWS, D. J. (1975), From Antimoment to Moment: Plane-strain Models of Earthquakes that Stop, 

Bull. Seismol. Soc. Am. 65, 163-182. 
BEN-MENAHEM, A., and SINGH, S. J., Seismic Waves and Sources (Springer Verlag, Heidelberg 1981). 
BOATWRIGHT, J. (1980), A Spectral Theory for Circular Seismic Sources: Simple Estimates of Source 

Dimension, Dynamic' Stress Drop, and Radiated Seismic Energy, Bull. Seismol. Soc. Am. 70, 1-27. 
BOATWR1GHT, J., and FLETCHER, J. B. (1984), The Partition of Radiated Energy between P and S 

Waves, Bull. Seismol. Soc. Am. 74, 361-376. 
BOATWRIGHT, J., and CHOY, G. L. (1986), Teleseismic Estimates of the Energy Radiated by Shallow 

Earthquakes, J. Geophys. Res. 91, 2095-2112. 
ERINGEN, A. C., and SuHum, E. S., Elastodynamics I, H (Academic Press, New York 1974). 
ESHELBY, J. D. (1957), The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related 

Problems, Proc. Royal Soc. London A241, 376-396. 
FREUND, L. B., Dynamic Fracture Mechanics (Cambridge University Press, Cambridge 1990). 
HUSSEINI, M. I., JOVANOVICH, D. B., RANDALL, M. J., and FREUND, L. B. (1975), The Fracture 

Energy of Earthquakes, Geophys. J. R. Astr. Soc. 43, 367-385. 
KIKUCHI, M., and FUKAO, Y. (1988), Seismic Wave Energy Inferred from Long-period Wave Inversion, 

Bull. Seismol. Soc. Am. 78, 1707-1724. 
KOSTROV, B. V. (1974), Seismic Moment and Energy of Earthquakes, and Seismic Flow of Rock, Izv. 

Fizika Zemli 1, 23-40. 
KOSTROV, B. V., and DAS, S., Principles of Earthquake Source Mechanics (Cambridge University 

Press, Cambridge 1989). 
MADARIAGA, R., Earthquake source theory: A review. In Earthquakes: Observation, Theory and Inter- 

pretation (eds. Kanamori, H., and Boschi, E.) (North-Holland, Amsterdam 1986) pp. 1-44. 
RANDALL, M. J. (1964), Seismic Energy Generated by a Sudden Volume Change, Bull. Seismol. Soc. 

Am. 54, 1291-1298. 
RANDALL, M. J. (1973), The Spectral Theory of Seismic Sources, Bull. Seismol. Soc. Am. 63, 

1133-1144. 
REID, H. J., The California Earthquake of April 18, 1906: The Mechanism of the Earthquake (The 

Carnegie Inst., Washington 1910). 



586 V~clav Vavry6uk PAGEOPH, 

RUDNICKI, J. W., and FREUND, L. B. (1981), On Energy Radiation from Seismic Sources, Bull. Seismol. 
Soc. Am. 71, 583 595. 

RUDNICKI, J. W. (1983), Energy Radiation from a Spherically Symmetric Homogeneous Source, Bull. 
Seismol. Soc. Am. 73, 901-908. 

VASSILIOU, M. S., and KANAMORI, H. (1982), The Energy Release in Earthquakes, Bull. Seismol. Soc. 
Am. 72, 371 387. 

VAVRY(~UK, V. (1992), Polarization Properties of Near-field Waves in Homogeneous Isotropic and 
Anisotropic Media: Numerical Modelling, Geophys. J. Int. llO, 180 190. 

YOSHIYAMA, R. (1963), Note on Earthquake Energy, Bull. Earthquake Res. Inst. 41, 687-697. 

(Received July 12, 1993, accepted March 1, 1994) 


