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Weak Contrast PP Wave Displacement R/T Coefficients in Weakly
Anisotropic Elastic Media

IVAN PŠ̌ENČÍK1 and VÁCLAV VAVRYČUK1

Abstract—Approximate PP plane wave displacement coefficients of reflection and transmission for
weak contrast interfaces separating weakly but arbitrarily anisotropic elastic media are presented. The
PP reflection coefficient for such an interface has been derived recently by VAVRYČUK and PŠENČÍK

(1997). The PP transmission coefficient presented in this paper was derived by the same approach. The
coefficients are given as a sum of the coefficient for the weak contrast interface separating two nearby
isotropic media and a term depending linearly on contrasts of the so-called weak anisotropy (WA)
parameters (parameters specifying deviation of properties of the medium from isotropy), across the
interface. While the reflection coefficient depends only on 8 of the complete set of the WA parameters
describing P-wave phase velocity in weakly anisotropic media, the transmission coefficient depends on
their complete set. The PP reflection coefficient depends on ‘‘shear-wave splitting parameter’’ �. Tests of
accuracy of the approximate formulae are presented on several models.

Key words: Weak anisotropy, weak contrast interface, plane wave reflection and transmission
coefficients.

1. Introduction

Seismic anisotropy is a nearly omnipresent phenomenon, which affects, often
considerably, parameters of propagating elastic waves. Displacement coefficients of
reflection and transmission (R/T) belong to such parameters. For isotropic media,
explicit formulae for the R/T coefficients are well known, see e.g., AKI and
RICHARDS (1980). They are, however, relatively complicated and their relation to
elastic parameters is often strongly nonlinear. The complexity of the coefficients
reduces substantially if the contrast between the two media separated by an
interface is weak. The coefficients can be linearized with respect to the contrast in
elastic parameters. The linearized formulae become more transparent and they are
often very accurate, see again AKI and RICHARDS (1980). In anisotropic media,
explicit expressions for the R/T coefficients are available for media with a higher
symmetry, whose symmetry planes are especially oriented with respect to an
interface, see e.g. DALEY and HRON (1977), KEITH and CRAMPIN (1977). In the
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case of general anisotropy, a common method to determine the coefficients is
the numerical solution of the system of equations resulting from the boundary
conditions, see e.g. GAJEWSKI and PŠENČÍK (1987). As in isotropic media, the
problem simplifies considerably if reflection/transmission at a weak contrast in-
terface is considered and if the media surrounding the interface are only
weakly anisotropic.

The assumption of weak contrast interface and of weak anisotropy has
been used by several authors although higher symmetry anisotropy was always
considered. THOMSEN (1993) extended BANIK’s (1987) work and derived the
PP R/T coefficients for a weak contrast interface separating two weakly trans-
versely isotropic media with axes of symmetry perpendicular to the interface,
see also discussion of this formula by TSVANKIN (1996). RUEGER (1996) cor-
rected and generalized Thomsen’s results for PP reflections in planes contain-
ing symmetry axes of transversely isotropic and orthorhombic media so that
media with symmetry axes parallel to the interface could also be considered.
HAUGEN and URSIN (1996) derived PP reflection coefficients in the symmetry
planes of a model containing an interface separating a TI medium with axis of
symmetry perpendicular to the interface from a TI medium with axis of sym-
metry parallel to the interface.

This paper is an extension of the paper by VAVRYČUK and PŠENČÍK (1998)
who derived an approximate formula for the PP wave displacement coefficient
of reflection for a weak contrast interface separating two arbitrary weakly an-
isotropic media. In this paper, in addition to the formula for the reflection
coefficient, the PP wave displacement coefficient of transmission is presented.
Both formulae are obtained by applying the first-order perturbation theory.
Continuous isotropic medium with no discontinuity of parameters of the
medium across the studied interface is considered as a background medium.
The media on both sides of the interface are then perturbed so that the result
is a model composed of two slightly different weakly anisotropic halfspaces.

Accuracy of the approximate formulae is tested on models consisting of a
homogeneous isotropic halfspace over a halfspace filled by a homogeneous
transversely isotropic (TI) material with the horizontal axis of symmetry (the
HTI material). Behavior of the PP R/T coefficients at an interface separating
two TI halfspaces is also shown. The upper halfspace contains a material with
the vertical axis of symmetry (the VTI material), the lower halfspace contains
the HTI material or a material with the inclined axis of symmetry (the ITI
material).

If not specified differently, the Roman lower-case indices attain values 1, 2
and 3, upper-case Roman indices attain only values 1 and 2. The Greek in-
dices run from 1 to 6. Einstein summation convention is used for the repeated
indices.
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2. Basic Formulae

VAVRYČUK and PŠENČÍK (1998) present a detailed derivation of the formula for
the PP reflection coefficient at a weak contrast interface separating two weakly
anisotropic media. Here only a short review of basic steps and formulae is made.

We consider a model consisting of two homogeneous weakly anisotropic
halfspaces separated by an interface with the unit normal �i pointing into the
halfspace, in which an incident wave propagates. We call it the halfspace 1 and
denote its density and the density-normalized elastic parameters � (1) and a (1)

ijkl. The
same parameters in the halfspace 2 are denoted � (2) and a (2)

ijkl. The incident and
generated waves satisfy the boundary conditions at the interface: continuity of the
displacement and the traction vectors. As a consequence of the boundary condi-
tions, we get important relations for the slowness vectors p (N)

i and p (0)
i of the

generated and the incident waves and for the reflection/transmission coefficients
U (N). The superscripts N=1, 2 and 3 correspond to reflected S1, S2 and P wave,
the superscripts N=4, 5 and 6 correspond to transmitted S1, S2 and P wave. The
relation for the slowness vectors has the form

p (N)
i =bi+� (N)�i=p (0)

i − (p (0)
k �k )�i+� (N)�i, (1)

where the quantity � (N) can be determined from the polynomial equation of the
sixth order

det[aijkl (bj+��j )(bl+��l )−�ik ]=0. (2)

The R/T coefficients U (N) are determined by solving the system of six algebraic
equations

U (1)g (1)
i +U (2)g (2)

i +U (3)g (3)
i −U (4)g (4)

i −U (5)g (5)
i −U (6)g (6)

i =−g (0)
i ,

U (1)X (1)
i +U (2)X (2)

i +U (3)X (3)
i −U (4)X (4)

i −U (5)X (5)
i −U (6)X (6)

i =−X (0)
i , (3)

where

X (N)
i =� (1)a (1)

ijkl�jg
(N)
k p (N)

l , N=0, 1, 2, 3,

X (N)
i =� (2)a (2)

ijkl�jg
(N)
k p (N)

l , N=4, 5, 6. (4)

The vectors X (N)
i are the amplitude-normalized traction vectors. Equation (3) can be

rewritten into the matrix form

C��U�=B�, (5)

where C�� is the displacement-stress matrix of the R/T waves, U� is the vector of
the R/T coefficients and B� is the amplitude-normalized displacement-stress vector
of the incident wave.

In each halfspace, the density-normalized elastic parameters and the density are
considered in the form
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a (I)
ijkl=a (I)0

ijkl +�a (I)
ijkl, � (I)=� (I)0+�� (I), I=1, 2. (6)

The symbols a (I)0
ijkl and � (I)0 denote the elastic parameters and the density of the

background isotropic media in both halfspaces. The quantities �a (I)
ijkl and �� (I)

represent small deviations from the isotropic backgrounds.
We now linearize Eq. (5) with respect to the deviations of elastic parameters a (I)

ijkl

and the density � (I) from the average values a� 0
ijkl and �� 0 of the parameters and the

density of the isotropic backgrounds. The average value w� of parameters w (I) is
defined as follows

w� =1
2(w (1)+w (2)). (7)

In this way, we get

C0
���U�=�B�−�C��U0

�. (8)

The symbols C0
�� and U0

� denote the matrix C�� and the vector U�, specified for a
fictitious interface in a continuous isotropic space characterized by the parameters
a� 0

ijkl and the density �� 0. For the incident wave with a unit amplitude, the vector �U�

contains perturbations of three reflection and three transmission coefficients from
their values U0

� in the background isotropic medium. The vector �B� and the matrix
�C�� are the perturbations of the corresponding vector and matrix in Eq. (5). The
linearized reflection/transmission coefficients can be sought in the form U0

�+�U�,
where �U� is given as

�U�= (C0)−1
�� (�B�−�C��U0

� ). (9)

The basic step in making Eq. (9) useful is the inversion of the matrix C0
��.

VAVRYČUK and PŠENČÍK (1997) found the inverted matrix in the form

−
�� 2Yp0

1 cos �
ZS

sin �
2

−p0
1�� cos �

cos �
2�� �� 0

−
p0

1�� sin �
ZS

�� 2(p0
1)2 cos �
ZS

�� 2Yp0
1 sin �

ZS

cos �
2

p0
1�� sin � −

sin �
2�� 0��

−
�� p0

1 cos �
ZS

−
�� 2(p0

1)2 sin �
ZS

�
�

�

�

�

�

�

�

�

�

�

�� 2p0
1

��
0 −

p0
1�� 2Y

ZP

−
�� 2(p0

1)2

ZP

0
1

2�� 0��
�
�

�

�

�

�

�

�

�

�

�

(C0)−1
�� =

−
�� 2Yp0

1 cos �
ZS

−
sin �

2
p0

1�� cos � −
cos �
2�� �0

−
p0

1�� sin �
ZS

�� 2(p0
1)2 cos �
ZS

,

�� 2Yp0
1 sin �

ZS

−
cos �

2
−p0

1�� sin �
sin �
2�� 0��

−
�� p0

1 cos �
ZS

−
�� 2(p0

1)2 sin �
ZS

−
�� 2p0

1

��
0 −

p0
1�� 2Y

ZP

−
�� 2(p0

1)2

ZP

0 −
1

2�� 0��
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where

Y=�� 0(1−2�� 2(p0
1)2), ZP=2�� �� 0�� 2p0

1p0P
3 , ZS=2�� 0�� 3p0

1p0S
3 . (11)

Here p0
1, p0P

3 and p0S
3 denote the x and z components of the slowness vector of the

P and S waves in the background isotropic medium. The angles � and � are angles
of rotation of the polarization vectors of reflected (�) and transmitted (�) S waves
in the planes perpendicular to their rays. The vectors must be rotated in order to
guarantee a small perturbation from the isotropic to the weakly anisotropic
medium. The determination of the angles � and �, of course, complicates the
procedure of the determination of the linearized R/T coefficients. VAVRYČUK and
PŠENČÍK (1998) show that this is not the case for the PP reflection and transmission
coefficients. In the following, we concentrate on these two coefficients. Derivation
of the formulae for the converted waves is left for a next study.

3. PP Wa�e Displacement Coefficients of Reflection and Transmission

The elastic parameters and the density of the isotropic backgrounds in both
halfspaces can be chosen arbitrarily but they should not deviate much from the
elastic parameters and the density of the weakly anisotropic media in the half-
spaces. We choose the elastic parameters in such a way that our results are simply
reducible to the results of previous authors. Specifically, we choose the P- and
S-wave velocities � (I) and � (I) as follows

(� (I))2=A (I)
33 , (� (I))2=A (I)

55 . (12)

In addition to � (I), � (I) and � (I), we introduce the P-wave impedance Z (I) and the
shear modulus G (I),

Z (I)=� (I)� (I), G (I)=� (I)(� (I))2. (13)

The contrast of a parameter w across the interface is denoted by �w and it is
defined as follows

�w=w (2)−w (1). (14)

As VAVRYČUK and PŠENČÍK (1998), we specify the R/T coefficients by the
direction of the phase normal ni of the incident plane wave, specifically by the
angles of the incidence � and the azimuth 	

ni� (cos 	 sin �, sin 	 sin �, cos �)T. (15)

The approximate formula for the PP reflection coefficient RPP (	, �) at an interface
separating two weakly but arbitrarily anisotropic media can be obtained from Eq.
(9) and has the form
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RPP (	, �)=Riso
PP (�)+

1
2
�
��x cos2 	+

�
��y−8

�� 2

�� 2 ��
�

sin2 	

+2
�
�
z−4

�� 2

�� 2 �
�A45

A55

��
cos 	 sin 	

n
sin2 �

+1
2[��x cos4 	+��y sin4 	+��z cos2 	 sin2 	

+2(��16 cos2 	+��26 sin2 	) sin 	 cos 	 ] sin2 � tan2 �. (16)

The symbol Riso
PP (�) in Eq. (16) denotes the weak contrast reflection coefficient at

an interface separating two slightly different isotropic media, see e.g. AKI and
RICHARDS (1980):

Riso
PP (�)=

1
2

�Z
Z� +

1
2
���

�� −4
���

��
�2 �G

G�
n

sin2 �+
1
2

��

�� sin2 � tan2 �. (17)

In addition to averages and differences of the parameters � (I), � (I) and � (I) of the
background media and the angles � and 	, the reflection coefficient depends on
contrasts of eight weak anisotropy (WA) parameters (see PŠENČÍK and GAJEWSKI,
1996) describing the P-wave phase velocity and polarization in weakly anisotropic
media. The WA parameters characterize deviations of properties of the studied
medium from the isotropic background. In isotropic media, the WA parameters
become zero. The total number of the WA parameters is 15. For the P-wave
velocity � specified by Eq. (12), their number reduces to 14 and they are, see
PŠENČÍK and GAJEWSKI (1998):

�x=
A13+2A55−A33

A33

, �y=
A23+2A44−A33

A33

, �z=
A12+2A66−A33

A33

,


x=
A14+2A56

A33

, 
y=
A25+2A46

A33

, 
z=
A36+2A45

A33

,

�15=
A15

A33

, �16=
A16

A33

, �24=
A24

A33

, �26=
A26

A33

, �34=
A34

A33

, �35=
A35

A33

,

�x=
A11−A33

2A33

, �y=
A22−A33

2A33

, �=
A44−A55

2A55,
(18)

Note that in addition to the P-wave WA parameters, the reflection coefficient also
depends on the parameters A45/A55 and �. The symbol � denotes the ‘‘shear-wave
splitting parameter’’ introducted by THOMSEN (1986), see also RUEGER (1996). It is
also of interest to note that the above reflection coefficient is reciprocal, i.e. it yields
the same value for angles �, 	 and �, 	+�. This indicates that the PP displace-
ment coefficient of reflection is proportional to the PP coefficient of reflection of
the square root of the vertical energy flux, see AKI and RICHARDS (1980) and
CHAPMAN (1994).
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Using the same approach as for the derivation of the reflection coefficient,
we obtain the formula for the PP displacement coefficient of transmission. It
reads

TPP (	, �)=Tiso
PP (�)+1

2[��x cos2 	+��y sin2 	+2�
z cos 	 sin 	 ] sin2 �

+2[��35 cos 	+��34 sin 	−�
x cos2 	 sin 	−�
y cos 	 sin2 	

−��15 cos3 	−��24 sin3 	 ] sin3 � cos �

+1
2[��x cos4 	+��y sin4 	+��z cos2 	 sin2 	

+2(��16 cos2 	+��26 sin2 	) sin 	 cos 	 ] sin2 � tan2 �

+ [��x cos4 	+��y sin4 	+��z cos2 	 sin2 	

+2(��16 cos2 	+��26 sin2 	) sin 	 cos 	

−��x cos2 	−��y sin2 	−2�
z cos 	 sin 	 ] sin4 �. (19)

The symbol Tiso
PP (�) denotes the weak contrast transmission coefficient at an

interface separating two isotropic media, see again AKI and RICHARDS

(1980):

Tiso
PP (�)=1−

1
2

�Z
Z� +

1
2

��

�� tan2 �. (20)

The meaning of the other symbols is the same as in (12)–(14) and (18).
By comparing formulae (16) and (19), we can see that the PP reflection

coefficient depends on contrast of only 8 P-wave WA parameters while the PP
transmission coefficient depends on contrast of the complete set of the WA
parameters. The eight WA parameters are the coefficients of the azimuthally
symmetric terms of the expressions for the P-wave phase velocity and polariza-
tion in weakly anisotropic media, see PŠENC̄ÍK and GAJEWSKI (1998). The
remaining WA parameters, which are the coefficients of the azimuthally anti-
symmetric terms, disappear in (16) due to the symmetry of the unconverted
PP reflection. We can also see that the reflection coefficient contains some in-
formation on the vertical shear-wave propagation, see the ‘‘shear-wave split-
ting parameter’’ � in (16), while no such information appears in the formula
for the transmission coefficient. In contrast to the reflection coefficient, the
transmission coefficient is not reciprocal. This indicates that the relation of
the displacement coefficient of transmission to the coefficient related to verti-
cal energy flux is more complicated than in the case of reflection. It con-
firms the well-known fact that the displacement coefficients are generally not
reciprocal.
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4. PP Wa�e R/T Coefficients for Trans�ersely Isotropic Media with a Horizontal
Axis of Symmetry along x Axis

The R/T coefficients (16) and (19) can be applied to any type of anisotropic
media in both halfspaces surrounding the interface. They simplify considerably if
higher symmetry anisotropy is considered. Let us, for example, consider that both
halfspaces are transversely isotropic with horizontal axes of symmetry along the x
axis. This kind of anisotropy is very important since it describes effects of a system
of parallel vertical cracks. For simplicity we consider that the axes of symmetry in
both media are parallel. For such a case, the non-zero density-normalized elastic
parameters satisfy the following relations on both sides of the interface

A33=A22, A66=A55, A13=A12, A23=A33−2A44. (21)

For such a specification, the formulae (16) and (19) reduce to

RPP (	, �)=Riso
PP (�)+

1
2
�
��x cos2 	−8

���
��
�2

�� sin2 	
n

sin2 �

+1
2(��x cos2 	+��x sin2 	) cos2 	 sin2 � tan2 � (22)

and

TPP (	, �)=Tiso
PP (�)+1

2��x cos2 	 sin2 �

+1
2(��x cos2 	+��x sin2 	) cos2 	 sin2 � tan2 �

+ (��x−��x ) cos4 	 sin4 �. (23)

The symbols �x, �x and � are given in Eqs. (18).

5. Test Example

To test the accuracy of the approximate formulae for the R/T coefficients, we
first use the same models as in VAVRYČUK and PŠENČÍK (1998). The halfspace, in
which the incident wave propagates, is isotropic, the other halfspace is HTI with the
axis of symmetry along the x axis. For these models we calculate values of the R/T
coefficients RPP (	, �) and TPP (	, �) using numerical solution of boundary condi-
tions and compare them with values calculated using the approximate formulae (22)
and (23). For the isotropic overburden, the formulae (22) and (23) reduce to

RPP (	, �)=Riso
PP (�)+

1
2
�

� (2)
x cos2 	−8

���
��
�2

� (2) sin2 	
n

sin2 �

+1
2(� (2)

x cos4 	+� (2)
x cos2 	 sin2 	) sin2 � tan2 � (24)

and
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TPP (	, �)=Tiso
PP (�)+1

2� (2)
x cos2 	 sin2 �

+1
2(� (2)

x cos2 	+� (2)
x sin2 	) cos2 	 sin2 � tan2 �

+ (� (2)
x −� (2)

x ) cos4 	 sin4 �. (25)

Note that for the models with isotropic overburden, the R/T coefficients depend
directly on WA parameters of the anisotropic halfspace.

Two isotropic and two TI halfspaces are considered. The P- and S-wave
velocities in the isotropic halfspaces are (A): �=4.0 km/sec, �=2.31 km/sec and
�=2.65 g/cm3; (B): �=3.0 km/sec, �=1.73 km/sec and �=2.2 g/cm3. Anisotropy
of the anisotropic halfspaces is assumed to be caused by a system of vertical parallel
dry cracks, see HUDSON (1981). The P- and S-wave velocities of the host rock are
4.0 km/sec and 2.31 km/sec and the density is 2.6 g/cm3. The aspect ratio is 10−4

and the crack densities are (C): 0.05 and (D): 0.1. The corresponding matrices of
the density-normalized elastic parameters (in GPa) with the axis of symmetry along
the x axis have the form

�
�

�

�

�

�

�

11.96 3.99
15.55

3.99
4.88

15.55

0.00
0.00
0.00
5.33

0.00
0.00
0.00
0.00
4.76

0.00
0.00
0.00
0.00
0.00
4.76

�
�

�

�

�

�

�

in the case C and

�
�

�

�

�

�

�

9.43 3.14
15.27

3.14
4.60

15.27

0.00
0.00
0.00
5.33

0.00
0.00
0.00
0.00
4.25

0.00
0.00
0.00
0.00
0.00
4.25

�
�

�

�

�

�

�

in the case D. Sections of the phase velocity surfaces with the vertical plane
containing axes of symmetry for the cases C (e=0.05) and D (e=0.1) are shown
in Figure 1.

We consider three models a, b and c, see Table 1. In the models a and b, the
phase velocity of the halfspace 1 is for all azimuths higher than the phase velocity
in the halfspace 2. In the model c, the relation is opposite. In all cases, the values
of reflection coefficients start to rise considerably for higher angles of incidence and
the approximate formulae of this paper become inapplicable. From this reason, we
consider the angles of incidence only in the interval (0°, 42°). The values of the
velocities and the density of the background isotropic medium were determined
from formulae (7) and (12). For the used values, see the figure captions.
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Figure 1
Phase velocity sections with the vertical plane containing the symmetry axes of two ‘‘dry crack’’ models

with crack densities e=0.05 (C) and e=0.1 (D).

The test results are displayed in the form of four plots in Figures 2–7. In all the
plots the horizontal axis corresponds to the angle of incidence �, measured in
degrees. The vertical axis corresponds to the azimuth 	, also in degrees. Azimuth
	=0° corresponds to the profile along the axis of symmetry, azimuth 	=90°
corresponds to the profile in the plane perpendicular to the axis of symmetry, i.e.,
in the isotropy plane.

The tests of accuracy of the reflection coefficient have been discussed in
VAVRYČUK and PŠENČÍK (1998). For completeness, we show in Figures 2–4 only
the plots of these results in a different display. Note that in contrast to results
discussed in the above-mentioned paper, no shift of values of approximate coeffi-
cients is made here. Figures 5–7 contain similar plots as Figures 2–4 but for the
transmission coefficients. They are self-explanatory.

A general feature of the presented numerical examples is a higher relative
accuracy of the PP transmission coefficients compared to the reflection coefficients.

Table 1

Models used in test examples. I— isotropic, HTI— trans�ersely isotropic (TI) with
the horizontal axis of symmetry, VTI—TI with the �ertical axis of symmetry,
ITI—TI with the inclined axis of symmetry (30° from the horizontal in the (x, z)

plane). For the description of parameters of models see the text

a b c d e

Halfspace 1 A (I) A (I) B (I) E (VTI) E (VTI)
Halfspace 2 C (HTI) D (HTI) D (HTI) F (HTI) F (ITI)
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Figure 2
The maps of the approximate RPP and Riso

PP reflection coefficients (upper and bottom left), the map of
relative errors of the approximate coefficient (upper right) and the map of the difference RPP−Riso

PP for
the model a of the Table 1. The isotropic halfspace (A): �=4.0 km/sec, �=2.31 km/sec, �=2.65 g/cm3.
The HTI halfspace (C): axis of symmetry along x axis, host rock: �=4.0 km/sec, �=2.31 km/sec,
�=2.60 g/cm3; dry cracks: aspect ratio a=0.0001, crack density e=0.05. Isotropic background:

�� =3.97 km/sec, �� =2.25 km/sec, �� =2.63 g/cm3.
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Figure 3
The same as in Figure 2 but for the model b of the Table 1. The isotropic halfspace (A): �=4.0 km/sec,
�=2.31 km/sec, �=2.65 g/cm3. The HTI halfspace (D): axis of symmetry along x axis, host rock:
�=4.0 km/sec, �=2.31 km/sec, �=2.60 g/cm3; dry cracks: aspect ratio a=0.0001, crack density

e=0.01. Isotropic background: �� =3.95 km/sec, �� =2.19 km/sec, �� =2.63 g/cm3.
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Figure 4
The same as in Figure 2 but for the model c of the Table 1. The isotropic halfspace (B): �=3.0 km/sec,
�=1.73 km/sec, �=2.2 g/cm3. The HTI halfspace (D): axis of symmetry along x axis, host rock:
�=4.0 km/sec, �=2.31 km/sec, �=2.60 g/cm3; dry cracks: aspect ratio a=0.0001, crack density

e=0.1. Isotropic background: �� =3.45 km/sec, �� =1.90 km/sec, �� =2.4 g/cm3.
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Figure 5
The same as in Figure 2 but for the transmission coefficient TPP.
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Figure 6
The same as in Figure 3 but for the transmission coefficient TPP.
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Figure 7
The same as in Figure 4 but for the transmission coefficient TPP.
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Figure 8
Phase velocity sections of the Mesaverde sandstone ((E)—dashed line) and the ‘‘dry crack’’ model

((F)—full line) with the vertical plane containing the symmetry axes.

It is due to the fact that the reflection coefficients are quite small while the
transmission coefficients are close to unity and only vary slightly. We can see that
the accuracy of coefficients remains high even in Figures 4 and 7, which correspond
to a rather strong contrast (up to 25%) and strong anisotropy (nearly 20%).

Finally, we present the approximate RPP and TPP coefficients for more compli-
cated models than considered before. Figure 8 shows phase velocity sections of two
TI materials, E and F, filling the halfspaces in these models. The halfspace 1, in
which incident wave propagates, is filled by Mesaverde immature sandstone (E), see
THOMSEN (1986), which is VTI. Its matrix of density-normalized elastic parameters
(in GPa) has the form

�
�

�

�

�

�

�

22.36 6.36
22.36

8.49
8.49

18.91

0.00
0.00
0.00
6.61

0.00
0.00
0.00
0.00
6.61

0.00
0.00
0.00
0.00
0.00
8.00

�
�

�

�

�

�

�

and the density is �=2.46 g/cm3.
The halfspace 2 is filled by a system of parallel dry cracks (F). The cracks are

vertical so that the halfspace 2 is HTI with the axis of symmetry parallel to the x
axis. The matrix of density-normalized elastic parameters (in GPa) has the form



Figure 9
The maps of the approximate RPP and TPP coefficients for the models d and e of Table 1. The upper
halfspace (E): the VTI Mesaverde sandstone. The lower halfspace: the dry vertical cracks (model d :
upper pictures) exhibiting HTI with the axis of symmetry along the x axis and the dry inclined cracks
(model e : bottom pictures) exhibiting ITI with the axis of symmetry making the angle of 30° with the

x axis within the (x, z) plane. For parameters of both halfspaces, see the text.
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�
�

�

�

�

�

�

18.69 6.20
24.31

6.20
7.60

24.31

0.00
0.00
0.00
8.35

0.00
0.00
0.00
0.00
7.45

0.00
0.00
0.00
0.00
0.00
7.45

�
�

�

�

�

�

�

and the density is �=2.65 g/cm3. In addition to vertical cracks, cracks inclined by
30° are also considered. This configuration corresponds to the axis of symmetry
making the angle of 30° with the x axis in the plane (x, z).

The upper pictures in Figure 9 illustrate the approximate RPP and TPP coeffi-
cients in the model d, see Table 1, with vertical cracks in the halfspace 2. The
bottom pictures in Figure 9 display the same coefficients for the model e with the
inclined cracks in the halfspace 2. We can see that the inclination of cracks has
greater effects on the transmission coefficient. The transmission coefficient also
behaves in both cases more ‘‘anisotropically’’ than the reflection coefficient.

6. Conclusions

Presented approximate plane wave PP displacement coefficients of reflection
and transmission at a weak contrast interface separating two weakly but generally
anisotropic media, give a clear insight into the dependence of these coefficients on
parameters of media surrounding the interface. The coefficients consist of two
parts. The first part is the coefficient for a weak contrast interface separating two
slightly different isotropic media. The second part is due to a perturbation of the
isotropic background. In addition to the angles � and 	, the perturbation depends
linearly on the contrasts of WA parameters but not on the parameters themselves.
The PP reflection coefficient depends on 8; the PP transmission coefficient on 14
P-wave WA parameters (for our choice of the background isotropic medium, 14
WA parameters represent a complete set of the parameters describing the P-wave
phase velocity in a weakly anisotropic medium, see PŠENČÍK and GAJEWSKI, 1998).
We can conclude that similarly as for the phase velocity and polarization vectors of
a P wave propagating in a weakly anisotropic medium, the study of R/T coeffi-
cients can yield only limited information on the elastic parameters of the halfspaces
surrounding the interface. The PP reflection coefficient contains information on
‘‘shear-wave splitting parameter’’ �. The reflection coefficient is reciprocal while the
transmission coefficient is not.

Presented tests show very good performance of the approximate formulae in the
selected region of angles of incidence (0°, 42°) even in cases of rather strong anisotropy
and contrast across the interface. Slightly higher relative errors of reflection coefficients
are caused by the fact that the coefficients in the studied region are rather small.
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Both presented formulae of reflection and transmission coefficients are relatively
simple if we take into account that they describe the case of R/T between two
generally anisotropic media. As their simplified forms derived for higher symmetry
anisotropic media, they will surely find applications in both forward and inverse
seismic modeling.
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PŠENČÍK, I., and GAJEWSKI, D. (1998), Polarization, Phase Velocity and NMO Velocity of qP Wa�es in
Arbitrary Weakly Anisotropic Media, Geophysics, accepted.

RUEGER, A., Analytic description of reflection coefficients in anisotropic media. In EAGE Extended
Abstracts, Vol. 1 (Amsterdam, 1996), P026.

THOMSEN, L. (1986), Weak Elastic Anisotropy, Geophysics 51, 1954–1966.
THOMSEN, L., Weak anisotropic reflections. In Offset-dependent Reflecti�ity—Theory and Practice of

AVO Analysis (eds. Castagna, J. P., and Backus, M. M.) (SEG, Tulsa 1993), pp. 103–111.
TSVANKIN, I. (1996), P-wa�e Signatures and Parameterization of Trans�ersely Isotropic Media: An

O�er�iew, Geophysics 61, 467–483.
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