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The wave quantities needed in constructing wave fields propagating in anisotropic
elastic media are usually calculated as a function of the slowness vector, or of its
direction called the wave normal. In some applications, however, it is desirable to
calculate the wave quantities as a function of the ray direction. In this paper, a method
of calculating the slowness vector for a specified ray direction is proposed. The method is
applicable to general anisotropy of arbitrary strength with arbitrary complex wave
surface. The slowness vector is determined by numerically solving a system of
multivariate polynomial equations of the sixth order. By solving the equations, we
obtain a complete set of slowness vectors corresponding to all wave types and to all
branches of the wave surface including the slowness vectors along the acoustic axes. The
wave surface can be folded to any degree. The system of equations is further specified for
rays shot in the symmetry plane of an orthorhombic medium and for a transversely
isotropic medium. The system is decoupled into two polynomial equations of the fourth
order for the P–SV waves, and into equations for the SH wave, which yield an explicit
closed-form solution. The presented approach is particularly advantageous in
constructing ray fields, ray-theoretical Green functions, wavefronts and wave fields in
strong anisotropy.
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1. Introduction

The phase and group velocities of elastic waves are, generally, different in
anisotropic media. The phase velocity (or its inverse called the slowness)
describes the propagation of plane waves and is directed along the wave normal.
The group velocity determines the signal propagation and energy transport and
is directed along a ray (Červený 2001). The wave quantities required to construct
wave fields are usually calculated as a function of the wave normal. This way is
simple and satisfactory in many cases. Nevertheless, in some applications,
calculating the wave quantities for a specified ray vector is more appropriate and
desirable. Such approach, however, has not yet been fully developed, because it
conceals complications. Whereas the slowness surface (defined by the directional
variation of the slowness) is of the sixth order, the wave surface (defined by the
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Figure 1. (a) Wave and (b) slowness surfaces for the SV wave in a transversely isotropic medium
defined by density-normalized elastic parameters: a11Za22Za33Z6.25, a44Za55Za66Z2.50,
a12Za11K2a66Z1.25, and a13Za23Z5.50. Since the wave surface is triplicate, the ray (dashed
line) crosses the wave surface at three points. The normals to the wave surface at these points
marked by full arrows define the directions of the three slowness vectors.
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directional variation of the group velocity) can be of up to the 150th order
(Fedorov 1968; Musgrave 1970; Helbig 1994). The slowness surface is formed by
three sheets corresponding to three types of waves (P, S1 and S 2), and each wave
quantity is unique for a specified slowness vector and a wave type. However, the
wave surface can be folded (Musgrave 1970; Payton 1983; Every 1986; Wolfe
1995, 1998; Every et al. 1998; Vavryčuk 2003a,b) and several different values of a
wave quantity (including the slowness vector) can correspond to one specified ray
and wave type (see figure 1).

The problem of calculating the phase and group velocities for a specified ray
has been treated by several authors. First, approximate formulae valid under
various symmetries of weak anisotropy have been suggested by Vavryčuk (1997),
Song & Every (2000), Pšenčı́k & Vavryčuk (2002) and Farra (2004). The weak
anisotropy condition is employed by the authors in order to linearize the problem
and make it easier to solve. Second, formulae valid under two-dimensional
anisotropy and derived using the Stroh formalism were suggested by Wang
(1995). Third, the group velocity along a general direction in three-dimensional
strong triclinic anisotropy was calculated by Sharma (2002), who applied
Newton’s method of solving nonlinear simultaneous equations. His approach,
however, encounters difficulties if the wave surface is folded.

In this paper, the problem is solved with the use of a system of three
multivariate polynomial equations of the sixth order. The system allows
calculation of all slowness vectors corresponding to a specified ray direction.
Subsequently, all the other wave quantities can be easily computed. The
approach can find applications in tracing rays, in constructing wavefronts, and in
calculating ray-theoretical Green functions and wave fields in anisotropic media
of arbitrary strength and symmetry (Every & Kim 1994; Wolfe 1998; Červený
2001).
Proc. R. Soc. A (2006)



885Calculation of the slowness vector
2. Slowness surface

The propagation of waves in elastic anisotropic media is described by the
Christoffel equation which reads (Červený 2001, eqn 2.2.35–37)

detðGjkKGdjkÞZ 0: ð2:1Þ

Tensor Gjk is the Christoffel tensor (also called the Christoffel matrix), djk is the
Kronecker delta, and G is the eigenvalue of Gjk. The Christoffel tensor Gjk can be
defined either in terms of the slowness direction n,

GjkðnÞZ aijklninl ; ð2:2Þ

or in terms of slowness vector pZn/c,

GjkðpÞZ aijklpipl ; ð2:3Þ

where aijklZcijkl/r are the density-normalized elastic parameters, cijkl are the
elastic parameters, r is the density of the medium, and c is the phase velocity of
the wave. Tensor Gjk is positive-definite. It has three eigenvalues G, which are
real and positive, and three unit eigenvectors g, called polarization vectors.
Eigenvalues G(n) and G(p) read

GðnÞZ aijklninlgjgk Z c2; ð2:4Þ

GðpÞZ aijklpiplgjgk Z 1: ð2:5Þ

The slowness surface is defined by the set of all slowness vectors p(n) and can
be determined by equation (2.5). The degree of the slowness surface is 6, thus any
straight line intersects the surface at six points at the most. Since, the Christoffel
tensor has three eigenvalues, the slowness surface consists of three sheets
corresponding to three different waves (P, S1 and S 2 waves). The inner sheet
(corresponding to the P wave) must be wholly convex (see Musgrave 1970,
p. 92), but the other sheets (corresponding to the S1 and S 2 waves) can also be
locally concave or saddle shaped. The lines which separate convex, concave and
saddle-shaped areas on the slowness surface are called the parabolic lines (Every
& Kim 1994; Shuvalov & Every 1996, 1997; Vavryčuk 2003b).

The sheets of the P, S1 and S 2 waves can be fully detached, but they can also
touch or intersect each other. Points common to sheets of different waves are
called acoustic axes or singularities (see Khatkevich 1963, 1977; Alshits & Lothe
1979a, 2004; Musgrave 1985; Darinskij 1994; Boulanger & Hayes 1998; Vavryčuk
2001, 2003c). For the singularities, two eigenvalues of the Christoffel tensor
coincide,

G1ðnÞZG2ðnÞsG3ðnÞ; ð2:6Þ

and the tensor is degenerate. Exceptionally, all three eigenvalues can coincide
but this type of singularity is very rare and will not be considered here. In
general, the behaviour of waves is anomalous at the singularity and its vicinity
(Alshits & Lothe 1979b; Shuvalov 1998) and thus the singularities frequently
complicate modelling of waves.
Proc. R. Soc. A (2006)
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3. Wave surface

The group velocity vector vZv(p) satisfies the equation (Červený 2001, eqn
2.2.65)

vi Z
1

2

vGðpÞ
vpi

: ð3:1Þ

The direction N of the group velocity, NZv=
ffiffiffiffiffiffiffiffi
vivi

p
, is called the ray direction or

the ray vector. If we differentiate equation (3.1) using the theorem on implicit
functions, we obtain (Červený 1972, eqn 15; Červený 2001, eqn 3.6.15)

vi Z aijklpl
Djk

D
; ð3:2Þ

where Djk is the matrix of cofactors of D̂jkZGjkKGdjk,

D11 Z ðG22KGÞðG33KGÞKG2
23; D12 ZD21 ZG13G23KG12ðG33KGÞ;

D22 Z ðG11KGÞðG33KGÞKG2
13; D13 ZD31 ZG12G23KG13ðG22KGÞ;

D33 Z ðG11KGÞðG22KGÞKG2
12; D23 ZD32 ZG12G13KG23ðG11KGÞ;

9>>=
>>;

ð3:3Þ

where GjkZGjk(p), GZG(p)Z1 and DZD(p) is defined as

D ZDkk ZD11CD22CD33: ð3:4Þ
The group velocity can be calculated by equation (3.2) only for the so-called
regular directions, which are defined by Ds0. This inequality is equivalent to
the condition of the non-degenerate Christoffel tensor. On the contrary, if DZ0,
the Christoffel tensor is degenerate, and the slowness vector lies along a
singularity. At the singularity, the group velocity is calculated as (Červený 2001,
eqn 3.6.10)

vi Z aijklplgjgk ; ð3:5Þ

where gZg(p) is the polarization vector of the degenerate wave. The polarization
vector is not unique at the singularity, but can be of arbitrary direction in the
plane perpendicular to the polarization vector of the non-degenerate wave.
Polarization vectors near the singularity have anomalous properties, which
depend on the type of singularity.

The wave surface (also called the group velocity surface) is defined by the set
of all group velocity vectors v. They can be parameterized by slowness vector p,
vZv(p), by slowness direction n, vZv(n), or by ray direction N, vZv(N ).
Compared with the slowness surface, the wave surface is much more
complicated. The degree of the wave surface may be significantly higher than
that of the slowness surface (but must be less than 150; see Musgrave 1970,
p. 92). If the slowness sheet of the wave in question contains saddle-shaped or
concave areas, function vZv(N ) is multivalued. This means that many group-
velocity vectors can correspond to one specified ray direction. This effect is
known as the ‘folding’ or the ‘triplication’ of the wave surface. The existence of
folding of the wave surface is conditioned by the existence of parabolic lines on
the slowness surface. The parabolic lines on the slowness surface are mapped on
Proc. R. Soc. A (2006)



887Calculation of the slowness vector
to caustics on the wave surface (also called cusps, cuspidal lines or cuspidal
edges). Triplications and caustics are observed, particularly, near conical and
wedge singularities (see Vavryčuk 2003b).
4. The slowness vector from a ray vector

From equations (3.2) and (3.5), we can calculate ray vector N as a function of
slowness vector p, NZN(p). In this section, we attempt to find the inverse
relation, pZp(N ). We will derive the equations valid for general triclinic
anisotropy and discuss their applicability.
(a ) System of equations

Equation (3.2) can be altered to read

DNiK
1

v
aijklDjkpl Z 0: ð4:1Þ

Taking into account that

vipi Z 1; ð4:2Þ
and consequently,

1

v
Z piNi; ð4:3Þ

we get

DNiKaijklDjkplpmNm Z 0: ð4:4Þ

This equation can be viewed as a system of three linear equations in unknowns
N1, N2 and N3 provided that elastic parameters aijkl and components of the
slowness vector p1, p2 and p3 are known. However, the equation can also be
viewed as a system of three coupled polynomial equations of the sixth order in
three unknowns p1, p2 and p3, provided that elastic parameters aijkl and
components of the ray direction N1, N2 and N3 are known. Since the equation is
invariant to inserting N or KN, it should yield solutions for a ray direction with
both orientations GN.
(b ) Spurious solutions

Equation (4.4) yields not only true slowness vectors for a specified ray
direction, but also some spurious solutions, which must be rejected. First, we
reject complex-valued solutions that correspond to inhomogeneous plane waves.
Second, we have to reject some of the solutions with DZ0. These solutions were
incorporated during the derivation of (4.4), when equation (3.2) was multiplied
by D. Even though all true slowness vectors for a specified ray lie in regular
directions (Ds0), the complete set of solutions of (4.4) will also comprise some
spurious solutions characterized by DZ0. However, we cannot simply scrap all
slowness vectors yielding DZ0, because some of them might be true and
correspond to a singularity. In order to decide whether the solution with DZ0 is
Proc. R. Soc. A (2006)



V. Vavryčuk888
spurious or a true singular solution, we have to proceed in the following way:
first, we calculate the group velocity vector from equation (3.5) and check,
whether equation (4.2) is satisfied. Second, we check whether the calculated
group velocity vector is parallel to the specified ray direction. If equation (4.2) is
satisfied and the group velocity is parallel to the specified ray, the slowness
vector represents a true solution, which is pointed at the singularity. In the other
case, the solution is spurious. Finally, we have also to reject all slowness vectors,
which yield an orientation opposite to the specified ray direction.
5. Anisotropy of higher symmetry

(a ) Orthorhombic anisotropy

Let us specify the previously derived equations for a symmetry plane of
orthorhombic anisotropy (ORT). The elastic parameters of ORT are defined in
two-index notation as follows (see Musgrave 1970, p. 117): a11, a22, a33, a44, a55,
a66, a12, a13, a23. The other elastic parameters are zero. The equations will be
studied for the symmetry plane x1Kx3. Since p2Z0, the system (4.4) of three
equations in three unknowns p1, p2 and p3 reduces to two equations in two
unknowns p1 and p3. The equations read

AðN1p1 CN3p3Þp1p43 CBN1p
4
3CCð2N1p1 CN3p3Þp1p23 C2DðN1p1CN3p3Þp31p23

C2EN1p
2
3 C3FðN1p1CN3p3Þp51CGð3N1p1 C2N3p3Þp31

CHð3N1p1CN3p3Þp1C3N1 Z 0;

2AðN1p1CN3p3Þp21p33CBð2N1p1 C3N3p3Þp33CCðN1p1C2N3p3Þp21p3
CDðN1p1 CN3p3Þp41p3 CEðN1p1C3N3p3Þp3 CGN3p

4
1 C2HN3p

2
1

C3I ðN1p1 CN3p3Þp53 C3N3 Z 0;

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð5:1Þ

where

AZKa11a33a44Ca213a44C2a13a44a55Ka33a55a66;

B Z a33a44 Ca33a55Ca44a55;

C Z a11a33Ca11a44Ka213K2a13a55Ca33a66Ca44a55Ca55a66;

DZKa11a33a66Ka11a44a55Ca213a66C2a13a55a66;

E ZKa33Ka44Ka55;

F ZKa11a55a66;

G Z a11a55Ca11a66Ca55a66;

H ZKa11Ka55Ka66;

I ZKa33a44a55:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð5:2Þ
Proc. R. Soc. A (2006)



889Calculation of the slowness vector
The system of equations can be further simplified. Since two waves are always
polarized in the symmetry plane (the P and SV waves), and the third wave is
always transverse (the SH wave), the system can be decoupled into two systems
of equations: equations for the P–SV waves, and separately for the SH wave. The
equations for the SH wave can be solved explicitly. If we apply the formulae for
the group velocities derived by Musgrave (1970, eqn 9.3.6–9.3.8), we obtain

ðKa11a33Ca213C2a13a55ÞðN1p1CN3p3Þp1p23Cða33Ca55ÞN1p
2
3

Cða11Ca55Þð2N1p1CN3p3Þp1K2a11a55ðN1p1 CN3p3Þp31K2N1 Z 0;

ðKa11a33Ca213C2a13a55ÞðN1p1CN3p3Þp21p3Cða11Ca55ÞN3p
2
1

Cða33Ca55ÞðN1p1 C2N3p3Þp3K2a33a55ðN1p1 CN3p3Þp33K2N3 Z 0;

9>>>>>=
>>>>>;

ð5:3Þ

for the P–SV waves, and

p1 Z

ffiffiffiffiffiffiffi
a44
a66

r
N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a44N
2
1 Ca66N

2
3

q ; p3 Z

ffiffiffiffiffiffiffi
a66
a44

r
N3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a44N
2
1 Ca66N

2
3

q ; ð5:4Þ

for the SH wave.
(b ) Transverse isotropy

Let us assume that the medium is transversely isotropic (TI) with a vertical
axis of symmetry. The elastic parameters are specified in two-index notation as
follows: a11Za22, a33, a44Za55, a66, a13Za23, a12Za11K2a66, the other
parameters being zero. Since the medium is rotationally symmetric about the
vertical axis, it is sufficient to study all quantities and equations in the x1–x3
plane only. Similarly to ORT, the system (4.4) of three equations in three
unknowns p1, p2 and p3 reduces to two equations in two unknowns p1 and p3. The
form of equations is identical to (5.1), but coefficients (5.2) slightly differ:

AZ a44ðKa11a33Ca213C2a13a44Ka33a66Þ;
B Z a44ð2a33Ca44Þ;

C Z a11a33Ca11a44Ka213K2a13a44Ca33a66Ca244Ca44a66;

D ZKa11a33a66Ka11a
2
44Ca213a66C2a13a44a66;

E ZKa33K2a44;

F ZKa11a44a66;

G Z a11a44Ca11a66Ca44a66;

H ZKa11Ka44Ka66;

I ZKa33a
2
44:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

ð5:5Þ

Also, for TI, the system of equations can be further simplified. As for
orthorhombic media in a symmetry plane, the system can be decoupled into two
systems of equations: equations for the P–SV waves, and separately for the
Proc. R. Soc. A (2006)



V. Vavryčuk890
SH wave. If we apply the formulae for the group velocities derived by Musgrave
(1970, eqn 8.2.2a, 8.2.8, 8.2.9), we obtain

ðKa11a33Ca213C2a13a44ÞðN1p1CN3p3Þp1p23 Cða33 Ca44ÞN1p
2
3

Cða11Ca44Þð2N1p1 CN3p3Þp1K2a11a44ðN1p1 CN3p3Þp31K2N1 Z 0;

ðKa11a33Ca213C2a13a44ÞðN1p1CN3p3Þp21p3 Cða11 Ca44ÞN3p
2
1

Cða33Ca44ÞðN1p1C2N3p3Þp3K2a33a44ðN1p1 CN3p3Þp33K2N3 Z 0;

9>>>>>=
>>>>>;

ð5:6Þ

for the P–SV waves, and

p1 Z

ffiffiffiffiffiffiffi
a44
a66

r
N1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a44N
2
1 Ca66N

2
3

q ; p3 Z

ffiffiffiffiffiffiffi
a66
a44

r
N3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a44N
2
1 Ca66N

2
3

q ; ð5:7Þ

for the SH wave. Similar formulae can be derived also for tetragonal and cubic
symmetries.
6. Numerical procedure

Equations (4.4), (5.3) and (5.6) represent systems of multivariate polynomial
equations, which can be solved numerically using, for example, the MATHE-
MATICA software package. We obtain a set of real- and complex-valued
slowness vectors p. We reject all complex-valued solutions. Then we calculate
the group velocity vectors v corresponding to all real-valued slowness vectors p
using equation (3.5). We select only those solutions for which the following
conditions are satisfied:

pivi Z 1 and
Nivi
v

Z 1; ð6:1Þ

where vZ
ffiffiffiffiffiffiffiffi
vivi

p
is the group velocity. Obviously, the conditions in (6.1) can only

be satisfied approximately, i.e. within the precision of the procedure for
calculating the roots of the multivariate polynomial equations. Using equation
(6.1), we also skip the solutions corresponding to the opposite orientation of the
ray. Finally, we have to skip all multiplicities in the solutions. Once the set of
true slowness vectors is known, we can trace rays or calculate all other wave
quantities necessary for constructing wave fields such as phase velocities,
polarization vectors, wave metric tensor (Červený 2002; Vavryčuk 2003b) or the
Gaussian curvatures of the slowness and wave surfaces (Klimeš 2002).

Equation (4.4) also has some limitations. First, it cannot be applied to
calculating slowness vectors at conical points of the wave surface, when an
infinite set of slowness vectors corresponds to a single ray direction. Second, the
equation is not suitable for calculating the slowness vectors under extremely
weak anisotropy. In this case, the medium is closely degenerate (D/0), and the
solution can be distorted by numerical errors. Instead, a modified approach
should be applied such as iterations, or the linearized formulae obtained from the
perturbation theory.
Proc. R. Soc. A (2006)
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Figure 2. The (a) wave and (b) slowness surfaces for the SV wave in the Bazhenov shale. For elastic
parameters, see the text.
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7. Example

The efficiency of the procedure is exemplified on tracing rays generated by a
point source situated in a vertically inhomogeneous TI medium with a vertical
axis of symmetry. The TI medium is used just for simplicity and clarity of the
interpretation of the numerical results. Even though the example is very simple
and confined to two-dimensions only, the anisotropy displays complexities such
as singularities on the slowness surface and triplications on the wave surface,
hence the example is complex enough to demonstrate the efficiency of the
proposed approach. Obviously, the approach can be applied, not only to two-
dimensional, but also to truly three-dimensional media, but the interpretation
and presentation of the results would then be more involved.

In the presented example, the approach is applied in order to compare ray
fields calculated by specifying two different initial conditions of rays at the
source: the rays specified by initial slowness directions n0 and by initial ray
directions N0. The comparison will show that the standard ray tracing
procedure, which utilizes the specification of the initial slowness directions, can
produce ray fields with a rather non-uniform distribution of rays, while the
specification of the initial ray directions produces a distribution of rays which is
more uniform and thus more suitable for a wavefront construction.

As the medium, we assume the Bazhenov shale (Vernik & Liu 1997, appendix A,
12.507 ft) with the following elastic parameters (in km2 sK2): a11Za22Z23.52,
a33Z10.89, a44Za55Z5.29, a66Z9.42, a12Z4.69, a13Za23Z9.46. These values
characterize the medium at the source, which is situated at a depth of 1 km. The
elastic parameters at other depths are calculated as

akl Z aklðz0Þ½1C3ðzKz0Þ�2; ð7:1Þ

where 3Z0.3 kmK1. The medium is strongly anisotropic with anisotropy strength
of 38.0, 26.1 and 28.6% for P, SV and SH waves, respectively. The anisotropy
Proc. R. Soc. A (2006)
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Figure 3. The ray field generated by a point source in the Bazhenov shale. (a) Rays are shot with
an equidistant step of 158 in initial ray directions. (b) Rays are shot with an equidistant step of 158
in initial slowness vector directions. (c) A close-up view of the ray field shown in (a). (d) A close-up
view of the ray field shown in (b).

V. Vavryčuk892
strength is calculated as

a Z 200%
cmaxKcmin

cmaxCcmin
; ð7:2Þ

where cmax and cmin are the maximum and minimum phase velocities of the wave.
The medium displays a kiss singularity along the vertical axis. Since standard ray-
tracing algorithms may fail for rays near the singularity, we use the ray-tracing
algorithm proposed by Vavryčuk (2001, 2003c). This algorithm is suitable for
tracing rays in strongly as well as weakly anisotropic media and in all kinds of
singularities and their vicinities.

We will study the rays of the SV wave. The SV-wave surface displays two
triplications: one is near the symmetry axis, and the other is near the symmetry
plane (see figure 2). The triplication near the symmetry axis is more noticeable.
The rays are shot from the source in the x1–x3 plane in the angular interval
Proc. R. Soc. A (2006)
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Figure 4. A detailed view of the (a) wave and (b) slowness surfaces for the SV wave in the
Bazhenov shale. The full dot marks the kiss singularity. The full arrows mark the slowness
direction (a) or slowness vectors (b). The dashed arrow marks the ray direction. Three slowness
vectors correspond to the same ray direction, but only one of them points at the singularity.
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h08, 3608i in steps of 158. Figure 3a shows rays shot with an equidistant step of
initial directions of the ray, figure 3b shows rays with an equidistant step of
initial directions of the slowness vector. In both cases the angular step is 158.
The figures show a very irregular distribution of rays when the equidistant
angular step in slowness directions is imposed (see figure 3b). The rays
concentrate in directions close to the vertical and horizontal axes. The other
directions are covered very sparsely. If we perform the ray tracing and impose an
equidistant step in initial directions of rays, we obtain a more regular and dense
ray field (see figure 3a). This is even clearer in figure 3c,d, which depict rays in
the vicinity of the source. Figure 3c also shows that for some initial directions, we
trace not one but three different rays. This happens for rays along the vertical
axis and for rays deviated from the vertical axis by G158. For these directions,
the rays hit the triplicate wave surface, and correspond to its three different
branches. A similar situation occurs for rays shot in the horizontal plane, but the
triplication in the horizontal plane is almost indistinguishable and the three rays
coincide.

Figure 3 also shows that the algorithm is capable of tracing the singular rays.
As mentioned, the studied TI medium has the kiss singularity along the vertical
axis. Figure 3a shows six rays shot from the source which have the vertical initial
direction. Three rays go up and three rays go down. From the six rays, four are
regular and two are singular. The regular rays start to deviate gradually from the
vertical axis, the singular rays are vertical straight lines. Figure 4 provides a
detailed view of the slowness and wave surfaces near the upper kiss singularity,
and the correspondence between the vertical rays and the slowness vectors. The
singular ray corresponds to the vertical slowness vector. The other two vertical
rays are regular and have slowness vectors, which do not point at the singularity.
Since the singular ray is defined by the vertical ray vector and the vertical
slowness vector, the vertical gradient of elastic parameters cannot change their
direction. Consequently, the singular ray is the vertical straight line. The initial
directions of the regular rays are defined by the vertical ray vectors and by
inclined slowness vectors, and the vertical gradient of elastic parameters causes
the rays to bend gradually (see figure 5).
Proc. R. Soc. A (2006)
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Figure 5. A detailed view of rays shot from the source in the vertical direction. The source is
marked by the asterisk. Note that the horizontal and vertical scales are different in order to better
visualize the differences in the rays.
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8. Conclusions

The calculation of a slowness vector from a specified ray direction in general
anisotropy of arbitrary strength leads to solving a system of three coupled
equations of the sixth order in three unknowns. Such system can be solved
numerically using, for example, the MATHEMATICA software package. The
system of equations is simplified for a higher symmetry of anisotropy.
In transverse isotropy and in the symmetry plane of orthorhombic, tetragonal
or cubic anisotropy, the system can be further decoupled into equations for the
P–SV waves and into equations for the SH wave. The system of equations for the
P–SV waves consists of two equations of the fourth order in two unknowns. For
the SH wave, an explicit closed-form solution can be obtained.

The basic advantage of the proposed approach is that we obtain a full set of
slowness vectors corresponding to a specified ray even in the case of complex
wave surface with the folding and multiple cusp edges. From the slowness
vectors, we can calculate all wave quantities needed for modelling waves in
anisotropic media. The approach works properly in regular directions as well as
in all kinds of singularities (kiss, intersection, wedge or conical singularity). The
approach is not applicable to conical points on the wave surface when an infinite
set of slowness vectors correspond to a single ray direction. Also, for extremely
weak anisotropy, the approach can yield distorted results due to numerical
errors. In this case, it is more appropriate to apply iterations or the linearized
formulae obtained from the perturbation theory.

I thank Klaus Helbig and one anonymous referee for their comments. The work was supported by
the Consortium Project SW3D ‘Seismic waves in complex 3-D structures’, and by the Grant
Agency of the Academy of Sciences of the Czech Republic, grant A3012309.
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Vavryčuk, V. 2003b Parabolic lines and caustics in homogeneous weakly anisotropic media.

Geophys. J. Int. 152, 318–334. (doi:10.1046/j.1365-246X.2003.01845.x)
Proc. R. Soc. A (2006)

http://dx.doi.org/doi:10.1016/j.wavemoti.2004.02.004
http://dx.doi.org/doi:10.1098/rspa.1998.0261
http://dx.doi.org/doi:10.1023/A:1019599204028
http://dx.doi.org/doi:10.1103/PhysRevB.34.2852
http://dx.doi.org/doi:10.1121/1.409860
http://dx.doi.org/doi:10.1016/S0041-624X(97)00039-5
http://dx.doi.org/doi:10.1023/B:SGEG.0000015592.36894.3b
http://dx.doi.org/doi:10.1023/A:1019551320867
http://dx.doi.org/doi:10.1023/A:1021189724526
http://dx.doi.org/doi:10.1023/A:1021189724526
http://dx.doi.org/doi:10.1016/S0020-7683(02)00254-8
http://dx.doi.org/doi:10.1098/rspa.1998.0286
http://dx.doi.org/doi:10.1103/PhysRevB.53.14906
http://dx.doi.org/doi:10.1121/1.418251
http://dx.doi.org/doi:10.1088/0022-3727/33/17/101
http://dx.doi.org/doi:10.1088/0022-3727/33/17/101
http://dx.doi.org/doi:10.1046/j.0956-540x.2001.01387.x
http://dx.doi.org/doi:10.1103/PhysRevB.68.054107
http://dx.doi.org/doi:10.1046/j.1365-246X.2003.01845.x


V. Vavryčuk896
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