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An asymptotic Green’s function in homogeneous anisotropic viscoelastic media is derived.
The Green’s function in viscoelastic media is formally similar to that in elastic media, but
its computation is more involved. The stationary slowness vector is, in general, complex
valued and inhomogeneous. Its computation involves finding two independent real-valued
unit vectors which specify the directions of its real and imaginary parts and can be done
either by iterations or by solving a system of coupled polynomial equations. When the
stationary slowness direction is found, all quantities standing in the Green’s function such
as the slowness vector, polarization vector, phase and energy velocities and principal
curvatures of the slowness surface can readily be calculated.
The formulae for the exact and asymptotic Green’s functions are numerically checked

against closed-form solutions for isotropic and simple anisotropic, elastic and viscoelastic
models. The calculations confirm that the formulae and developed numerical codes are
correct. The computation of the P-wave Green’s function in two realistic materials with a
rather strong anisotropy and absorption indicates that the asymptotic Green’s function is
accurate at distances greater than several wavelengths from the source. The error in the
modulus reaches at most 4% at distances greater than 15 wavelengths from the source.
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1. Introduction

The theory of waves propagating in viscoelastic media has become increasingly
important and intensively developed in recent years (Auld 1973; Caviglia &
Morro 1992; Carcione 2001). This concerns studying the basic attributes of
homogeneous and inhomogeneous plane waves such as slowness and attenuation
vectors (Červený & Pšenčı́k 2005), deriving formulae for linearized attenuation
coefficients (Zhu & Tsvankin 2006, 2007), studying acoustic axes (Shuvalov &
Scott 1999; Shuvalov 2001), energy flux (Carcione & Cavallini 1993; Deschamps
et al. 1997; Boulanger 1998; Červený & Pšenčı́k 2006) and reflection/
transmission coefficients at a plane interface between two homogeneous
viscoelastic halfspaces (Borcherdt 1977, 1982; Krebes 1983; Richards 1984;
Wennerberg 1985; Nechtschein & Hron 1996; Brokešová 2001; Daley & Krebes
2004). In contrast to plane-wave propagation, considerably less attention has
been paid to the theory of waves excited by point or finite sources in isotropic
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V. Vavryčuk2690
and anisotropic viscoelastic media (Carcione 1994, 2001). So far, such wave fields
are usually computed using numerical methods that directly solve the wave
equation (Carcione 1990; Saenger & Bohlen 2004; Moczo et al. 2007).

In this paper, I will study the waves generated by point sources. I generalize
the formula for the exact Green’s function in homogeneous anisotropic elastic
media (Buchwald 1959; Burridge 1967; Willis 1980; Norris 1994; Wang &
Achenbach 1994) to viscoelastic media and present closed-form solutions of the
exact viscoelastic Green’s function for isotropy and three simple types of
anisotropy. Further, I derive the asymptotic Green’s function valid for high-
frequency signals at distances far from the source and define wave fronts and
other asymptotic quantities such as ray velocity and ray attenuation. In
numerical modelling, I verify the correctness of the analytical, exact numerical
and asymptotic Green’s functions, and demonstrate their accuracy and
efficiency.

In the following, real and imaginary parts of complex-valued quantities are
denoted by superscripts R and I, respectively. A complex-conjugate quantity is
denoted by an asterisk. The vector direction of a complex-valued vector v is
calculated as v=

ffiffiffiffiffiffiffiffi
v$v

p
(the normalization condition v=

ffiffiffiffiffiffiffiffiffiffi
v$v�p

is not used because
it complicates generalizing some of the real-valued equations to complex-valued
ones). If any complex-valued vector is defined by a real-valued direction, it is
called homogeneous, and if defined by a complex-valued direction, it is called
inhomogeneous. In formulae, the Einstein summation convention is used for
repeated subscripts.
2. Anisotropic viscoelastic medium

Let us assume a time-harmonic plane wave described by the displacement vector

uiðx; tÞZUðxÞgi expKiuðtKp$xÞ½ �; ð2:1Þ

where x is the position vector; U is the amplitude; g is the unit polarization
vector; u is the circular frequency; and t is the time. Vector p is the slowness
vector defined as pZn/c, where n is the slowness direction and c is the phase
velocity. The plane wave propagates in the viscoelastic medium defined by the
following stress–strain relation:

sij Z cRijklekl Chijkl _ekl ; ð2:2Þ

where sij are the components of the stress tensor; ekl are the components of the
strain tensor; _ekl is the time derivative of ekl; and cRijkl and hijkl are the components
of the elasticity and viscosity tensors, respectively. These tensors must be
positive definite to ensure that strain energy W and dissipation energy rate R are
positive,

W Z 1

2
cRijkleijeklO0 and RZ 1

2
hijkl _eij _eklO0: ð2:3Þ

Taking into account that _ekl is expressed for the time-harmonic wave (2.1) as

_ekl ZKiuekl ; ð2:4Þ
Proc. R. Soc. A (2007)



2691Green’s function in viscoelastic media
the stress–strain relation (2.2) can be formally written in the frequency domain
in a form identical with that for elastic media, where the real-valued elasticity
tensor cRijkl is substituted by the complex-valued frequency-dependent viscoelas-
ticity tensor cijkl ,

cijkl Z cRijklKiuhijkl : ð2:5Þ

This tensor is used to construct the complex-valued density-normalized
viscoelasticity tensor aijklZcijkl=r, and subsequently the complex-valued
Christoffel tensor Gjk, defined alternatively in terms of slowness direction n,

GjkðnÞZ aijklninl ; ð2:6Þ

or slowness vector p,

GjkðpÞZ aijklpipl : ð2:7Þ

Slowness direction n is real valued for homogeneous waves, but complex valued
for inhomogeneous waves.

The Christoffel tensor Gjk has three eigenvalues and three eigenvectors, which
define the properties of three plane waves propagating in anisotropic media.
Eigenvalues G(n) and G(p) read

GðnÞZ aijklninlgjgk Z c2 and ð2:8Þ

GðpÞZ aijklpiplgjgk Z 1 ð2:9Þ

and define phase velocity c and slowness vector p as a function of slowness direction
n. The eigenvectors define polarization vectors g. The polarization vectors
are normalized so that g$gZ1. Note that when applying condition g$g�Z1,
equations (2.8) and (2.9) would have a different form also containing complex-
conjugate quantities.

Using the eigenvalue G(p), we define the energy velocity vector as

vi Z
1

2

vG

vpi
Z aijklplgjgk ; ð2:10Þ

which is called the group velocity vector in elastic media. Vectors v and p are
related by the equation v$pZ1. The slowness vector, phase velocity, energy
velocity and the polarization vectors are in general complex valued.
3. Exact Green’s function

(a ) Elastic medium

The exact elastodynamic Green’s function in unbounded, homogeneous,
anisotropic, perfectly elastic media can be expressed in the frequency domain
as the sum of regular and singular terms, Gr

klðx;uÞ and Gs
klðx;uÞ, as follows
Proc. R. Soc. A (2007)
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(Norris 1994, eqn. (3.22); Wang & Achenbach 1994, eqns (17)–(21)):

Gexact
kl ðx;uÞZGr

klðx;uÞCGs
klðxÞ; ð3:1Þ

Gr
klðx;uÞZ

iu

8p2r

X3
MZ1

ð
SðnÞ
n$xO0

g
ðMÞ
k g

ðMÞ
l

cðMÞ� �3 exp iu
n$x

cðMÞ

� �
dSðnÞ and ð3:2Þ

Gs
klðxÞZ

1

8p2r

X3
MZ1

ð
SðnÞ

g
ðM Þ
k g

ðM Þ
l

ðcðM ÞÞ2
dðn$xÞ dSðnÞ; ð3:3Þ

where the superscript MZ1, 2 and 3 denotes the type of wave (P, S1 and S2);
gZg(n) is the unit polarization vector; cZc(n) is the phase velocity; r is the
density of the medium; u is the circular frequency; xZNr is the position vector; r
is the distance of the observation point from the source; N is the ray vector; n is
the slowness direction; and S(n) is the unit sphere. The regular term is integrated
over a hemisphere, defined by n$xO0. The singular term is integrated over a unit
circle defined by n$xZ0. The reduction of the surface integral to a line integral
in the singular term is due to the Dirac delta function d(n$x) in the integrand.
Since the singular term does not depend on frequency u, it physically
corresponds to the static Green’s function.

All quantities in (3.1)–(3.3) are real valued, including slowness direction n.
Hence, the regular part of the exact Green’s function is calculated as a
superposition of homogeneous plane waves. This is the essential advantage of
formulae (3.1)–(3.3) compared with other formulae for the Green’s function
which also involve inhomogeneous waves specified by a complex-valued slowness
direction n (e.g. the Green’s function in isotropic media calculated using the
Weyl integral; see Aki & Richards 2002, §6.1).

Formulae (3.1)–(3.3) can be derived in several alternative ways. Probably, the
most straightforward way is to solve the elastodynamic equation in the slowness-
frequency domain to obtain Gklðp;uÞ. Subsequently, Gklðx;uÞ is calculated by
applying the inverse three-dimensional Fourier transform (see Mura 1987; Norris

1994; Červený 2001), which physically corresponds to a superposition of
homogeneous plane waves propagating in an arbitrary direction with an
arbitrary phase velocity. Using the residuum theorem, the volume integral is
further reduced to a surface integral representing a superposition of homogeneous
plane waves propagating in an arbitrary direction, but with the phase velocity
satisfying equation (2.8).

The integration in (3.2) and (3.3) can also be performed over slowness surface
S(p). Taking into account the relation between surface elements dS(n) and dS(p)
(see Burridge 1967),

n$N dSðpÞZ p2 dSðnÞ ð3:4Þ

and the relation between the phase and energy velocities c and v,

n$N Z
c

v
; ð3:5Þ
Proc. R. Soc. A (2007)



2693Green’s function in viscoelastic media
we can put for a particular wave (P, S1 or S2)

Gr
klðx;uÞZ

iu

8p2r

ð
SðpÞ

n$xO0

gkgl
v

expðiup$xÞ dSðpÞ and ð3:6Þ

Gs
klðxÞZ

1

8p2r

ð
SðpÞ

gkgl
v

dðp$xÞ dSðpÞ: ð3:7Þ

The complete Green’s function is then a sum of contributions of all three waves.
(b ) Viscoelastic medium

The Green’s function in viscoelastic media is derived in a quite analogous
way as in elastic media. The Green’s function is calculated by applying the
inverse three-dimensional Fourier transform, which physically corresponds to
a superposition of homogeneous plane waves propagating in an arbitrary
direction with an arbitrary (real-valued) phase velocity. Using the residuum
theorem, the volume integral is reduced to a surface integral representing a
superposition of homogeneous plane waves propagating in an arbitrary
direction, but with complex-valued velocities satisfying equation (2.8) and
with polarization vectors satisfying the Christoffel equation. Hence, the
Green’s function is expressed by exactly the same formulae as formulae (3.1)–
(3.3), (3.6) and (3.7) derived for elastic media. The only difference is that
some quantities in the integrands become complex valued and frequency
dependent. This concerns phase velocity c, slowness vector p, energy velocity
v and polarization vector g. Slowness direction n, ray direction N, position
vector x and density r remain real valued and do not depend on real-valued
frequency u. Since some quantities in (3.3) and (3.7) are frequency dependent,
the singular term of the Green’s function becomes also frequency dependent
Gs

klZGs
klðx;uÞ:

Emphasize that p is a homogeneous complex-valued vector; hence its direction
n in (3.1)–(3.3) remains real valued. This is in agreement with the above
statement that the exact Green’s function in viscoelastic media is calculated as a
superposition of homogeneous plane waves, similarly as in elastic media.
4. Asymptotic Green’s function

Since the exact Green’s function is expressed in terms of complicated integrals, it
is advantageous to evaluate the Green’s function asymptotically. Physically, it
corresponds to studying the high-frequency Green’s function in the far field, i.e.
at distances far from the source with respect to the predominant wavelength of
the wave field. The asymptotic Green’s function significantly simplifies, because
the singular term (3.7) is negligible for high frequencies, and the regular term
(3.6) can be calculated using the stationary phase method for the elastic medium
or the steepest descent method for the viscoelastic medium.
Proc. R. Soc. A (2007)
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(a ) Elastic medium

Formula (3.6) can be expressed as

Gr
klðx;uÞZ

iu

8p2r

ð
SðpÞ

qðpÞO0

PklðpÞexpðilqðpÞÞ dSðpÞ; ð4:1Þ

where

PklðpÞZ
gkðpÞglðpÞ

vðpÞ and qðpÞZp$N : ð4:2Þ

Functions PklðpÞ and q(p) are assumed to be smooth, and the parameter lZur is
large and positive. Phase q(p) is positive inside the integration area and zero at
its boundary. Expanding phase function q(p) near stationary point p0, defined by

vqðpÞ
vs1

���
pZp0

Z 0;
vqðpÞ
vs2

���
pZp0

Z 0; ð4:3Þ

yields

qðpÞZp0$NK1

2
K1s

2
1 CK2s

2
2

� �
; ð4:4Þ

where K1 and K2 are the principal curvatures of the slowness surface at p0, and s1
and s2 are the local coordinates defined on the slowness surface. The coordinate
axes have their origin at p0 and point along the principal curvatures of the
slowness surface at p0. The third coordinate axis s3 is normal to the slowness
surface at p0 and parallel to N.

Applying the stationary phase method to integral (4.1), we obtain the
asymptotic Green’s function Gasym

kl ðx;uÞ in the following form (Buchwald 1959;
Burridge 1967; Every & Kim 1994; Červený 2001, eqn. (2.5.75)):

Gasym
kl ðx;uÞZ 1

4pr

gkgl

v
ffiffiffiffiffiffiffi
Kj j

p 1

r
exp i

p

2
s0C iup0$x

� �
; ð4:5Þ

where KZK1K2 is the Gaussian curvature of the slowness surface, and s0 is
defined as

s0 Z 1K1

2
sgn K1K

1

2
sgn K2: ð4:6Þ

Both the principal curvatures K1 and K2 are positive for a convex surface,
negative for a concave surface, and of opposite signs for a saddle-shaped surface.
All quantities dependent on p in (4.5) are taken at stationary point p0. Formula
(4.5) works for all directions except for singularities on the slowness surface and
cusp edges on the wave front, where a more involved approach is required
(Vavryčuk 1999, 2002; Gridin 2000).
(b ) Viscoelastic medium

Since phase velocity c is complex valued in viscoelastic media, the slowness
vectorp and functionsPklðpÞ and q(p) in (4.1) are also complex valued. Parameter l
is real, large and positive. The integration in (4.1) is over complex-valued slowness
Proc. R. Soc. A (2007)
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surface S(p). The stationary point p0 on S(p) is defined by

vqðpÞ
vs1

���
pZp0

Z 0;
vqðpÞ
vs2

���
pZp0

Z 0; ð4:7Þ

where s1 and s2 are the complex-valued local coordinates defined on S(p). The third
complex-valued coordinate axis s3 is normal to the slowness surface at p0 and
parallel to N. Since N is a real-valued vector, the s3-axis is homogeneous.
Consequently, the energy velocity vector,

v Z vN Z
1

2

vG

vp

���
pZp0

ð4:8Þ

must also be homogeneous. Expanding phase function q(p) near stationary pointp0
yields

qðpÞZp0$NK1

2
K1s

2
1CK2s

2
2

� �
; ð4:9Þ

where K1 and K2 are the complex-valued principal curvatures of the slowness
surface at p0. Applying the steepest descent method (Ben-Menahem& Singh 1981,
appendix E) to integral (4.1), we obtain

Gasym
kl ðx;uÞZ iu

8p2r
Pklðp0Þ

ffiffiffiffiffiffiffiffiffiffi
2p

ilK1

s ffiffiffiffiffiffiffiffiffiffi
2p

ilK2

s
expðilqðp0ÞÞ ð4:10Þ

and finally

Gasym
kl ðx;uÞZ 1

4pr

gkgl

v
ffiffiffiffiffiffiffi
jK j

p 1

r
expðis0C iup0$xÞ; ð4:11Þ

where

s0 ZK
1

2
ð41 C42Þ; K

3

2
p%41!

1

2
p; K

3

2
p%42!

1

2
p:

Angles 41 and 42 define the phases of the principal curvaturesK1 andK2, and Kj j is
themodulus of the Gaussian curvatureKZK1K2. All quantities dependent on p in
(4.11) are taken at stationary point p0. Position vector x, distance r, frequency u,
phase angles 41 and 42 and density r are real valued, but polarization vector g,
Gaussian curvature K, principal curvatures K1 and K2, energy velocity v and
slowness vectorp0 are complex valued. Similarly as for elasticmedia, formula (4.11)
fails in singularities.

Decomposing the energy velocity v into real and imaginary parts, vR and v I,
the exponential term in (4.11) becomes

expðiup0$xÞZ exp iu
r

v

� �
Z expðKuArayrÞexp iu

r

V ray

� �
; ð4:12Þ
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where

V ray Z
vv�

vR
Z

vRvRCvIvI

vR
and ð4:13Þ

Aray ZK
vI

vv�
ZK

vI

vRvRCvIvI
: ð4:14Þ

The asterisk in (4.13) and (4.14) indicates a complex-conjugate quantity.
Consequently, the Green’s function reads

Gasym
kl ðx;uÞZ 1

4pr

gkgl

v
ffiffiffiffiffiffiffi
jK j

p expðKuArayrÞ
r

exp is0 C iu
r

V ray

� �
: ð4:15Þ

Since V ray and Aray control the propagation velocity and attenuation along a ray,
I will refer to them as the ray velocity and ray attenuation, respectively.
5. Numerical procedure

(a ) Stationary point

Determining stationary point p0 is the crucial and the most complicated step in
calculating the asymptotic quantities in anisotropic viscoelastic media. Although
the exact Green’s function (3.1)–(3.3) is calculated as a superposition of
homogeneous plane waves, the asymptotic Green’s function is calculated at a
stationary point which corresponds to an inhomogeneous plane wave. Hence, the
slowness direction at the stationary point is no longer real valued, but it is
generally complex valued.

The complex-valued stationary point p0 can be determined either by iterations
or by solving a system of polynomial equations. The iterative procedure is fast
and works well provided the wave front is free of triplications. The procedure is
based on seeking a complex-valued slowness direction n0, for which energy
velocity v is homogeneous and points along a specified ray vector N. This
represents an inversion for four unknown angles: two angles define the real part
and two others define the imaginary part of n0. We can consider the modulus of
the complex-valued deviation between the given and predicted ray vectors as the
misfit function. The inversion is nonlinear and can be performed using standard
methods (Press et al. 2002). If the wave front displays triplications,
determination of stationary slowness p0 is more involved. When using iterations,
we have to be careful to find all slowness vectors corresponding to a given ray,
which may sometimes be tricky. The other possibility is to follow Vavryčuk
(2006a) and solve a system of polynomial equations for the unknown components
of p0.

(b ) Principal curvatures of the slowness surface

The principal curvatures of the slowness surface K1 and K2 can conveniently
be calculated using the wave metric tensor H (Vavryčuk 2003, eqn. (9)),

Hij Z
1

2

v2G

vpivpj
Z

vvi
vpj

; ð5:1Þ
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which is expressed for the P wave as follows (Vavryčuk 2003, eqn. (17)):

H
ð1Þ
il Z aijklg

ð1Þ
j g

ð1Þ
k C

v
ð12Þ
i v

ð12Þ
l

Gð1ÞKGð2Þ C
v
ð13Þ
i v

ð13Þ
l

Gð1ÞKGð3Þ ; ð5:2Þ

v
ðMNÞ
i Z aijklpl g

ðMÞ
j g

ðNÞ
k Cg

ðN Þ
j g

ðM Þ
k

� �
and ð5:3Þ

GðMÞ Z aijklpiplg
ðMÞ
j g

ðMÞ
k ; ð5:4Þ

where superscripts M and N denote the type of wave (P, S1 or S2). The wave
metric tensors of the S1 or S2 waves are analogous (see Vavryčuk 2003, eqns (18)
and (19)). The diagonal form of H reads (Klimeš 2002)

Hdiag Z v

K1

K2

v

2
64

3
75; ð5:5Þ

hence principal curvatures K1 and K2 can directly be calculated from the
eigenvalues of H. Subsequently, Gaussian curvature K is calculated as (Klimeš
2002, eqn. (45))

K Z
1

v4
detðHilÞ: ð5:6Þ

The formulae for the principal and Gaussian curvatures work safely in all
directions except for singularities, in which Gð1ÞZGð2Þ or Gð1ÞZGð3Þ. In such
directions and in their close vicinity, equation (5.2) fails.
6. Examples

In this section, the derived formulae are validated on numerical examples. First,
the formulae are checked against simple closed-form solutions. Second, the
formulae are applied to exemplify the properties of the Green’s function in
realistic anisotropic viscoelastic materials.
(a ) Test models

For isotropic and some simple anisotropic media, the Green’s function can be
expressed in closed form. The existing closed-form solutions have been derived
for elastic media, but they can simply be generalized to be applicable also to
viscoelastic media (see appendices A and B). Subsequently, the viscoelastic
closed-form Green’s functions can be used to verify the derived formulae and to
test numerical codes.

I adopted two viscoelastic and two elastic test models. The first viscoelastic
model is isotropic with parameters in the Voigt notation: a11Z30K1:5i,
a44Z10K0:5i, and with density rZ1; and the second viscoelastic model is
t ransverse ly i sot ropic wi th parameters : a11Za 22Za33Z25K2:5i,
a44Za55Z10Ki, a66Z4K0:4i, a12Za11K2a66, a13Za 23Za11K2a44, and with
Proc. R. Soc. A (2007)
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Figure 1. The real part of the G33 component of the Green’s function for isotropic (a,b) elastic and
(c,d ) viscoelastic media. The exact Green’s function in (a,c) is calculated using equations (3.1)–
(3.3) and compared with the closed-form solution (A 1). The asymptotic Green’s function in (b,d )
is calculated using (4.11) and compared with the far-field term of solution (A 1). The distance is

normalized to
ffiffiffiffiffi
aR
44

p
=u. The Green’s functions are calculated for a ray deviating by angle qZ458 from

the vertical.
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density rZ1. The elastic models are described by real parts of the above
viscoelastic parameters. The circular frequency u of the wave field equals 1.

For the four models, I calculated the exact Green’s function by direct
numerical calculation of integrals (3.2) and (3.3), an asymptotic Green’s function
(4.11) and the exact and far-field analytical Green’s functions using (A 1) and
(B 3). Figures 1 and 2 show the Green’s functions in both the elastic and
viscoelastic models. The exact solution obtained using the numerical integration
coincides with the analytical solution within the width of the line. Similarly, the
asymptotic solution perfectly coincides with the analytic far-field approximation.
This validates the formulae derived as well as the codes developed.
(b ) Real models

The Green’s function is calculated in two anisotropic viscoelastic materials:
clay shale and carbon-epoxy composite (see table 1). The materials display
anisotropy in velocities as well as in attenuation. The values for the clay shale
were taken from Carcione & Cavallini (1995) and those for the carbon-epoxy
composite from Hosten et al. (1987). The values were slightly modified to make
the models transversely isotropic (see table 2).
Proc. R. Soc. A (2007)
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Figure 2. The real part of the G33 component of the Green’s function for transversely isotropic (a,b)
elastic and (c,d ) viscoelastic media. The exact Green’s function in (a,c) is calculated using
equations (3.1)–(3.3) and compared with the closed-form solution (B 3). The asymptotic Green’s
function in (b,d ) is calculated using (4.11) and compared with the far-field term of solution (B 3).
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Figure 3 shows the basic properties of the P waves propagating in the
materials studied: the left-hand plots show the directional dependence of ray
velocity V ray and real-valued phase velocity V phase, and the right-hand plots
show the directional dependence of ray attenuation Aray and of phase attenuation
Aphase. The ray velocity and ray attenuation characterize the propagation
velocity and attenuation along a ray, while the phase velocity and phase
attenuation characterize the propagation velocity and attenuation along the
normal to the plane wave front. The magnitudes of the phase quantities are
calculated from the complex-valued slowness vector p as

V phase Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pR$pR
p ; Aphase Z

pI$pRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR$pR

p ð6:1Þ

and their direction is along the normal to the plane wave front,

nphase Z
pRffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR$pR

p : ð6:2Þ

The magnitudes of the ray quantities are defined by (4.13) and (4.14) and they
point along ray vector N. Emphasize that slowness vector p is stationary for
both the ray and phase quantities; hence it is, in general, an inhomogeneous
complex-valued vector. The corresponding energy velocity vector v must be
homogeneous, and ray vector NZv=v is real valued.
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Table 2. P-wave anisotropy of velocity and attenuation. ( �V
ray

is the mean P-wave ray velocity, arayV

the P-wave velocity anisotropy, �A
ray

the mean P-wave ray attenuation and arayQ the P-wave ray
attenuation anisotropy. The velocity and attenuation anisotropy is calculated as arayV Z
200 V ray

MAXKV ray
MIN

� �
= V ray

MAXCV ray
MIN

� �
and arayQ Z200 Aray

MAXKAray
MIN

� �
= Aray

MAXCAray
MIN

� �
, where sub-

scripts MAX and MIN indicate the maximum and minimum values over all rays.)

model �V
ray

(103 m sK1) arayV (%) �A
ray

(10K7 s mK1) arayQ (%)

clay shale 4.63 24.4 46.7 71.0
carbon-epoxy 4.35 83.7 81.1 88.0

Table 1. Viscoelastic parameters. (Matrix of quality factors Q is defined as QKLZKcRKL=c
I
KL, K,

LZ1,., 6. The two-index Voigt notation is used for viscoelastic parameters. The clay shale model is
taken from Carcione & Cavallini (1995) and the carbon-epoxy model is from Hosten et al. (1987).)

model cR11 (GPa) cR13 (GPa) cR33 (GPa) cR44 (GPa) cR66 (GPa) r (kg mK3)

clay shale 68.7 40.1 42.0 11.4 24.2 2590
carbon-epoxy 15.0 3.4 87.0 7.8 3.9 1595

model Q11 Q13 Q33 Q44 Q66 f (Hz)

clay shale 29.7 52.8 18.2 20.3 31.1 20
carbon-epoxy 34.1 2.4 5.4 59.1 36.5 5!106

V. Vavryčuk2700
Figure 4 shows a comparison of the exact and asymptotic P-wave Green’s
functions for the two materials studied. The figure indicates that the asymptotic
Green’s function approximates the exact Green’s function quite efficiently. As
expected, the fit improves with increasing distance from the source. At distance
of 15 wavelengths from the source, the error in the modulus of the asymptotic
Green’s function is approximately 4% or less for all four examples in figure 4.
7. Conclusion

The exact Green’s function in homogeneous anisotropic viscoelastic media is
calculated as in elastic media by numerically integrating surface and line
integrals. The surface integral defines the regular part of the Green’s function
and physically corresponds to a superposition of homogeneous plane waves. The
line integral defines the singular part of the Green’s function. While all
quantities in the integrals are real valued in elastic media, some of them become
complex valued and frequency dependent in viscoelastic media. However, this
difference is minor and does not pose complications to computing the Green’s
function. The complex-valued integrals can be calculated either directly using
numerical integration or asymptotically using the steepest descent method. In
some very simple cases, the integrals can also be calculated analytically yielding
closed-form solutions.
Proc. R. Soc. A (2007)



0

0

(i) (ii)

(i) (ii)

4×103

2×10–6

1×10–6

1×10–6 2×10–6

–1×10–6

–1×10–6
–2×10–6

–1×10–5

–1×10–5

–1×10–5

–5×10–6

–5×10–6

–5×10–6 5×10–6 1×10–5

–2×10–6

2×103

–2×103

–4×103

8×103

4×103

–4×103

–4×103

–8×103

–8×103 –4×103 4×103 8×103

–2×103 2×103 4×103

z-
co

m
po

ne
nt

 (
m

 s–1
)

z-
co

m
po

ne
nt

 (
m

 s–1
)

x-component (m s–1) x-component (m s–1)

z-
co

m
po

ne
nt

 (
s m

 –1
)

z-
co

m
po

ne
nt

 (
s m

 –1
)

(a)

0

0

0

0

(b)

0

0

Figure 3. The P-wave velocity and attenuation in (a) clay shale and (b) carbon-epoxy composite.
(a(i)) Velocities in clay shale, (a(ii)) attenuation in clay shale, (b(i)) velocities in carboxy-expoxy
composite, (b(ii)) attenuation in carboxy-epoxy composite. Solid line, ray quantities; dashed line,
phase quantities.

2701Green’s function in viscoelastic media
The calculation of the asymptotic Green’s function is more involved in
viscoelastic media than in elastic media. Although the exact Green’s function in
viscoelastic media is calculated as a superposition of homogeneous plane waves,
the asymptotic Green’s function is calculated at a stationary point which
corresponds to an inhomogeneous plane wave. In elastic media, we usually start
with setting a slowness vector and then calculate the corresponding ray
direction. The slowness vector is always homogeneous. In viscoelastic media, we
first define the ray direction and seek the slowness vector that predicts the
vector of the energy velocity parallel to the ray. Since the ray direction is real,
the energy velocity vector is homogeneous. Consequently, the stationary
slowness vector is, in general, inhomogeneous and its computation involves
finding two independent unit vectors, which specify the directions of its real and
imaginary parts. This can be done iteratively in a simple way, provided the
wave surface is free of triplications. If not, we have to take care of getting all
slowness vectors corresponding to a given ray, or we have to solve a system of
polynomial equations.
Proc. R. Soc. A (2007)
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Figure 4. The real part of the G33 component of the exact and asymptotic P-wave Green’s function
in (a) clay shale and (b) carbon-epoxy composite. Solid line, the exact Green’s function calculated
using equations (3.1)–(3.3); dashed line, the asymptotic Green’s function calculated using equation
(4.11). The Green’s functions are for a ray deviating from the vertical by angle (i) qZ308 and (ii)
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33
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=u. The Green’s function is in 10K10 m sK1.
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I thank Colin Thomson for discussions on the subject, and Klaus Helbig and two anonymous
referees for their comments. This work was supported by the grant Agency of the Czech Republic,
grant no. 205/05/2182 and by the Consortium Project SW3D ‘Seismic Waves in Complex 3-D
Structures’.
Appendix A. Green’s function in an isotropic viscoelastic medium

Solving integrals (3.2) and (3.3) for a homogeneous isotropic viscoelastic
medium, we arrive at the exact viscoelastic Green’s function in a form quite
analogous to that for an elastic medium (Aki & Richards 2002, eqn. (4.35)).
Hence,

Gexact
kl ðx;uÞZGnear

kl ðx;uÞCGfar
kl ðx;uÞ;

Gnear
kl ðx;uÞZ 3NkNlK dkl

4prr

1

a2
exp iu

r

a

� �
K

a

iur

� �
C K

a

iur

� �2
	 
�

K
1

b2
exp iu

r

b

� �
K

b

iur

� �
C K

b

iur

� �2	 
�
and

Gfar
kl ðx;uÞZ

1

4prr

NkNl

a2
exp iu

r

a

� �
K

NkNlK dkl

b2
exp iu

r

b

� �� �
;

ðA 1)
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where Gnear
kl ðx;uÞ and Gfar

kl ðx;uÞ are the near-field and far-field terms of the
Green’s function, respectively. Vector N is the ray direction; dkl is the Kronecker
delta; r is the density of the medium; r is the distance; and aZ

ffiffiffiffiffiffiffi
a11

p
and

bZ
ffiffiffiffiffiffiffi
a44

p
are the velocities of the P and S waves. All quantities in (A 1) are real

valued except for the complex-valued velocities a and b.
Appendix B. Green’s functions in simple anisotropic viscoelastic media

Here, I mention Green’s functions in a closed form for three simple types of
anisotropy. The first anisotropy displays an orthorhombic symmetry and the
other two types display transverse isotropy. In all cases, the complex-valued
slowness surfaces of waves are either ellipsoids, spheroids or spheres. The
viscoelastic Green’s functions are obtained by expressing the elastic Green’s
functions in the frequency domain, and by substituting the real-valued elastic
parameters by complex-valued viscoelastic parameters. The elastic Green’s
functions have been published by Payton (1983), Burridge et al. (1993) and
Vavryčuk (2001).

(a ) Anisotropy I

Let us consider an orthorhombic medium with the following density-
normalized viscoelastic coefficients: a11, a22, a33, a44, a55, a66, a12ZKa66, a13Z
Ka55 and a23ZKa44; the other coefficients being zero. The exact formula for the
Green’s function reads

Gexact
kl ðx;uÞZ 1

4pr

dk1dl1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a55a66

p
expðiutð1ÞÞ

tð1Þ
C

dk2dl2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22a44a66

p
expðiutð2ÞÞ

tð2Þ
C

dk3dl3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a33a44a55

p
expðiutð3ÞÞ

tð3Þ

( )
;

ðB 1)

where

tð1Þ Z r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

1

a11
C

N 2
2

a66
C

N 2
3

a55

s
; tð2Þ Z r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

1

a66
C

N 2
2

a22
C

N 2
3

a44

s
and

tð3Þ Z r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

1

a55
C

N 2
2

a44
C

N 2
3

a33

s
;

are travel times; r is the distance; dkl is the Kronecker delta; and NZx/r is the
ray direction. All quantities in (B 1) are real-valued except for the complex-
valued viscoelastic parameters aij and travel times t.

Green’s function (B 1) is probably the simplest Green’s function, which can be
found in anisotropic viscoelastic media. It consists of the far-field terms only. No
near-field terms and no effects connected to intersection singularities, which are
present in the wave field, are observed.

(b ) Anisotropy II

Let us consider a transversely isotropic medium with a vertical axis of
symmetry and with the following density-normalized viscoelastic coefficients: a11,
a22Za11, a33, a44, a55Za44, a66, a12Za11K2a66, a13ZKa44 and a23ZKa44; the
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other coefficients being zero. The exact formula for the Green’s function reads

Gexact
kl ðx;uÞZGnear

kl ðx;uÞCGfar
kl ðx;uÞ;

Gnear
kl ðx;wÞZ 1
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are travel times,
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are polarization vectors; r is the distance of the observation point from the
source; RZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21Cx22

p
is the distance of the observation point from the symmetry

axis; and NZx/r is the ray direction. All quantities in (B 2) are real-valued
except for complex-valued viscoelastic parameters aij and travel times t.

The Green’s function (B 2) consists of the far-field term as well as of the near-
singularity term (see Vavryčuk 1999). The near-singularity term is significant
near the symmetry axis, where a kiss singularity is observed. The amplitude of
this term decreases with distance R from the singularity as 1=R2. Physically, the
near-singularity term represents the coupling between the SV and SH waves
(Vavryčuk 1999, 2006b).
(c ) Anisotropy III

Let us consider a transversely isotropic medium with a vertical axis of
symmetry and with the following density-normalized viscoelastic coefficients: a11,
a22Za11, a33Za11, a44, a55Za44, a66, a12Za11K2a66, a13Za11K2a44 and
a23Za11K2a44; the other coefficients being zero. The exact formula for the
Proc. R. Soc. A (2007)



2705Green’s function in viscoelastic media
Green’s function reads
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are polarization vectors; r is the distance of the observation point from the
source; RZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21Cx 2

2

p
is the distance of the observation point from the symmetry

axis; and NZx/r is the ray direction. All quantities in (B 3) are real-valued,
except for complex-valued viscoelastic parameters aij and travel times t.

The Green’s function (B 3) consists of the far-field term as well as the near-
field and near-singularity terms. The near-field term represents the coupling
between the P and SV waves and is analogous to the near-field term observed in
isotropic media (A 1). The near-singularity term is significant near the symmetry
axis, similarly as in anisotropy II (B 2).
References

Aki, K. & Richards, P. G. 2002 Quantitative seismology. Sausalito, CA: University Science Books.
Auld, B. A. 1973 Acoustic fields and waves in solids. New York, NY: Wiley.
Ben-Menahem, A. & Singh, S. J. 1981 Seismic waves and sources. New York, NY: Springer.
Borcherdt, R. D. 1977 Reflection–refraction of type-II S waves in elastic and anelastic media. Bull.

Seism. Soc. Am. 67, 43–67.
Borcherdt, R. D. 1982 Reflection–refraction of general P- and type-I S waves in elastic and

anelastic solids. Geophys. J. R. Astron. Soc. 70, 621–638.
Boulanger, P. 1998 Energy flux for damped inhomogeneous plane waves in viscoelastic fluids. Wave

Motion 28, 215–225. (doi:10.1016/S0165-2125(98)00011-0)
Proc. R. Soc. A (2007)

http://dx.doi.org/doi:10.1016/S0165-2125(98)00011-0


V. Vavryčuk2706
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Červený, V. & Pšenčı́k, I. 2006 Energy flux in viscoelastic anisotropic media. Geophys. J. Int. 166,

1299–1317. (doi:10.1111/j.1365-246X.2006.03057.x)
Daley, P. F. & Krebes, E. S. 2004 SH wave propagation in viscoelastic media. Stud. Geophys. Geod.

48, 563–587. (doi:10.1023/B:SGEG.0000037472.40481.cd)
Deschamps, M., Poirée, B. & Poncelet, O. 1997 Energy velocity of complex harmonic plane waves

in viscous fluids. Wave Motion 25, 51–60. (doi:10.1016/S0165-2125(96)00032-7)
Every, A. G. & Kim, K. Y. 1994 Time domain dynamic response functions of elastically anisotropic

solids. J. Acoust. Soc. Am. 95, 2505–2516. (doi:10.1121/1.409860)
Gridin, D. 2000 Far-field asymptotics of the Green tensor for a transversely isotropic solid. Proc.

R. Soc. A 456, 571–591. (doi:10.1098/rspa.2000.0531)
Hosten, B., Deschamps, M. & Tittmann, B. R. 1987 Inhomogeneous wave propagation in lossy

anisotropic solids. Application to the characterization of viscoelastic composite materials.
J. Acoust. Soc. Am. 82, 1763–1770. (doi:10.1121/1.395170)
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