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S u m m a r y : Using higher-order ray theory, we derived exact elastodynamic Green functions for
three simple types of homogeneous anisotropy. The first type displays an orthorhombic symmetry,
the other two types display transverse isotropy. In all cases, the slowness surfaces of waves are
either ellipsoids, spheroids or spheres. All three Green functions are expressed by a ray series with
a finite number of terms. The Green functions can be written in explicit and elementary form similar
to the Stokes solution for isotropy. In two Green functions, the higher-order ray approximations
form a near-singularity term, which is significant near a kiss singularity. In the third Green
function, the higher-order ray approximations also form a near-field term, which is significant near
the point source. No effect connected with the line singularity was observed.

1. INTRODUCTION

Vavryiuk and Yomogida (1995) showed that the elastodynamic Green function for isotropic,
homogeneous and unbounded media can be calculated using higher-order ray theory and can be
expressed in the form of a ray series. The ray series is finite and has only three non-zero terms
including the zeroth-order term. The ray formula is exact and coincides with the closed-form
solution found by Stokes (see Aki and Richards, 1980, Eq. 4.23; Mura, 1993, Eq. 9.34). In contrast
to isotropy, the problem is much more complicated for anisotropy. In this case, the exact Green
function is calculated by an integral over the slowness surface (Buchwald, 1959; Lighthill, 1960;
Burridge, 1967; Yeatts, 1984; Every and Kim, 1994; Wang and Achenbach, 1994) and cannot be
generally expressed in closed form. In using higher-order ray theory (Cerveny et al., 1977;
Vavrycuk, 1997; Vavrycuk, 1999b; Cerveny, 2000), the Green function for general anisotropy is no
longer expressed by a finite ray expansion. The higher-order ray theory may even fail to describe the
Green function correctly, specifically in the directions of conical points or triplications of
wavefronts. Nevertheless, it is worth finding at least some simple types of anisotropy for which the
Green function can be described by the ray series. This is essential for understanding the
applicability of the higher-order ray theory. Obviously, this is also important for a better
understanding of the behaviour of waves in anisotropic media and for testing the accuracy of various
approximate formulas for the Green functions in anisotropic media.

In this paper, we shall apply higher-order ray theory to calculating the exact Green functions for
three special types of anisotropy. The Green functions for the first two types of anisotropy are
already known being previously studied by Payton (1983) and Burridge et al. (1993) by using other
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methods. The form of the Green function for the third type of anisotropy has not been published yet.
The anisotropy under study is very simple in all three cases. It is physically realisable, but still rather
artificial with no experimental evidence to support its existence. Nevertheless, it is worth to study
this anisotropy because it simplifies the problem while still preserving some essential features of
wave propagation in anisotropic media. The first type displays an orthorhombic symmetry, the other
two types display transverse isotropy. In all cases, the slowness surfaces of waves are either
ellipsoids, spheroids or spheres. Polarization vectors of waves are also very simple: they have either
a constant direction irrespective to the phase normal or they behave in the same way as in isotropy.
Since the slowness surfaces have no parabolic points, we cannot study effects connected with a
triplication of the wavefront. However, we can study effects connected with an intersection or
contact of the slowness surfaces called singularities (Crampin and Yedlin, 1981; Crampin, 1991).
The singularities are frequent in anisotropy but not known in isotropy. In particular, we shall study
the effects connected with the line and kiss singularities (Vavrycuk, 1999a). We shall discuss the
properties of the Green function for the mentioned types of anisotropic media and compare them
with the Green function for isotropy.

where Gin = G i n ( x , t ) is the symmetric Green tensor, p is the density, cijkl is the elasticity

tensor, 5in is the Kronecker delta, and S(t) is the Dirac delta function. The Einstein
summation convention is applied. The point source is located at the origin of coordinates.

Three waves propagate in anisotropic media. We denote them W1, W2 and W3. For
each wave we seek a solution in the form of a ray series (Cerveny et al., 1977, Eg. 5.2)
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2. HIGHER-ORDER RAY THEORY

The Green function for anisotropic, homogeneous, unbounded and elastic media
satisfies the equation

(K)
where K denotes the order of the ray approximation, Ukl (x) is the ray amplitude tensor,

z(x) is the traveltime and f(K)(t) is the time function.
The zeroth-order term of the ray expansion reads (Vavrycuk, 1997, Eqs 8 and 9)

Here Kp is the Gaussian curvature of the slowness surface, g is the unit polarization vector
calculated as the eigenvector of the Christoffel tensor

and v is the group velocity. Components of the group velocity vector are expressed as
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Quantities Ukn
(k)1 and Ukn

(k)1 are called the additional and principal components of

amplitude U k n
( K ) , and quantities GW1 = 1, GW2 and GW3 are the eigenvalues of the

Christoffel tensor F j k. Note that the formula (7c) was obtained by solving the transport
equation for point sources in homogeneous media (see Vavryduk and Yomogida, 1996).

For simple types of anisotropy, we can perform recursive differentiation (7)
analytically, and thus we can obtain an explicit analytical ray expansion of the Green
function. Since the calculation of higher-order ray amplitudes is rather extensive and
tedious, we shall not present it in detail. In Appendix B we present some auxiliary
formulas necessary for the calculation and in Sections 3-5 we present the final formulas.
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where differential operators Myjn(Ukn j) and L j n [ U ( k ) ) are defined as follows:

and the higher-order ray amplitudes can be calculated recursively by differentiating the
lower-order ray amplitudes (Vavrycuk, 1997, Eq. 7):

where aijkl = cijkl / p is the density-normalized elasticity tensor, p = p(n) is the slowness

vector, and n is the unit phase normal. In (3) we consider the positive Gaussian curvature,
hence the slowness surfaces under study are always convex. For other shapes of the
slowness surface, formula (3) should be modified (see Burridge, 1967; Cerveny, 2000).

To calculate the complete ray expansion of the Green function (2) we have to specify
higher-order time functions and higher-order ray amplitudes. The higher-order time
functions are expressed as follows
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where n is the unit phase normal.

Phase velocities

The basic quantities for this medium are summarised as follows:

Christoffel tensor

where the two-index Voigt notation has been used. This anisotropy must satisfy the
following stability conditions to be physically realisable (Helbig, 1994, Eqs 5.3, 5.16 and
5.17):

Let us consider a special type of orthorhombic medium with the following density-
normalised elastic parameters:

3. ANISOTROPIC MEDIUM I (A-I)

A . D e f i n i t i o n a n d b a s i c q u a n t i t i e s

V. Vavryduk
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Polarization vectors

Group velocities

Fig. 1: The x1 -X3 section of slowness surfaces under anisotropy I. Parameters of the medium
are: a11 = 28, 022 = 23,a33 = 32,a44 = 12,a55 = 4,a66 = 10. Dots show the line singularities.
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x1 +X2+ *3 is the distance from the source

to the receiver, SM is the Kronecker delta, and Nk=— is the unit direction vector to the

receiver.
The Green function (16) is extremely simple. It only consists of the zeroth-order terms

of the W1-, W2- and W3-ray series. All higher-order terms of the W1-, W2- and W3-ray
expansions are zero. The zeroth-order terms correspond physically to far-field waves.
Their time function is the Dirac delta function, hence their amplitude is non-zero only at
the times of their arrival. The amplitude depends on distance r from the source as 1/r.
Interestingly, no near-field terms known from isotropy are present in the wavefield. Also
no effects connected with the intersection singularity are observed. The reason is that the
polarization vectors of the waves behave regularly in the singularity as well as at the point
source. The Green function is probably the simplest Green function, which can be found
for anisotropic media.

where

The slowness surfaces of all three waves are ellipsoids (see Fig. 1). The polarization of
waves is exceptionally simple: polarization vectors are constant irrespective of the
position of the observation point. The slowness surfaces can intersect along curves, which
form a line (or intersection) singularity (Crampin and Yedlin, 1981).

B . G r e e n f u n c t i o n a n d i t s p r o p e r t i e s

The exact analytical formula for the Green function can be expressed as follows:

Gaussian curvatures of the slowness surface

V. Vavrycuk

are the traveltimes of the three waves, is the distance from the source
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Group velocities

Phase velocities

We summarise the basic wave quantities as follows:

Chrlstoffel tensor

This medium represents a special type of transverse isotropy, obtained from general
transverse isotropy by substituting parameter a13 by value -a44. This transverse isotropy
must satisfy the following stability conditions to be physically realisable (Backus, 1962,
Eq. 20):

Let us consider a transversely Isotropic medium with a vertical axis of symmetry and
the following density-normalised elastic parameters expressed in two-index notation:

4. ANISOTROPIC MEDIUM II (A-II)

A . D e f i n i t i o n a n d b a s i c q u a n t i t i e s
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Fig. 2: The x1 -X3, section of slowness surfaces under anisotropy II. Parameters of the medium
are: a11 =23, 033 = 16, a44 = 4, a66 = 10. Dots show the singularities.
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Gaussian curvatures of the slowness surface

Polarization vectors
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Fig. 3: Polarization vectors near a kiss singularity in the x1 - X2 plane.

Slowness surfaces of all three waves are spheroids with axis of rotation along the
z-axis (see Fig. 2). For agg = 044, the slowness surface of the W3 wave becomes a sphere.
The Wl wave has a constant polarization vector parallel to the symmetry axis. The
polarization vectors of the W2 and W3 waves are always perpendicular to the symmetry
axis. The slowness surfaces of the W1 and W2 waves intersect each other along two
circles. The slowness surfaces of the W1 and W3 waves touch tangentially in the
symmetry axis direction, and thus form a kiss singularity (Crampin and Yedlin, 1981;
Vavryduk, 1999d). The behaviour of the W2 and W3 polarization vectors is quite
anomalous in the vicinity of this singularity (see Fig. 3). For the strictly singular direction,
the polarization vectors of the W2 and W3 waves are not defined.

B . G r e e n f u n c t i o n a n d i t s p r o p e r t i e s

The exact analytical formula for the Green function can be expressed as follows:

where
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are traveltimes of the W1, W2 and W3 waves, r = yx1 + x2 +x2 is the distance from the

source to the receiver, R = Vx2 + x2 is the distance of the receiver from the symmetry

axis of the medium, and Nk=— is the unit direction vector to the receiver.

The Green function (24) consists of the zeroth-order term of the W1-ray expansion and
of the zeroth- and first-order terms of the W2- and W3-ray expansions. The zeroth-order
terms physically mean the far-field waves, the first-order terms of the W1 and W2
expansions couple into the fourth term in (24) called the near-singularity term (see
Vavryduk, 1999a). The time dependence of the far-field waves is the Dirac delta function.
The near-singularity term couples the W2 and W3 waves, being non-zero between the
arrivals of these waves (see Fig. 4). Interestingly, no coupling between W1 and W2, or
between W1 and W3 waves is present. Also, no near-field term is observed in this
medium. The reason for the absence of the near-field term lies in the exceptionally simple
polarization of the Wl wave. Since the W1-polarization vector is constant irrespective of
the position of the observation point, it displays no singular behaviour at the source. The
near-singularity term is caused by the existence of the kiss singularity in the symmetry
axis direction of transverse isotropy. Near this direction, the behaviour of the polarization
vectors is anomalous (see Fig. 3). The amplitude of the near-singularity term decreases
with distance R from the singularity as 1R2. Therefore, the near-singularity term is
significant in the vicinity of the singularity but negligible far from the singularity. In the
singularity direction (R = 0), the amplitude of this term diverges and the waveform of the
near-singularity term becomes the Dirac delta function, similarly as the far-field waves.
Also the amplitude decrease becomes the same as for the far-field waves (see Vavryduk,
1999a).

Fig. 4: Comparison of waveforms of the Green function for anisotropy II and isotropy.
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5. ANISOTROPIC MEDIUM III (A-III)

A . D e f i n i t i o n a n d b a s i c q u a n t i t i e s

Let us consider a transversely isotropic medium with a vertical axis of symmetry and
the following density-normalised elastic parameters:

This transverse isotropy is very similar to isotropy. For a66 = a44, the medium
becomes strictly isotropic. The stability conditions for this medium are expressed as
follows (Backus, 1962, Eq. 20):

We summarise the basic wave quantities as follows:

Christoffel tensor

Phase velocities

Group velocities

Polarization vectors
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Gaussian curvatures of the slowness surface

The slowness surfaces of the W1 and W2 waves are spheres (see Fig. 5), the slowness
surface of the W3 wave is a spheroid whose rotation axis is along the z-axis. The
polarization vectors of the W1, W2 and W3 waves are identical to those of the P, SV and
SH waves under isotropy. The W1 wave is longitudinal, the W2 and wW3 waves are
transverse. The W1 wave is polarized in the plane defined by the symmetry axis and a ray.
The W3-wave polarization vector is always perpendicular to the symmetry axis of the
medium. The slowness surfaces of the W1 and W2 waves or W1 and W3 waves cannot
intersect. Similarly to the A-II medium, the slowness surfaces of the W2 and W3 waves
touch in the symmetry axis direction forming a kiss singularity. The behaviour of the W2
and W3 polarization vectors is again anomalous in the vicinity of the kiss singularity.
Moreover, the polarization of the W1 wave is anomalous in the vicinity of the source,
displaying a similar pattern as the W2 wave near a kiss singularity (see Fig. 3).

Fig. 5: The x1 -x3 section of slowness surfaces under anisotropy III. Parameters of the medium
are: a11 = 25, a44 = 10, a66 = 4 (left-hand plot), and a11 = 25, a44 = 4, a66 = 10 (right-hand plot).
Dots show the kiss singularities.
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The exact analytical formula for the Green function can be expressed as follows:

Exact Elastodynamic Green Functions for Simple Types ...

where

Here T\ , TI and 23 are the traveltimes of the W1, W2 and W3 waves, r = yx2 + x2 + x2 is

the distance from the source to the receiver, R = -Jx2 + x2 is the distance of the receiver

from the vertical axis, and Nk=— is the unit direction vector to the receiver.

The Green function for the A-III medium (32) is more complicated than for the A-I or
A-II media. It consists of the zeroth- and first-order terms of the W1-, W2- and W3-ray
expansions and of the second-order terms of the W1- and W2-ray expansions. The zeroth-
order terms represent the far-field waves (the first three terms in 32), the higher-order
terms yield the near-singularity term (the fourth term in 32) and the near-field term (the
fifth term in 32). The time dependence of the far-field waves is the Dirac delta function.
The amplitude of the near-singularity term is non-zero between the arrivals of the W2 and
W3 waves, and the amplitude of the near-field term is non-zero between the W1 and W2
waves (see Fig. 6). The near-singularity term has a form identical to that in the A-II
medium. The near-field term has the same form as for isotropy (see Fig. 6). The amplitude
of the near-singularity term decreases with distance R from the singularity as 1R2. The
amplitude of the near-field term decreases with distance r from the source as 1/r2.
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Fig. 6. Comparison of waveforms of the Green function for anisotropy III and isotropy.

6. CONCLUSIONS

Using higher-order ray theory we have calculated the exact Green functions for three
simple types of anisotropy. The first two Green functions were originally derived by
Payton (1983) and Burridge et al. (1993) by other methods. The third Green function has
not been presented yet. Correctness of the Green functions was verified by inserting them
into the elastodynamic equation. All three Green functions are expressed by a ray series
with a finite number of terms. The presented Green functions are probably the simplest
Green functions, which can be found for anisotropic media. They can be expressed in
explicit and elementary form similar to the Stokes solution for isotropic media. For the
first two types of anisotropy, the structure of the Green function is even simpler than that
for isotropy.

The first medium (A-I) is strongly anisotropic displaying an orthorhombic symmetry.
The slowness surfaces of all three waves propagating in the medium are ellipsoids. The
polarization vectors of the waves are constant irrespective of the position of the
observation point. The Green function is expressed only by the zeroth-order term of the
ray series. All higher-order terms are zero. No near-field wave known from the isotropic
Green function is observed. Also no coupling due to singularities is observed.

The second medium (A-II) is also strongly anisotropic displaying transverse isotropy.
The slowness surfaces of all three waves are spheroids. The Green function is expressed
by two non-zero terms of the ray series including the zeroth-order term. The Green
function contains no near-field term, but does contain the near-singularity term, which is
not present in the isotropic Green function. The near-singularity term is caused by the
presence of the kiss singularity, which occurs in the symmetry axis direction of transverse
isotropy. In this direction, the slowness surfaces of two slower waves touch and
polarization of the waves is anomalous near this direction. In the A-II medium, also a line
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singularity can exist, but no additional term connected to this singularity appears in the
Green function.

The third medium (A-III) displays transverse isotropy, which can be strong but also
weak. The slowness surfaces are spheres for two waves and a spheroid for the third wave.
The Green function consists of three non-zero terms of the ray series, similarly to the
Green function for isotropy. The Green function contains the near-singularity term but
also the near-field term. The near-singularity term has a form identical with that for the A-
II medium. The near-field term has the same form as for isotropy. If the anisotropy
vanishes, the Green function for A-III smoothly converges to the Green function for
isotropy.
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A P P E N D I X A : E L A S T O S T A T I C G R E E N F U N C T I O N S

From the elastodynamic Green functions (16), (24) and (32) we can derive the
elastostatic Green functions as follows:
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For the A-III medium

For the A-II medium

For the A-I medium
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A P P E N D I X B : A U X I L I A R Y F O R M U L A S

For calculation of higher-order ray approximations we need the following relations
and derivatives:

Correctness of formulas (A1)-(A3) has been verified by inserting these formulas into the
elastostatic equation.

where

V. Vavrycuk
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When calculating higher-order ray approximations for a specified type of wave we
have to keep in mind that all calculations must be performed for a fixed phase normal, but
not for a fixed ray direction.

For A-I

where W= 1,2,3 means the type of the wave, n is the phase normal, N is the unit direction
vector to a receiver, c and v are the phase and group velocities, p is the slowness vector, r
is the distance between the source and receiver, and r is the traveltime. Constants Aw, Bw

and Cw are defined as follows:

Exact Elastodynamic Green Functions for Simple Types ...
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