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ABSTRACT 
 
The far-field asymptotic formula is derived for the elastodynamic Green function in 

the kiss singularity in homogeneous anisotropic solids. In contrast to standard 
asymptotics in regular directions the derived formula is more complex and expressed in 
the form of a 1-D integral. This integral is specified for the kiss singularity along the 
symmetry axis in transverse isotropy and along the fourfold symmetry axes in tetragonal 
and cubic symmetries. The shape of the slowness surface in the singularity is regular in 
transverse isotropy and the amplitude of the Green function is expressed by means of the 
Gaussian curvature of this surface in the singularity. However, the shape of the slowness 
surface is irregular and the Gaussian curvature is not defined in the singularity in 
tetragonal or cubic symmetries. In this case, the amplitude of the Green function is 
expressed by means of the generalized Gaussian curvature. 

 
 

1. INTRODUCTION 
 
Three waves propagate in homogeneous anisotropic media having, in general, three 

different phase velocities and polarizations. The phase velocities and polarization vectors 
are determined as eigenvalues and eigenvectors of the Christoffel tensor. For some 
directions, the Christoffel tensor can degenerate, and two waves (or even all three waves) 
then propagate with the same phase velocity. These directions of degeneracy can cause 
anomalies in the shape of the slowness surface as well as singularities in the field of 
polarization vectors (see Alshits, Sarychev and Shuvalov, 1985; Shuvalov and Every, 
1997; Shuvalov, 1998). One of the important types of degeneracy is the direction in which 
the slowness sheets of two waves touch tangentially. If this direction is isolated and the 
field of polarization vectors is singular, we call it the �kiss singularity� (Crampin and 
Yedlin, 1981). The simplest example of the kiss singularity is the symmetry axis in 
transversely isotropic solids (Vavryčuk, 1999). This singularity appears on the S-wave 
slowness sheets and displays a simple pattern of polarization vectors (see Fig. 1). The 
topological charge of the field of polarization vectors in the singularity equals 1 
(Shuvalov, 1998). The slowness sheets of the degenerate waves are differentiable at any 
order, hence the shape of the slowness sheets is regular in this singularity. However, the 
kiss singularity in other kinds of anisotropy can be more complex. The topological charge 
of the field of polarization vectors in the singularity can attain values 0, 1 (see Fig. 1) or  
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�1 (see Fig. 2), and the shape of the slowness surface can display irregularities in the 
singularity. For example, the slowness surface can be differentiated at the first order only 
and the Gaussian curvature of the slowness surface may not be defined in the singularity 
(Shuvalov and Every, 1996). 

The anomalous behaviour of the slowness surface and polarization vectors near 
singularities causes that the standard far-field asymptotics for the Green function 
(Buchwald, 1959; Lighthill, 1960; Burridge, 1967; Yeatts, 1984; Every and Kim, 1994; 
Červený, 2001) can not be applied, but a modified approach is required. The far-field 
asymptotics for the simplest type of the singularity, the kiss singularity in transversely 
isotropic solids, has been derived by Vavryčuk (1997, 1999) who showed that the 
asymptotics is significantly affected by the coupling of the degenerate waves in the kiss 
singularity and its vicinity. The asymptotic Green function in transversely isotropic solids 
has also been studied by Gridin (2000). A general mathematical approach to calculating 
the asymptotic Green functions in kiss singularities in all kinds of anisotropy with 
examples in transversely isotropic solids is outlined by Borovikov and Gridin (2001). In 
this paper, the far-field asymptotics in the kiss singularity in general anisotropy is studied 
and specified for the kiss singularity along a rotational symmetry axis in transverse 
isotropy and along fourfold symmetry axes in tetragonal and cubic symmetries. The 
asymptotics is studied in the singularity itself; directions close to the singularity are not 
considered. The kiss singularity in cubic or tetragonal symmetries is of particular interest, 
because the shape of the slowness surface is irregular in the singularity. Consequently, the 
Gaussian curvature is not uniquely defined in the singularity, but depends on the direction 
from which the singularity is approached (Shuvalov and Every, 1996). The far-field 
asymptotics derived will be applicable even for the singularities that are touched by 
parabolic lines on the slowness surface and by caustics on the wave surface (see Fig. 3). 

 

 

Fig. 1. Singular behaviour of polarization vectors on the slowness surface near the kiss 
singularity in transverse isotropy. The topological charge is +1. Symbols 1p  and 2p  denote the 
Cartesian coordinate axes perpendicular to the direction of the singularity. 
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Fig. 2. Singular behaviour of polarization vectors on the slowness surface near the fourfold 
symmetry axis in tetragonal anisotropy. The topological charge is �1. Elastic parameters of the 

anisotropy are (in 2 2km s− ): 11 22 6.25a a= = , 33 9.38a = , 12 2.71a = , 13 23 3.13a a= = , 

66 2.08a = , 44 55 2.92a a= = . Symbols 1p  and 2p  denote the Cartesian coordinate axes 
perpendicular to the direction of the singularity. 

 
 
 

 

Fig. 3. Parabolic lines (left) and caustics (right) for the slow S wave near the kiss singularity in 

cubic anisotropy. The elastic parameters are (in 2 2km s− ): 11 22 33 6.25a a a= = = , 

12 13 23 3.47a a a= = = , 44 55 66 2.08a a a= = = . The singularity is along the vertical axis 
which coincides with the centre of the circles. The circles correspond to the deviation 13° of the 
wave normals (left) or ray directions (right) from the vertical axis. Equal-are projection is used (Aki 
and Richards, 1980, Eq. 4.17). Parabolic lines and caustics separate convex and saddle-shaped areas 
on the slowness and wave surfaces. 
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2. ASYMPTOTIC FORMULA FOR THE GREEN FUNCTION  
 
The exact elastodynamic Green function ( ),klG tx  in unbounded, homogeneous, 

anisotropic and perfectly elastic media can be expressed as follows (Burridge, 1967, Eq. 
4.6; Wang and Achenbach, 1994, Eq. 13):  

 ( ) ( )

( )
3

2 31 ( )
, ( )

8

m m
k l

kl mmm S

H t g g
G t t dS

cc
δ

π ρ =

⋅ = − − 
 

∑ ∫
n

n xx n&  . (1) 

Superscript m = 1,2,3 denotes the type of wave (P, S1 and S2), g ==== g(n) is the unit 
polarization vector, c = c(n) is the phase velocity, ρ  is the density of the medium, t is 

time, ( )H t  is the Heaviside step function, ( )tδ&  is the time derivative of the Dirac delta 
function, x is the position vector of the observation point, and n is the wave normal. The 
integration is over unit sphere S(n). If the integration is performed over the slowness 
surface, the integral takes the following form (Burridge, 1967, Eq. 5.4): 

 ( ) ( ) ( )
3

2 1 ( )
, ( )

8

m m
k l

kl mm S

H t g g
G t t dS

v
δ

π ρ =
= − − ⋅∑ ∫

p
x p x p&  , (2) 

where i ijkl l j kv v a p g g= =  is the group velocity of the wave (see Červený, 2001, Eq. 

2.4.46), p ==== n/c is the slowness vector, ijkla  is the density-normalized elasticity tensor, 
and S(p) is the slowness surface. Both equations (1) and (2) formally contain a surface 
integral, but actually the Dirac delta function in the integrand reduces the surface integral 
to a line integral. The integration line in (2) is an intersection of the slowness surface with 
a plane whose normal is parallel to x, and which moves with time from the source towards 
the observation point.  

The evaluation of (1) and (2) is complicated and can be performed analytically only 
for a few cases of very simple anisotropy (Payton, 1983; Burridge, Chadwick and Norris, 
1993; Gridin, 2000; Vavryčuk, 2001). For general anisotropy, it can be evaluated either 
numerically (Wang and Achenbach, 1994), or asymptotically (Every and Kim, 1994). The 
asymptotic Green function is much simpler than the exact Green function because it is 
significant only at times close to arrival time 0t  for which the integration line collapses 

into a stationary point 0p . The far-field asymptotic Green function ( ),far
klG tx  for one 

particular wave is expressed as follows:  

 ( ) ( )
0 1 22

1,
28

far Tk l
kl

S

H t g gG t t ds ds
vε

δ
π ρ

 = − − ⋅ + 
 

∫x p x x s K s&  , (3) 

where x is parallel to the normal of the slowness surface at 0p , vector ( )1 2, Ts s=s defines 

the position of p in a local coordinate system, and ( )1 2,s s=K K  is a 2 × 2 matrix.  
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Fig. 4. The shape of the integration line for the kiss singularity in two tetragonal solids. Point S 

denotes the singularity in the direction ( )0,0,1 T=n . The elastic parameters are (in 2 2km s− ):  

(a) 11 22 6.25a a= = , 33 9.38a = , 12 2.71a = , 13 23 2.35a a= = , 66 2.08a = , 

44 55 2.92a a= = , and (b) 11 22 6.25a a= = , 33 9.38a = , 12 2.71a = , 13 23 3.13a a= = , 

66 2.08a = , 44 55 2.92a a= = . The topological charge is  +1 for (a) and �1 for (b). Symbols 1p  

and 2p  denote the Cartesian coordinate axes perpendicular to the direction of the singularity. 
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Local coordinates s1 and s2 are perpendicular to x and have their origin at 0p . The 

integration is over small neighbourhood Sε  of point 0p  of slowness surface S(p). If the 
slowness surface is regular at 0p , the matrix K  is independent of 1s  and 2s  and 
coincides with the standard curvature matrix K of the slowness surface at stationary point 

0p  (see Burridge, 1967, Eq. 6.7). The integration curve near stationary point 0p  is an 
ellipse (or a circle) for convex or concave surfaces and a hyperbola for saddle-shaped 
surfaces. If the slowness surface is irregular at 0p , but regular for all points in the vicinity 
of 0p , matrix K  is defined using the values of standard curvature matrix K in the 
immediate vicinity of 0p : 

 ( ) ( )
0

lim ,
s

sϕ ϕ
→

=K K  , (4) 

where 

 2 2
1 2s s s= +  ,    2

1
atan s

s
ϕ =  . (5) 

Obviously, the integration curve in (3) is no longer an ellipse or hyperbola but its form is 
more complex (see Fig. 4). 

 
3. REGULAR DIRECTION 

 
Let us consider a regular field of polarization vectors near 0p  and a regular convex 

shape of the slowness surface at 0p . Since ( )1 2,s s=g g  and ( )1 2,v v s s=  in (3) are 
continuous functions at 0p , we can apply the properties of the δ-function and bring g and 
v in front of the integral, 

( ) ( ) ( ) ( )
( )

0 0
0 1 22

0

1,
28

k lfar T
kl

S

H t g g
G t t ds ds

v ε
δ

π ρ
 = − − ⋅ + 
 

∫
p p

x p x x s K s
p

&  . (6) 

Since the slowness surface is convex at 0p , the integration line in (6) is an ellipse. Hence 
we can choose coordinates 1s  and 2s  parallel to the directions of principal curvatures 

11K  and 22K  at 0p : 

 2 2
11 1 22 2

T K s K s= +s Ks  , (7) 

and substitute coordinates 1s  and 2s  by coordinates u and σ   

 ( )2 2
11 1 22 2

1
2

u K s K s= +x  ,    22 2

11 1
atan

K s
K s

σ =  ,  
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 1 2
11 22

1 1ds ds dud
K K

σ=
x

 .  (8) 

We obtain  

 ( ) ( ) ( ) ( )
( )

0 0
2

11 220

1 1,
8

k lfar
kl

H t g g
G t

K Kvπ ρ
= − ×

p p
x

xp
   

 

 ( ) 2
0

0
t u du d

π
δ σ− ⋅ +∫ ∫p x& . (9) 

Finally, the asymptotic Green function reads (Burridge, 1967, Eq. 6.8) 

 ( )
( )01,

4
far k l

kl

tg gG t
v K

δ

πρ

− ⋅
=

p x
x

x
 , (10) 

where 11 22K K K=  is the Gaussian curvature of the convex slowness surface, g is the 
polarization vector, and v is the group velocity. All the quantities are evaluated at 0p . A 
similar formula to (10) can also be written for the concave or saddle-shaped slowness 
surfaces at 0p . For the concave surface, an additional minus sign appears in the formula, 
and for the saddle-shaped surface, instead of the Gaussian curvature its absolute value is 
used in the formula and the δ-function in (10) is replaced by its Hilbert transform 
(Burridge, 1967, Eq. 6.9; Every and Kim, 1994).  

 
4. KISS SINGULARITY IN TRANSVERSE ISOTROPY 

 
The kiss singularity appears on the S-wave slowness sheets and coincides with the 

symmetry axis of transverse isotropy. One of the S waves has a polarization in the plane 
perpendicular to the symmetry axis, and is denoted as the SH wave. The other S wave has 
the polarization in the plane defined by the slowness vector and the symmetry axis, and is 
denoted as the SV wave (see Fig. 1). The topological charge of the field of polarization 
vectors in the singularity is 1 (Darinskii, 1994; Shuvalov, 1998). The shape of the 
slowness surface is regular in the singularity. The curvature matrix K of each S wave is 
diagonal in the singularity, and the principal curvatures 11K  and 22K  are equal, 

 11 22K K K= =  , (11) 

where K denotes the Gaussian curvature in the singularity for the respective S wave. 
Equation (3) takes the following form: 

 ( ) ( ) ( )2 2
0 1 2 1 22

1,
28

far k l
kl

S

H t g gG t t K s s ds ds
vε

δ
π ρ

 = − − ⋅ + + 
 

∫x p x x&  . (12) 
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Vectors x and 0p  are parallel to the symmetry axis. The integration line in (12) is a circle 
and we can substitute coordinates 1s  and 2s  by polar coordinates u, ϕ  :  

 ( )2 2
1 2

1
2

u K s s= +x  , 2

1
atan s

s
ϕ =  , 1 2

1 1ds ds dud
K

ϕ=
x

, (13) 

hence, 

 ( ) ( ) ( )02
1 1,

8
far

k lkl
S

H t
G t g g t u du d

Kv ε
δ ϕ

π ρ
= − − ⋅ +∫x p x

x
&  . (14) 

Since the field of polarization vectors is singular at 0p  for both degenerate waves (see 
Fig. 1), we cannot bring the term k lg g  in (14) in front of the integral as done in the case 
of the regular direction. Integrating (14) over u, we obtain 

 ( )
( ) 20

2
0

1 1,
8

far
k lkl

t
G t g g d

Kv

πδ
ϕ

π ρ

− ⋅
= ∫

p x
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x
 , (15) 

where 

 
0

limk l k ls
g g g g

→
=  . (16) 

Specifying for SV and SH waves  

 

2

2

cos sin cos 0

sin cos sin 0
0 0 0

SV SV

ϕ ϕ ϕ

ϕ ϕ ϕ

 
 
 =
 
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g g  , 

 

2

2
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ϕ ϕ ϕ
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 
 = −
 
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g g  , (17) 

we get 

 
2 2

0 0

1 0 0
0 1 0
0 0 0

SV SV SH SHd d
π π

ϕ ϕ π
 
 = =  
  

∫ ∫g g g g  . (18) 

The asymptotic Green function for S waves in the kiss singularity reads 

 ( ) ( ) ( ), , ,Sfar SVfar SHfar
kl kl klG t G t G t= +x x x  , (19) 
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hence we finally obtain 

 ( ) ( )3 3
0

1 1 1,
8

Sfar kl k l
kl SV SH

G t t
v K K

δ δ δ δ
πρ

  −
 = + − ⋅
 
 

x p x
x

 , (20) 

where SVK and SHK  are the Gaussian curvatures of the SV and SH slowness sheets in 
the singularity, v is the group velocity in the singularity, and klδ  is the Kronecker delta. 

Curvatures SVK  and SHK  are expressed in terms of elastic parameters as follows 
(Vavryčuk, 1999): 

 
( )

22
13 44

11
44 33 44

1SV a a
K a

a a a

 + = −
 − 

 , 
2
66

44

SH a
K

a
=  , (21) 

where ija  are the density-normalized elastic parameters in the Voigt notation. Equations 
(20) and (21) are connected to the local coordinate system whose vertical axis is along the 
singularity. In a general coordinate system, Eq. (20) yields (Vavryčuk, 1999, Eq. A6)  

 ( ) 1 1 1,
8

Sfar kl k l
kl SV SH

n nG t t
v vK K

δ δ
πρ

   −
 = + −     

x
x

x
 , (22) 

where n denotes the direction of the phase or group velocities in the singularity.  
 

5. KISS SINGULARITY IN GENERAL ANISOTROPY 
 
Similarly to transverse isotropy, the S1 and S2 waves are considered to be degenerate, 

and the P wave to be non-degenerate in the singularity. Since the slowness surface can be 
irregular at 0p , the Gaussian curvature may not be defined (Shuvalov and Every, 1996), 
and we can not distinguish between convex, saddle and concave shapes in the singularity. 
Therefore, it is convenient to introduce a generalized definition of convex, saddle and 
concave shapes of the surface using the normal curvature at 0p  (for the definition of the 
normal curvature, see Lipschutz, 1969, Eq. 9.14). If the normal curvature is 
positive/negative for all curves crossing 0p , the surface is convex/concave at 0p . If the 
normal curvature has alternating signs at 0p , the surface is saddle-shaped. 
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Fig. 5.  Azimuthal dependence of the normal curvature in the singularity (left-hand plots) and the 
Gaussian curvature in the immediate vicinity of the singularity (right-hand plots) as functions of 
polar angle ϕ . The kiss singularity is along the fourfold symmetry axes in two tetragonal solids (a) 
and (b). For elastic parameters of the tetragonal solids, see the caption to Fig. 4.  
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Assuming a convex slowness surface under the above definition, the integration line in 
(3) is a closed curve. This curve, however, need not be an ellipse as in the case of the 
standard convex surface, but can be more complicated (see Fig. 4). The standard Gaussian 
curvature can vary along the integration line and can even attain negative values (see 
Fig. 5). If we substitute coordinates 1s  and 2s  by coordinates u and ϕ defined as: 

 ( )2 2
11 1 12 1 2 12 2

1 1 2
2 2

Tu K s K s s K s= = + +x s Ks x  , 2

1
atan s

s
ϕ =  , (23) 

the Jacobian of the transformation becomes 

 1 2
1 1

IJ I J

dud dudds ds
K e e k

ϕ ϕ= =
x x

 , (24) 

where 1 2( , ) (cos ,sin )T Te e ϕ ϕ= =e , and ( ) IJ I Jk K e eϕ =  denotes the normal curvature 
in the singularity. Equation (3) can be rearranged as follows 

 ( ) ( ) ( )02
1,

8
far k l

kl
S

H t g gG t t u du d
kv ε

δ ϕ
π ρ

= − − ⋅ +∫x p x
x

&  . (25) 

Integrating over u, we can write  

 ( )
( )0 2

02
1,

8
far k l

kl

t g gG t d
kv

πδ
ϕ

π ρ

− ⋅
= ∫

p x
x

x
 . (26) 

Summing (26) for the S1 and S2 waves, we arrive at the final form of the asymptotic 
Green function in the kiss singularity in general anisotropy 

 ( )
( )1 2 2 2 02 2

0 02 1 2
1,

8

S S S S
Sfar k l k l
kl S S

tg g g gG t d d
v k k

π π δ
ϕ ϕ

π ρ

− ⋅ 
= +  

 
∫ ∫

p x
x

x
 , (27) 

where 1Sk  and 2Sk  are the normal curvatures of the S1 and S2 slowness sheets in the 
singularity, and dyadics 1 1S Sg g  and 2 2S Sg g  are defined in (16). 

To evaluate the integrals in (27) we should express polarization vectors near the 
singularity as a function of angle ϕ  for both degenerate waves. Let us introduce angle Φ  

defining the orientation of polarization vectors 1Sg  and 2Sg  of the S1 and S2 waves in 
the immediate vicinity of the singularity: 

 1 1 2cos sinS S S= Φ + Φg e e  , 2 1 2sin cosS S S= − Φ + Φg e e  , (28) 
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where vectors 1Se  and 2Se  are arbitrarily chosen orthonormalized vectors in the plane 
perpendicular to the P-wave polarization vector Pg . Angle ( )ϕΦ  is expressed by the 
equation (Shuvalov, 1998, Eq. 2.41)  

 ( )cot 2 IJ I J

KL K L

F e e
G e e

ϕΦ =  , (29) 

where matrices F and G are defined as (Shuvalov, 1998, Eq. 2.16) 

 ( )
( ) ( )

( )1 1 2 2 1 1 2 2
2 2
1S S S S S S S S

jk ijkl i l i l j k j k
S P

F a e e e e q q q q
v v

= − + −
−

 , 

 ( )
( ) ( )

( )1 1 2 2 1 1 2 2
2 2
1S S S S S S S S

jk ijkl i l i l j k j k
S P

G a e e e e q q q q
v v

= + + +
−

 , (30) 

 ( )1 1 1S S S
j ijkl i l l i kq a e n e n n= +  , ( )2 2 2S S S

j ijkl i l l i kq a e n e n n= +  , 

where n denotes the direction of the slowness vector in the singularity. Note that matrices 
F and G also control the topological charge of the field of polarization vectors in the 
singularity, which can attain values 0, 1 or �1 (see Shuvalov, 1998, Table 1). 

Substituting equations (28) − (30) into (27) we obtain the final expression for the 
asymptotic Green function. The complexity of the obtained integral does not allow its 
analytic evaluation for general anisotropy, hence the integral should be evaluated 
numerically. Under higher anisotropy symmetries, the integral simplifies and its analytic 
evaluation becomes possible. 

 
6. KISS SINGULARITY IN TETRAGONAL AND CUBIC SYMMETRIES 

 
Let us consider the kiss singularities along the fourfold symmetry axes in tetragonal 

and cubic media. The following density-normalized elastic parameters define the 
tetragonal symmetry (Musgrave, 1970):  

 11 22a a=  ,   33a  ,   13 23a a=  ,   12a  ,   44 55a a=  ,   66a  , (31) 

and the cubic symmetry:  

 11 22 33a a a= =  ,   12 13 23a a a= =  ,   44 55 66a a a= =  . (32) 

Remaining elastic parameters are zero. Singularity direction 0p  and the position vector x 
are along the vertical axis in both symmetries. 
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To evaluate the integrals in (27) we have to specify dyadics of polarization vectors 
1 1S Sg g  and 2 2S Sg g  and normal curvatures 1Sk  and 2Sk  using relations (31) and (32). 

Defining vectors 1Se  and 2Se  in (28) as 

 ( )1 1,0,0 TS =e  ,    ( )2 0,1,0 TS =e  , (33) 

we can express 1 1S Sg g  and 2 2S Sg g  as follows: 

 

2

1 1 2

cos sin cos 0

sin cos sin 0
0 0 0

S S

 Φ Φ Φ
 
 = Φ Φ Φ
 
  

g g  , 

 

2

2 2 2

sin sin cos 0

sin cos cos 0
0 0 0

S S

 Φ − Φ Φ
 
 = − Φ Φ Φ
 
  

g g  . (34) 

From (29) we obtain 
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2
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2
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F e e

F e e G e e

 
 Φ = + 
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 , 

 
( ) ( )

2
2 2

1sin 1
2

IJ I J

IJ I J IJ I J

F e e

F e e G e e

 
 Φ = − 

+  

 , (35) 

 
( ) ( )2 2

1sin cos
2

IJ I J

IJ I J IJ I J

G e e

F e e G e e
Φ Φ =

+
 . 

Matrices F and G are defined in (30) and read for tetragonal symmetry: 

 2 2
11 11 33 11 44 13 13 44 33 66 44 44 66 33 44( 2 ) /( )F a a a a a a a a a a a a a a= − − − − − + −  , 

 12 0F =  , 22 11F F= −  , (36) 
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 2 2
12 12 33 12 44 13 13 44 33 66 44 44 66 33 44( 2 ) /( )G a a a a a a a a a a a a a a= − − − + − − −  , 

 11 0G =  , 22 0G =  , (37) 

and for cubic symmetry: 

 2 2
11 11 11 44 12 12 44 11 44( 2 2 ) /( )F a a a a a a a a= − − − −  , 

 12 0F =  , 22 11F F= −  , (38) 

  

 2 2
12 11 12 11 44 12 12 44 44 11 44( 3 2 ) /( )G a a a a a a a a a a= + − − − −  , 

 11 0G =  , 22 0G =  . (39) 

The topological charge of the field of polarization vectors in the singularity is determined 
as (Shuvalov and Every, 1996, Eq. 45)  

 ( )11 12signdn F G=  . (40) 

Using (36)-(39), equations (35) can be further simplified: 

 2 11
2 2 2 2
11 12

cos 21cos 1
2 cos 2 sin 2

F

F G

ϕ

ϕ ϕ

 
 Φ = +
 + 

 , 

 2 11
2 2 2 2
11 12

cos 21sin 1
2 cos 2 sin 2

F

F G

ϕ

ϕ ϕ

 
 Φ = −
 + 

 , (41) 

 12
2 2 2 2
11 12

cos 21sin cos
2 cos 2 sin 2

G

F G

ϕ

ϕ ϕ
Φ Φ =

+
 . 

The normal curvatures 1Sk  and 2Sk  in (27) can be expressed as follows (Shuvalov and 
Every, 1996, Eq. 45):  

 ( )1, 2 2 2 2 2

44

1 1 cos 2 sin 2
2

S Sk f g h
a

ϕ ϕ ϕ = ± + 
 

 , (42) 

where the plus sign stands for the S1 wave (fast S) and the minus sign for the S2 wave 
(slow S). Quantities f, g and h are defined for tetragonal symmetry as 

 2 2
11 33 11 44 13 13 44 33 66 44 44 66 33 44( 2 ) /( )f a a a a a a a a a a a a a a= − − − + − − −  , 
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 11g F=  , 12h G=  , (43) 

and for cubic symmetry as 

 2 2 2
11 12 12 44 44 11 44( 2 2 ) /( )f a a a a a a a= − − − −  , 

 11g F=  , 12h G=  . (44) 

It follows from the stability conditions (Helbig, 1994; Shuvalov and Every, 1996) that 
0f > , f g>  and f h> . Therefore, the slowness sheet of the S1 wave is always convex 

in the singularity. The slowness sheet of the S2 wave is convex if f g>  and f h> .  
Taking into account that  

 
2

2 2 2 2 2 2 2 20 11 12 11 12

cos 2 1 0
cos 2 sin 2 cos 2 sin 2

d
F G f F G

π ϕ ϕ
ϕ ϕ ϕ ϕ

=
+ ± +

∫  , (45) 

we can simplify the integrals in (27) and obtain 

 
1 1

2
0 1 1

1 0 0
0 1 0
0 0 0

S S

S S
d

k K

π πϕ
 
 =  
  

∫
g g

 , 
2 2

2
0 2 2

1 0 0
0 1 0
0 0 0

S S

S S
d

k K

π πϕ
 
 =  
  

∫
g g

 . (46) 

Quantity 1, 2S SK  is defined as 

 2
0 1, 21, 2

1 1
2 S SS S

d
kK

π ϕ
π

= ∫  , (47) 

and will be referred to as the �generalized Gaussian curvature�. The integral in (47) can be 
evaluated by means of elliptic integrals, or numerically. If a surface has a regular shape, 
the generalized Gaussian curvature yields the value of the standard Gaussian curvature. 

Finally, the asymptotic Green function in the kiss singularity in tetragonal and cubic 
symmetries reads 

 ( )
1 2

1 1 1,
8

Sfar kl k l
kl S S

n nG t t
v vK K

δ δ
πρ

   −
 = + −     

x
x

x
 , (48) 

where 1SK  and 2SK  are the generalized Gaussian curvatures of the S1 and S2 slowness 
sheets in the singularity, v is the group velocity, ρ  is the density of the medium, x  is the 
distance of the observation point from the source, and n is the direction of the phase or 
group velocities in the singularity. The formula is valid for the generalized convex shape 
of the slowness surface in the singularity. 

Formula (48) derived for cubic and tetragonal symmetries is very similar to (22) 
derived for transverse isotropy. The only difference is that we use the generalized 
Gaussian curvatures instead of the standard Gaussian curvatures of the S waves in the 
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singularity. The reason is that the shape of the slowness surface is not regular in the 
singularity in tetragonal or cubic symmetries, hence, the standard definition of the 
Gaussian curvature fails. 

 
7. CONCLUSION 

 
The far-field asymptotic Green function in the kiss singularity is more complex than 

that valid in regular directions. The complications arise due to the singularity in the field 
of polarization vectors and due to the irregular shape of the slowness surface. In general 
anisotropy, the amplitude of the Green function is expressed in the form of a 1-D integral. 
The integrand contains a dyadic of polarization vectors in the immediate vicinity of the 
singularity and an azimuthally dependent normal curvature in the singularity. The integral 
can be evaluated analytically for the singularity along the symmetry axis in transversely 
isotropic solids because the behaviour of the polarization vectors is simple, and the shape 
of the slowness surface is regular. The amplitude of the Green function is expressed by 
means of the Gaussian curvature of the slowness surface in the singularity. The kiss 
singularity along the fourfold symmetry axes in tetragonal and cubic media is more 
complicated. The shape of the slowness surface is not regular, and the Gaussian curvature 
is not defined in the singularity. In this case, the Gaussian curvature must be substituted 
by the generalized Gaussian curvature.  

The derived formulae for the Green function are valid in the direction strictly along the 
singularity and cannot be applied to near-singularity directions. The Green function in the 
near-singularity directions is more complicated being affected by additional near-
singularity terms. 
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APPENDIX A: MATRICES F AND G FOR GENERAL ANISOTROPY 
 
We assume the direction of kiss singularity 0p  along the p3-axis and vectors 1Se and 
2Se  parallel to the p1- and p2-axis: 

 ( )0,0,1 T=n  ,   ( )1 1,0,0 TS =e    and   ( )2 0,1,0 TS =e  . (A1) 

Inserting (A1) into (30) we obtain  

 2 2
11 11 33 11 44 13 13 55 33 66 36 36 45(F a a a a a 2a a a a a 2a a= − − − − + + + 

 2 2
44 66 45 55 33 44) / ( - )a a a a a a+ −  , (A2) 

 12 13 36 13 45 16 33 16 44 23 36 23 45 26 33 26 44 (F a a a a a a a a a a a a a a a a= − − + − + + − + + 

 36 44 36 55 44 45 45 55 33 44)/( ),a a a a a a a a a a− + − −  (A3) 

 2 2
22 22 33 22 44 23 23 44 33 66 36 36 45 ( 2 2F a a a a a a a a a a a a  = − + + + + − − +  

 2 2
44 44 66 45 33 44) / ( ),a a a a a a− − −  (A4) 

 11 13 36 13 45 16 33 16 44 36 55 45 55 33 442( ) /( )G  a a a a a a a a a a a a a a= − − + − − − −  (A5) 

 2
12 12 33 12 44 13 23 13 44 23 55 33 66 36(G  a a a a a a a a a a a a a= − − − − + − − 

 2
36 45 44 55 44 66 45 33 442 ) / ( )a a a a a a a a a− − − −  , (A6) 

 22 23 36 23 45 26 33 26 44 36 44 44 45 33 442( ) /( )G  a a a a a a a a a a a a a a= − − + − − − −  . (A7) 

Remaining elements of F and G are not specified because they are not used in the 
calculations. 
 


