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ABSTRACT 
 
Determination of the ray vector (the unit vector specifying the direction of the group 

velocity vector) corresponding to a given wave normal (the unit vector parallel to the 
phase velocity vector or slowness vector) in an arbitrary anisotropic medium can be 
performed using the exact formula following from the ray tracing equations. The 
determination of the wave normal from the ray vector is, generally, a more complicated 
task, which is usually solved iteratively. We present a first-order perturbation formula for 
the approximate determination of the ray vector from a given wave normal and vice versa. 
The formula is applicable to qP as well as qS waves in directions, in which the waves can 
be dealt with separately (i.e. outside singular directions of qS waves). Performance of the 
approximate formulae is illustrated on models of transversely isotropic and orthorhombic 
symmetry. We show that the formula for the determination of the ray vector from the wave 
normal yields rather accurate results even for strong anisotropy. The formula for the 
determination of the wave normal from the ray vector works reasonably well in directions, 
in which the considered waves have convex slowness surfaces. Otherwise, it can yield, 
especially for stronger anisotropy, rather distorted results. 

 
K e y  w o r d s :  wave normal, ray vector, weak anisotropy 
 

1. INTRODUCTION 
 
It is well known that the first-order perturbations of magnitudes of phase and group 

velocities due to perturbation of elastic parameters are equal, see Backus (1965). 
However, the directions of the wave normal and of the ray vector generally differ. The 
determination of the ray vector corresponding to a given wave normal is an easy task 
(Musgrave, 1970; Červený et al., 1977; Červený, 2001). The determination of the wave 
normal from the ray vector is more complicated. It is because the wave normal and the ray 
vector are related by a complicated nonlinear formula (see the above references), which 
must be, in most cases, solved iteratively. Moreover, the formula can yield even 
multivalued solutions due to the triplication of qS-wave surfaces The problem simplifies 
for weakly anisotropic media. In this case, the first-order perturbation method can be 
applied (Jech and Pšenčík, 1989) and the formula for the ray vector can be linearized. 
This approach has been applied by Vavryčuk (1997, Eq. 19) for transversely isotropic 
media. In this paper, the approach is used for weak anisotropy of arbitrary symmetry 
(Pšenčík, 1996). We expect that the derived formulae can find applications in the 
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estimation of elastic parameters of a homogeneous anisotropic medium from observed 
deviations of wave normal and ray vector. The formula can be also used in two-point ray 
tracing in homogeneous anisotropic media, to find the wave normal corresponding to the 
direction between two given points. Several applications are also mentioned by Song and 
Every (2000). 

In Sec. 2, we summarize basic results of the first-order perturbation method for weakly 
anisotropic media. We use them to derive an approximate formula relating the wave 
normal nj and the ray vector Nj and vice versa in Sec. 3. We also give approximate 
formulae for the group velocity vectors of all three types of waves, expressed as a function 
of the ray vector. In Sec. 4. accuracy of the mentioned formulae is tested on three 
numerical examples. Two examples represent transversely isotropic media with vertical 
axes of symmetry (VTI media). The third example represents an orthorhombic medium 
with symmetry planes coinciding with coordinate planes. 

 
2. APPROXIMATE FORMULAE FOR THE PHASE VELOCITY AND POLARIZATION 

VECTORS 
 
In the following, the lowercase indices attain values 1, 2, 3, the uppercase indices only 

values 1 and 2. Einstein summation convention is used over repeating indices. 
Let us consider a weakly anisotropic medium of an arbitrary symmetry specified by 

the tensor of the density-normalized elastic parameters aijkl, and an isotropic reference 
medium specified by the velocity c0, where c0 = α for the P wave and c0 = β for S waves. 
The reference medium is chosen so that its elastic properties do not differ much from the 
weakly anisotropic medium. Let us denote by nj the wave normal and by  and  
two unit vectors so that the three vectors form a mutually perpendicular triplet. In the 
plane perpendicular to nj, the vectors  and e  make an angle φ with vectors  and 

 spanning the same plane so that 

( )1
je ( )2

je

)( )1
je ( )2

j
(1
ji

( )2
ji

 ( ) ( ) ( )1 21 cos sinj j je i iφ φ= +  ,  ( ) ( ) ( )1 22 sin cosj j je i iφ φ= − +  . (1) 

The vectors  and i  are mutually perpendicular unit vectors which can be defined, 
for example, as follows: 

( )1
ji ( )2

j

 ( ) ( )1 1 2
1 3 2 3 3, ,i D n n n n n−≡ −

G
1  ,  ( ) ( )2 1

2 1, ,0i D n n−≡ −
G

 , (2) 

where 

 ( )1 22 2
1 2D n n= +  , 2 2 2

1 2 3 1n n n+ + =  . (3) 

The vector  is chosen so that i e( )3
ji ( ) ( )3 3

jj j n≡ ≡ . For the above specification of a weakly 
anisotropic medium and of a wave normal, we can introduce a weak anisotropy matrix 

, see Eq. (8’) in Jech and Pšenčík (1989) or Eq. (11) in Pšenčík and Gajewski (1998), ( )i
mnB
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 ( ) ( ) ( ) ( ) ( ) 2
0

m n m ni
mn ijkl j l ijkl j l mni ik kB a n n i i a n n i i c δ= ∆ = −  . (4) 

Here ∆aijkl denotes perturbation from an isotropic reference medium, in which c0 = α for 
m = n = 3 and c0 = β for m = n = 1, 2. The matrix  results from perturbation of the 
Christoffel matrix, see Jech and Pšenčík (1989) and Červený (2001). It plays an important 
role in all formulae describing weak anisotropy. The superscript (i) indicates that the 
matrix  is calculated using the vectors i . 

( )i
mnB

( )i
mnB ( )m

j

For a fixed wave normal, the perturbation theory yields the following formulae for the 
phase velocity and polarization vectors. The phase velocity in a weakly anisotropic 
medium is given by (see Eqs. (8) and (18) of Jech and Pšenčík, 1989) 

 ( )
3 0 3 33

1
2

ic c c Bα
α

= + ∆ ≅ +  (5a) 

for the qP wave and by 

 ( )
1 0 1 11

1
2

ec c c Bβ
β

= + ∆ ≅ +  , ( )
2 0 2 22

1
2

ec c c Bβ
β

= + ∆ ≅ +  (5b) 

for qS waves. The symbol ∆c3 denotes perturbation of the phase velocity for qP wave and 
∆c1 and ∆c2 for qS waves. The symbol  denotes an element of the weak anisotropy 

matrix calculated using vectors 

( )e
mnB

( )I
je , see below. 

The polarization vector of the qP wave is given by (see Eqs. (11) and (23) of Jech and 
Pšenčík, 1989) 

 ( ) ( )
( ) ( ) ( ) ( )1 2
13 233 3

2 2

i i
j j

j jj j
B i B i

g n g n
α β

+
= + ∆ ≅ +

−
 . (6a) 

The polarization vectors of qS waves are given by 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2
231 1 1 1 13

2 2
11 22

ee
j

jj j j j e e

B eB
g e g e n

B Bβ α

 
 = + ∆ ≅ + +
 − − 

 , 

 ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1
132 2 2 2 23

2 2
11 22

ee
j

jj j j j e e

B eB
g e g e n

B Bβ α

 
 = + ∆ ≅ + −
 − − 

 . (6b) 

The matrix  is a symmetric matrix whose elements are expressed in terms of elements 

of the matrix  and especially chosen angle φ for which 

( )e
mnB

i
mnB( ) ( )

12 0eB = . This choice of angle 

φ yields the vectors ( )I
je , which can be used as zero-order approximation of the 
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polarization vectors of qS waves in the isotropic reference medium. The elements of the 
matrices  and  are related in the following way: ( )e

mnB

( )
11B B

( )i
mnB

cos

( )
22 sin

( ) ( )
12 11= −

( )
13

(
33

e iB=

( )

( )
12

11

2 iB

B B−

j l in n

n 2φ

( )
mnB a

( )
33
i

( )
11

e

j kn n n

2 2
3 α

2 2
1 β

2
3 ijc a∼

 ( ) ( ) ( )2 2
11 12 222 cos sin sine i i iB Bφ φ φ φ= + +  , 

 ( ) ( ) ( )2 2
11 12 222 cos sin cose i i iB B B Bφ φ φ φ= − +  , 

 ( )( ) ( ) ( )2 2
22 12cos sin cos sine i i iB B B Bφ φ φ+ −  , φ

  ,   ( ) )
33B ( ) ( )

13 23cos sine i iB B Bφ φ= +  ,   ( ) ( ) ( )
23 13 23sin cose i iB B Bφ φ= − +  . (7) 

Let us note that equations (6b) fail when  is close to . This happens in the 

vicinity of the qS-wave singularities. From the equation 

( )
11

eB ( )
22
eB

0( )
12

eB = , we can find the formula 
for the determination of the angle φ, 

 
( )
22

ta i i=  . (8) 

Alternatively, the matrix , can be expressed in the following way analogous to (4) ( )e
mnB

 ( ) ( ) 2
0

e m n
ijkl mnke e c δ= −  . (9) 

The vectors ( )I
je  in Eq. (9) are given by (1) with φ specified in Eq. (8). From (5) and (6), 

we can see that the matrix  appears only in the expressions for qS waves. ( )e
mnB

Let us mention that approximate values of phase velocities in the examples shown 
later were calculated by taking square roots of the following first-order formulae for the 
square of the qP-wave phase velocity, 

  , (10a) c B≅ +

and for the squares of the qS-wave phase velocities 

  ,  . (10b) c B≅ + ( )2 2
2 22

ec Bβ≅ +

Eqs. (10) follow straightforwardly from (5) by neglecting second-order terms. Using 
Eq. (4) in Eq. (10a) we get for qP waves 

  , (11a) kl i ln

see Eq. (14) in Pšenčík and Gajewski (1998). Using Eq. (9) in Eqs. (10b), we get for qS 
waves 
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  ,  . (11b) ( ) ( )2 1
1 ijkl j l i kc a n n e e≅ 1 2

k

k

( ) ( )2 2
2 ijkl j l i kc a n n e e≅

For similar expressions, see Farra (2001). We can see that the expressions for the square 
of the phase velocity (11) are independent of the choice of the parameters of the reference 
medium. 
 

3. RELATION BETWEEN WAVE NORMAL AND RAY VECTOR 
 
The approximate formulae for the phase velocities and polarization vectors presented 

in the previous section follow from formulae derived by Jech and Pšenčík (1989). In this 
section, we discuss a different topic, namely approximate relation of the ray vector and the 
wave normal, and approximate formulae for the group velocity. Let us start from the 
formula for the group velocity vector vj in an anisotropic medium, see e.g. Musgrave 
(1970), Červený et al. (1977), Červený (2001): 

  . (12) 1
j j ijkl l iv v N c a n g g−= =

For simplicity, the superscripts denoting the type of the considered wave are omitted. In 
Eq. (12), v and c are the group and phase velocities and gj denotes the polarization vector 
of a considered wave. Generally, the group- and phase-velocity vectors differ in 
anisotropic media by their magnitudes v and c as well as directions Nj and nj. The 
determination of the ray vector Nj from the wave normal nj can be performed with the use 
of exact relation (12). For approximate determination of nj from Nj, we use the first-order 
perturbation method. We seek the ray vector Nj as a perturbation of the wave normal nj, 

  , (13a) ( ) ( )1 2
1 2j j j j j jN n N n A e A e= + ∆ = + +

where AI (I = 1, 2) are coefficients to be determined. The group velocity v can be 
expressed as 

  , (13b) 0v c v= + ∆

where ∆v is the perturbation of the group velocity 
Using Eqs. (13) and neglecting second-order perturbations, the group velocity vector vj 

can be expressed as a sum of the component parallel to the wave normal and a component 
perpendicular to it: 

  . (14) ( ) ( ) ( )( )1 2
0 0 1 2j j j jv c v n c A e A e= + ∆ + +

Similarly, we can expand the RHS of Eq. (12) for wave normal kept fixed. In such  
a way, we get an alternative expression for the group velocity vector vj : 

  [1
0 0j j j ijkl l iv c n cn c a n e e−= − ∆ +

  . (15) ( ) ( )( ( ) ( ) )2 2 2
k k j k k j k k j jn e g n e e n g e nα β β + − ∆ − + ∆ − 
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Comparison of projections of group velocity vector vj given by (14) and (15) onto the 
wave normal yields 

  . (16) v c∆ = ∆

This is a well-known identity (Backus, 1965), indicating that the phase and group 
velocities have equal magnitudes in the first-order approximation of the perturbation 
theory. 

Comparing projections of the group velocity vector vj given by (14) and (15) onto the 
vector ( )I

je  yields sought coefficients AI : 

 ( )2
0

I
I ijkl l i k jA c a n e e e− =   

 ( ) ( ) ( )( )( ( ) ( )( ) ( ) ( )( ))2 2 I I
k k j k k j k k jj jn e g e n e e e n g e eα β + − ∆ − + ∆ 

I
j

)2
ji

je

je

 . (17) 

Using (13a) and (17) we can write an approximate expression relating the ray vector Nj 
and the wave normal nj 

  , (18) ( )j j j kN n N n= + ∆

where the term ∆Nj reads for the qP wave: 

  (19a) ( ) ( ) ( ) ( ) ( )(3 2 1
13 232 i i

j jN B i Bα −∆ = +

and for qS1 and qS2 waves: 

  , ( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 1 1
11 13

e e
ijkl l jj i kN a n e e B n Bβ −∆ = ∆ − −

  . (19b) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2
22 23
e e

ijkl l jj i kN a n e e B n Bβ −∆ = ∆ − −

Since AI is a first-order quantity, Eq. (13a) implies that everywhere, where a first-order 
quantity is multiplied by Nj or nj, these two vectors are interchangeable. This means that, 
within the first-order approximation, with respect to ∆aijkl, there is no difference if the 
perturbation ∆Nj is expressed with respect to nj or Nj. This makes possible to rewrite 
Eq. (18) within the same first-order approximation, into the form 

  . (20) ( )j j j kn N N N= − ∆

In (20), ∆Nj (Nk) is determined from (19) with nj substituted by Nj. Eq. (20) should work 
in directions, in which the considered wave has a convex slowness surface. It cannot 
work, however, when the slowness surface is concave or hyperbolic (this indicates 
triplication of the group velocity surface and three values of the function nj = nj (Nk) for 
one Nk). Since Eq. (20) can yield only a single value of nj for a value of Nk, the equation 
cannot, in principle, describe properly the exact behaviour of the function nj = nj (Nk). In 
addition, we should expect a worse performance of Eq. (20) than of Eq. (18), caused by 
the strong nonlinearity of the term ∆Nj with respect to the wave normal nj. Eqs. (18) and 
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(20) with (19) represent sought approximate formulae for the determination of the ray 
vector from wave normal and vice versa. 

From (14), (16), (18) and (19), we can also derive approximate formulae for the group 
velocity vector in a weakly anisotropic medium. The formulae can be expressed both in 
terms of the wave normal nj and the ray vector Nj. For qP waves, the group velocity 
vector has the form 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )3 3
3 k j k kj jv c n n N n c Nα α α= + ∆ + ∆ = + ∆ 3

3 jN  . (21a) 

For qS1 and qS2 waves, the group velocity vectors are 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )1 1
1 1k j k kj jv c n n N n c Nβ β β= + ∆ + ∆ = + ∆ 1

jN  , 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )2 2
2 2k j k kj jv c n n N n c Nβ β β= + ∆ + ∆ = + ∆ 2

jN  . (21b) 

For ∆ck and  see (5) and (19), respectively. ( )k
jN∆

Let us mention an interesting phenomenon. If we compare Eq. (6a) and Eq. (21a) and 
take into account Eq. (19a), we can see that the qP-wave polarization vector, qP-wave 
group velocity vector and the wave normal are coplanar in weakly anisotropic media. This 
is an extension of the observation made by Crampin (1981) for general anisotropy in 
symmetry planes. As Crampin (1981), we can also observe that the deviation of the group 
velocity and polarization vectors from the wave normal is in the same direction. All three 
vectors become parallel in the longitudinal directions (Helbig, 1994). In this case, the 
elements ( )

3
i

IB  of the weak anisotropy matrix vanish. 
 

4. NUMERICAL EXAMPLES 
 
We illustrate the accuracy of the derived formulae on three models of anisotropic 

media. Model A and Model B are transversely isotropic with vertical axes of symmetry 
(VTI). Model A is the Shearer and Chapman (1989) Model 1 (thin water-filled cracks), 
Model B is Model 4 of the same authors (thin water-filled cracks – extremely anisotropic).  
The Model C is orthorhombic, adopted from Farra (2001). Anisotropy (calculated as 
2 (cmax – cmin) / (cmax + cmin) × 100%) of Model A is about 3.5% for qP wave and about 
11.2% for qS waves. Anisotropy of Model B is about 9% for qP wave, 29% and 30% for 
qS waves. We can see that anisotropy of qS waves in Model B is rather strong. Anisotropy 
of Model C is 14% for qP waves and 7% and 5% for qS waves. Reference velocities used 
are α = 4.41 and β = 2.42 km/s in Model A, α = 4.30 and β = 2.28 km/s in Model B, and 
α = 3.17 and β = 2.00 km/s in Model C. 
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Fig. 1. Test of approximate formulae (18) (top) and (20) (bottom) for qP wave in Model B. 
Approximate curves (dotted lines) are compared with exact curves (solid lines). The wave normal 
and the ray vector are specified by their angles (in degrees) with the axis of symmetry. 
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Fig. 2. Test of approximate formulae (18) (left column) and (20) (right column) for qS waves in 
Model A (top) and Model B (bottom). qSV wave − blue, SH wave − red. Approximate curves 
(dotted lines) are compared with exact curves (solid lines). The wave normal and the ray vector are 
specified by their angles (in degrees) with the axis of symmetry. 

 
 
 

4 . 1  V T I  S y m m e t r y  

Model A is characterized by the density-normalized elastic parameters Aij, in  
(km/s)2, with values: A11 = A22 = 20.22, A33 = 20.04, A12 = 7.46, A13 = A23 = 7.41, 
A44 = A55 = 5.10, A66 = 6.38. Model B is characterized by the density-normalized elastic 
parameters Aij, in (km/s)2, with values: A11 = A22 = 20.16, A33 = 19.63, A12 = 7.40, 
A13 = A23 = 7.26,  A44 = A55 = 3.48,  A66 = 6.38. 

The accuracy of approximate formulae (18) and (20) for the determination of the ray 
vector Nj from a given wave normal nj and vice versa is generally rather high for the qP 
wave as can be seen from Figure 1. The upper plot shows results obtained with 
approximate formula (18), the bottom plot with formula (20) for Model B. The wave 
normal and the ray vector are specified by their angles (in degrees) with the axis of 
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symmetry. The comparison of approximate curves shown by dotted lines with exact 
curves shown by solid lines indicates quite a high accuracy of the approximate formulae. 

The upper plots in Figure 2 show a comparison of the exact (solid line) and 
approximate (dotted line) curves for Model A. The bottom plots show the same for 
Model B. The left-hand plots show Nj = Nj (nk), see Eq. (18), the right-hand plots show 
nj = nj (Nk), see Eq. (20). The angles of 0° correspond to the wave normal or ray vector 
along the symmetry axis, the angles of 90° correspond to the wave normal or ray vector 
perpendicular to the symmetry axis. For an isotropic medium the curves would be straight 
lines. Deviations from such lines indicate anisotropy. The exact and approximate curves 
Nj = Nj (nk) for Model A match each other very well for both qS waves The approximate 
formula nj = nj (Nk) for the SH wave in Model A is of a similar accuracy. The accuracy is, 
however, rather low for the qSV wave. The approximate curve only indicates the basic 
trend of the exact curve. This effect is considerably more pronounced in the case of the 
qSV wave in Model B. The approximate formula fails because the single-valued 
approximate curve cannot fit the multi-valued exact curve. This is a consequence of the 
strong nonlinearity of the term ∆Nj with respect to the wave normal nj. The approximate 
curves Nj = Nj (nk) and nj = nj (Nk) for the SH wave for Model B show slightly greater 
deviations from the exact ones (anisotropy of Model B is rather strong) than in the 
Model A. The approximate curve Nj = Nj (nk) for the qSV wave has comparable accuracy. 
In this case, some ray vector directions correspond to three different phase normal 
directions. This is an indication of the triplication of the corresponding wavefront. 

The accuracy of the formula (18) for Model A is illustrated in Figure 3. The upper plot 
shows exact angular deviation of the ray vector of qS waves from the wave normal as  
a function of the direction of the wave normal. The bottom plot shows the angular errors 
of the approximate formula (18): deviations of the approximate ray vector from the exact 
one in degrees. We can see in the upper plot that the deviation of the ray vector from the 
wave normal is always to one side and can reach 12° for the qSV wave and 6° for the SH 
wave at maximum. The maximum errors of the approximate formula (18) are about 0.45° 
for the qSV wave and nearly 0.5° for the SH wave. The above curves have similar forms 
also for Model B, only values are different. The maximum deviation of the ray vector 
from the wave normal can reach 30° for the qSV wave and 20° for the SH wave. The 
maximum errors of the approximate formula (18) are about 3.5° for both qS waves in 
Model B. 

Figure 4 shows sections of the group velocity surfaces of qSV and SH waves as  
a function of the direction of the ray vector, see (21b). The ray vectors Nj in (21b) are 
determined from (18) and (19b) for regularly specified wave normals nj. The upper plot 
corresponds to Model A, the bottom plot to Model B. We can see that (21b) yields, 
generally, less accurate results than previous formulae. It is due to the combination of two 
approximations contained in (21b): the approximation of the direction and the 
approximation of the value of the group velocity. Due to Eq. (16), the group velocity is 
equal to the phase velocity in the first-order perturbation approximation. An interesting 
phenomenon can be observed on the curve corresponding to the section of the qSV wave 
group-velocity surface in Model B. It shows that even the approximate formula can very 
roughly describe triplication of the group velocity surface. 
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Fig. 3. Exact angular differences of the ray vector and the wave normal (top), and error plot of 
angular deviations of the approximate (Eq. (18)) and exact ray vectors (bottom) for qS waves in 
Model A. qSV wave − blue, SH wave − red. The wave normal is specified by its angle (in degrees) 
with the axis of symmetry. 
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Fig. 4. Test of approximate formulae (21b) for the group velocity of qS waves in Model A (top) 
and Model B (bottom). qSV wave − blue, SH wave − red. The approximate curves (dotted lines) are 
compared with exact curves (solid lines). Ray vector is specified by its angle (in degrees) with the 
axis of symmetry. 
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4 . 2  O r t h o r h o m b i c  S y m m e t r y  

Model C is characterized by the density-normalized elastic parameters Aij, in (km/s)2, 
with values: A11 = 10.8, A22 = 11.3, A33 = 8.5, A12 = 2.2, A13 = 1.9, A23 = 1.7, A44 = 3.6, 
A55 = 3.9, A66 = 4.3. 

Figure 5 illustrates accuracy of the approximate formula (18) for the qS1 wave (faster 
of the qS waves). The upper picture shows equal area plot of exact angular deviations (in 
degrees) of the ray vector and the wave normal. The bottom picture shows equal area plot 
of angular errors of the approximate formula (18). Both plots are parameterized by the 
wave normal. The maximum errors of the formula (18) are comparable with maximum 
exact differences between the wave normal and the ray vector. It is, however, necessary to 
emphasize that the maximum errors are concentrated to very narrow strips close to 45° 
inclination of the wave normal. In these directions the qS waves propagate with nearly the 
same phase velocities, i.e., the mentioned directions are singular directions, in which the 
studied formulae cannot, in principle, work properly. For the remaining directions, the 
errors are less than 1°. For the qP wave, the formula (18) yields errors of the same order 
everywhere. The errors are slightly larger for the qS2 wave. For all the waves, the 
approximate formulae work very well in the horizontal and vertical directions, which 
correspond to longitudinal directions. 

 
5. CONCLUSIONS 

 
Approximate formulae relating the ray vector and the wave normal were presented. 

The formulae are applicable to qP wave generally and to qS waves outside singular 
directions. The formulae can be also used for the approximate evaluation of the group 
velocity vector from the ray vector. 

The accuracy of the formulae was tested on three examples of models of anisotropic 
media. The results show that the approximate formulae Nj = Nj (nk) and nj = nj (Nk) work 
better for the qP wave than for the qS waves. For the qS waves, the above formulae fail in 
singular directions and their vicinities. Distorted results are also obtained from the 
formula nj = nj (Nk) in directions of the triplication of the group velocity surface. The 
approximate formula Nj = Nj (nk) works rather well even in these directions. We have 
shown that the approximate formula for the group velocity as a function of the ray vector 
can even roughly describe a triplication. 

The performed study shows that the approximate formulae relating the wave normal 
and the ray vector can be used quite safely for qP waves. For qS waves they must be used 
with a great care, especially when the wave normal is sought from a given ray vector. 
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Fig. 5. Equal area plots of angular differences of the exact ray vector and the wave normal (top) 
and of angular deviations of the approximate (Eq. (18)) and exact ray vectors (bottom) for qS1 wave 
in Model C. Parameterization is in terms of wave normal, horizontal and vertical component of the 
wave normal along horizontal and vertical axis, respectively. 
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