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ABSTRACT 
 
The presented approximate formulas yield a critical value of anisotropy parameter  

σ, for which an incipient off-axis SV-wave triplication occurs in transversely isotropic 
media. The formulas are simple but approximate the exact solution with a high accuracy. 
The best results are obtained using the third-order approximation, which yields accuracy 
at least 30 times higher than the formulas presented by Thomsen and Dellinger (2003). 
The formula works safely for parameters κ = a33/a44 > 2 and 0.2 >  
ε = (a11 – a33) / 2a33 > -0.2, and yields critical values of σ from 0.1 to 0.7. Outside this 
interval, it is recommended to use an exact solution.  

 
 

1. INTRODUCTION 
 
In homogeneous transverse isotropy, the triplications can occur for the SV wave only 

and can be classified into four different types (Musgrave, 1970; Payton, 1983): (1) off-
axis triplication, (2) on-axis triplication near the symmetry plane, (3) on-axis triplication 
near the symmetry axis, and (4) double on-axis triplication (see Fig. 1). The triplications 
are delimited by two cuspidal edge lines on the wave surface. These lines (also called 
caustics) produce energy focusing (Kravtsov and Orlov, 1990; Wolfe, 1998) and phase 
shifting of signals (Bakker, 1998; Červený, 2001). The cuspidal lines (shown as cuspidal 
points in Fig. 2) correspond to two lines of inflection points on the slowness surface 
characterized by the zero Gaussian curvature (see Fig. 3). The lines of inflection points are 
also called parabolic lines (Vavryčuk, 2003a). If the two parabolic lines are not separated 
but coalesce into one, we call this ‘incipient’ triplication (Helbig, 1994, p. 231). Such 
media represent the borderline between media with and without a triplication.  

The conditions under which the triplications occur in transverse isotropy are well 
known (Helbig, 1958; Musgrave, 1970; Payton, 1983; Dellinger, 1991). They are 
elementary except for the off-axis triplication, which is algebraically more involved. For 
this case, several authors proposed simpler but approximate triplication conditions 
(McCurdy, 1974; Musgrave, 1979; Musgrave and Payton, 1984; Alshits and Chadwick, 
1997; Thomsen and Dellinger, 2003). Among these conditions, the condition proposed by 
Thomsen and Dellinger (2003) is particularly interesting, because it is far simpler than the 
other approximations, and provides an insight into which parameters control the off-axis 
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triplication. The validity of the formula is, however, restricted to a limited interval of 
anisotropy parameters. Outside this interval, the accuracy of the formula is rather low. The 
aim of this study is to present an approximation which is more accurate and applicable to 
a broader interval of anisotropy parameters. 
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Fig. 1. Types of triplications in transverse isotropy. Vertical sections of wave surfaces are shown 
for (a) on-axis triplication near the symmetry plane, (b) on-axis triplication near the symmetry axis, 
(c) off-axis triplication, and (d) double on-axis triplication. 
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Fig. 2. Off-axis triplications. (a) No triplication, (b) incipient triplication, (c) small triplication, 
(d) distinct triplication. Elastic parameters are (in km2/s2): a11 = a22 = a33 = 10, a44 = a55 = 4, 
a66 = 5, a12 = a11 − 2a66 = 0, and (a) a13 = 1.5, (b) a13 = 0, (c) a13 = −1.5, (d) a13 = −3. The dots 
in plot (b) mark the directions of the incipient triplication. 
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Fig. 3. The Gaussian curvature. (a) No triplication, (b) incipient triplication, (c) small triplication, 
(d) distinct triplication. The angle measures the deviation of the slowness vector from the symmetry 
axis. The dots mark inflection points on the slowness surface. For elastic parameters of the media, 
see the caption of Fig. 2.  
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2. EXACT TRIPLICATION CONDITION 
 
In this analysis we shall consider transversely isotropic media that satisfy the stability 

conditions (Backus, 1962, Eq. 20; Helbig, 1994, Eqs 5.3 and 5.23), 

  ,    ,   a  ,   33 0a > 44 0a > 66 0> 11 66 0a a− >  ,   ( ) 2
33 11 66 13a a− >a a  , (1) 

the condition for ‘normal polarization’ (Helbig and Schoenberg, 1987),  

  , (2) 13 44 0a a+ >

and the ‘separation’ conditions, which prevent the P and SV slowness or phase-velocity 
surfaces from intersecting, 

  , 11 44 0a a− > 33 44 0a a− >  , (3) 

where akl are the density normalized elastic parameters in Voigt notation. The stability 
conditions are necessary for the medium to be physically realizable. The normal 
polarization and separation conditions are met by overwhelming majority of real 
materials. For analysis under less restrictive conditions than (2) and (3), see Payton (1983) 
and Alshits and Chadwick (1997). 

The condition for the off-axis triplication is expressed as follows (Dellinger, 1991, Eq. 
2.19; Thomsen and Dellinger, 2003, Eq. 9): 

 

( ) ( )

( )( )

2 2
13 44 44 44 33 11 11 33

2
11 33 44

33 44 11 44
13 44

3 3

2 0

a a a a a a a a

a a a
a a a a

a a

+ − + + −

−
+ − − ≥

+
,
 (4) 

where the equality sign stands for the incipient triplication that occurs at the slowness 
angle θ i defined by the following equations: 

 2 33 44

11 33 44
sin

2i
a a

a a a
θ

−
=

+ −
 , 2 11 44

11 33 44
cos

2i
a a

a a a
θ

−
=

+ −
 . (5) 

Condition (4) can also be expressed using the weak-anisotropy parameters σ and ε or 
σ and δ, which represent alternative parameterizations of transverse isotropy (Thomsen, 
1986; Tsvankin and Thomsen, 1994): 

 11 33

332
a a

a
ε

−
=  ,   

( ) (
( )

)2 2
13 44 33 44

33 33 442
a a a a

a a a
δ

+ − −
=

−
 ,   ( )33

44

a
a

σ ε δ= −  . (6) 

These parameters are frequently used in describing transverse isotropy. They become zero 
in isotropy and can serve as a measure of strength of transverse isotropy. Therefore, 
expressing the triplication condition using these parameters, we can better understand how 
strong anisotropy must be to generate triplications (Vavryčuk, 2003b). Among these 
parameters, the crucial role is played by the parameter σ in the triplication condition, 
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because it controls the variation of the phase velocity of the SV wave in the weak-
anisotropy approximation 

 ( )2 2
44 1 2 sin cosSVc a 2σ θ θ= +  , (7) 

where θ  is the slowness angle measured from the symmetry axis. 
The condition for the off-axis triplication (4) expressed in terms of anisotropy 

parameters yields the following cubic equation for the critical value σc of the weak-
anisotropy parameter σ  at which an incipient triplication occurs  

  , (8) 3 2 0c c cA B Cσ σ σ+ + + =

where 

 

( ) ( )

( )
( ) ( )

( )
( )

2

2
2

2
2

2

1 3 32 1 1 ,
1 2 2

2 1 2 1
1

2 2 1 2
1

A

B

C

κ ε κ ε
κ

κ ε κ ε
κ

κ κ ε ε
κ

 = + + + −  

= + + +−

 = − + − −  −

1 ,

1 ,

+


  (9) 

and 

 33

44

a
a

κ =  . 

The solution of Eq. (8) yields an interval of values of the σ parameter the medium 
triplicates for: 

 cσ σ≥  , (10) 

where 

 1
3c u vσ = + −  , (11) 

 

1
2 3 3

2 2 3
q q pu

     = − + +        
 , 

1
2 3 3

2 2 3
q q pv

     = − − +        
 , (12) 

 21
3

p B A= −  , 31 2
3 27

q AB A= − + +C  . (13) 
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Fig. 4. The critical value σc for the incipient off-axis triplication as a function of parameters κ 
and ε. (a) 2 ≤ κ ≤ 4, (b) 4 ≤ κ ≤ 9. 

Note that the other two solutions of the cubic equation (8) are spurious, since they do not 
satisfy conditions (1) or (2). 

The behaviour of σc is shown in Fig 4. The figure shows that σc is significantly 
influenced by κ and ε. Interestingly, low values of κ and ε result in low values of σc. For 
example, if we assume κ = 2 and ε = −0.12, the triplication occurs for σ ≥ σc = 0.2. If we 
define the strength of anisotropy as (cmax – cmin) / (cmax + cmin)⋅200%, where c is the 
phase velocity of the respective wave, then these parameters describe an SV anisotropy of 
8% only. For value κ = 3, corresponding to a P-to-S velocity ratio /P S = 3v v , and for ε 
ranging from −0.2 to 0.2, we obtain σc in the interval σc ∈ 〈0.24, 0.62〉. These values 
correspond to SV anisotropy in the range of 9% to 12% . 

 
 

3. APPROXIMATE TRIPLICATION CONDITIONS 
 
The exact solution (11) of the cubic equation (8) is still rather complicated. Therefore, 

we shall try to simplify it further. The exact solution (11) can be expanded into a power 
series in parameters ε and κ −1. Using only the leading terms of the expansion, we obtain 
an approximate formula for σc in the form:  

  , (14) ( ) ( ) ( )0 1 2 (3) ...cσ σ σ σ σ= + + + +

 ( )0 2
3

σ =  , (15) 
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 ( )1 12 7
3 9

σ ε κ − = − 
 

 , (16) 

 ( )2 2 12 3 31
3 4 81

σ ε εκ − − = − + − 
 

2κ  , (17) 

 ( )3 3 2 1 22 3 43 49 71
3 4 36 81 729

σ ε ε κ εκ− − = − + − 
 

3κ −  . (18) 

Generally, the higher the order of the expansion is considered, the higher the accuracy of 
the formula for σc should be obtained. The first two terms of the expansion, σ (0) and σ (1), 
were also derived by Thomsen and Dellinger (2003). They obtained the following 
approximate formulas for σc (Thomsen and Dellinger, 2003, Eq. 19): 

 12 11
3 9cσ δ κ − ≅ + − 
 

 , (19) 

or alternatively (Thomsen and Dellinger, 2003, Eq. 23) 

 
1

1

112 9
23 1
3

c

ε κ
σ

κ

−

−

+ −
≅

+
 . (20) 

Eq. (19) utilizes the δ parameter instead of ε. As shown later, this lowers the accuracy of 
this approximation. Eq. (20) is equivalent to the first-order approximation (16) meaning 
that if expression (20) is expanded into a power series in the small parameters ε and κ −1, 
the corresponding expansion differs from equation (16) by second- or higher-order terms. 
In the next section, we shall examine accuracy of the derived formulas together with 
formulas (19) and (20) presented by Thomsen and Dellinger (2003). 

 
4. TESTS OF ACCURACY 

 
We test the accuracy of the approximate formulas for σc by calculating the relative 

errors of the approximations, defined as follows: 

 100%
exact aprox
c c

exact
c

e
σ σ

σ

−
= ⋅  . (21) 

The accuracy is examined for the first-, second- and third-order approximations  
(14) – (18) derived in the previous section and compared with the accuracy of Eqs (19) 
and (20). We use the following intervals of parameters: ε ∈ 〈−0.2, 0.2〉 and κ ∈ 〈2, 9〉. 
These intervals are rather broad and should include a majority of geophysically interesting 
materials (note that the materials with a positive ε  are more frequently observed than 
those with a negative ε).  
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Fig. 5. Relative errors (in per cent) of approximate formulas for σc, 2 ≤ κ ≤ 4. (a) Formula by 
Thomsen and Dellinger (2003, Eq. 19), (b) formula by Thomsen and Dellinger (2003, Eq. 23),  
(c) first-order approximation (16), (d) second-order approximation (17). 

 
 
 
Figure 5 shows the relative errors of the Thomsen and Dellinger (2003) 

approximations together with the first- and second-order approximations (16) and (17) 
calculated for κ ∈〈2, 4〉, and Fig. 6 shows the same for κ ∈〈4, 9〉, respectively. Figure 7 
shows the relative errors of the third-order approximation (18). The figures indicate that 
all formulas work better for higher values of κ and for positive values of ε. The accuracy 
is significantly lowered if values of κ and ε decrease. Comparing different 
approximations, the worst accuracy is obtained using formula (19). For example, this 
approximation yields an error of about 20% for values κ = 3 and ε = 0. Compared with 
this approximation, formula (20) is about 1.2 times more accurate and the first-order  
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Fig. 6. Relative errors (in per cent) of approximate formulas for σc, 4 ≤ κ ≤ 9. (a) Formula by 
Thomsen and Dellinger (2003, Eq. 19), (b) formula by Thomsen and Dellinger (2003, Eq. 23),  
(c) first-order approximation (16), (d) second-order approximation (17). 

 
 
 

approximation (16) is about two times more accurate. Interestingly, formula (16) is  
simpler but still more accurate than (20). The second- and third-order approximations (17) 
and (18) are about 10 and 40 times more accurate than approximation (19), respectively. 
Note that the comparison of the accuracy of different approximations is very rough and 
reflects the efficiency of the approximations averaged over the whole considered range of 
parameters κ and ε. Locally, for a specific combination of κ and ε, the comparison can 
yield significantly different values. 
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Fig. 7. Relative errors (in per cent) of the third-order approximation (18) for σc. (a) 2 ≤ κ ≤ 4,  
(b) 4 ≤ κ ≤ 9. 

 
 
 

5. CONCLUSION 
 
The proposed approximate formulas yield a critical value σc of the parameter σ for 

which an incipient off-axis SV-wave triplication occurs in transversely isotropic media. 
Although the formulas are simple, they approximate the exact solution with a high 
accuracy. The best results are obtained by the third-order approximation (14) – (18), 
which yields an accuracy about 40 and 30 times higher than formulas (19) and (20), 
respectively. The formula works safely for parameters κ > 2 and ε > −0.2, and is thus 
applicable to a broad range of TI parameters. Outside this interval, it is recommended to 
use the exact solution. 

The behaviour of σc indicates that triplications do not occur for a fixed strength of 
anisotropy. The critical strength of anisotropy, i.e. the strength of anisotropy for which the 
medium triplicates, depends on the parameters κ and ε. High values of κ and positive ε 
produce high values of σc, implying that the critical strength of the SV-wave anisotropy is 
rather high. On the contrary, low values of κ and negative ε imply that wave fronts in TI 
tend to triplicate more easily, meaning that the critical strength of the SV-wave anisotropy 
is low. For a typical value of κ, κ = 3, which corresponds to /P Sv v = 3 , and for ε 
ranging from −0.2 to 0.2, parameter σc lies in the interval σc ∈〈0.24, 0.62〉 (see Fig. 4). 
These values correspond to SV anisotropy in the range of 9% to 12% . 
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