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ABSTRACT

The exact analytical solution for the plane S wave, propagating along the azis
of spirality in the simple 1-D anisotropic “simplified twisted crystal” model, is com-
pared with four different approzimate ray—theory solutions. The four different ray
methods are (a) the coupling ray theory, (b) the coupling ray theory with the quasi-
isotropic perturbation of travel times, (c) the anisotropic ray theory, (d) the isotropic
ray theory. The comparison is carried out numerically, by evaluating both the ex-
act analytical solution and the analytical solutions of the equations of the four ray
methods. The comparison simultanecously demonstrates the limits of applicability of
the 1sotropic and anisotropic ray theories, and the superior accuracy of the coupling
ray theory over a broad frequency range. The comparison also shows the possible
maccuracy due to the quasi—isotropic perturbation of travel times in the equations of
the coupling ray theory. The coupling ray theory thus should definitely be preferred
to the isotropic and anisotropic ray theories, but the quasi—isotropic perturbation of
travel times should be avoided. Although the simplified twisted crystal model is de-
signed for testing purposes and has no direct relation to geological structures, the
wave—propagation phenomena important in the comparison are similar to those in
the models of geological structures.

In additional numerical tests, the exact analytical solution is numerically com-
pared with the finite—difference numerical results, and the analytical solutions of the
equations of different ray methods are compared with the corresponding numerical
results of 3-D ray—tracing programs developed by the authors of the paper.

Keywords: coupling ray theory, quasi-isotropic approximation, anisotropic
ray theory, isotropic ray theory, validity conditions of ray methods
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1. INTRODUCTION

In the wsotropic ray theory, the velocities of both S—wave polarizations are as-
sumed to be equal, which applies to strictly isotropic models only. In the anisotropic
ray theory, both S—wave polarizations are assumed to be strictly decoupled, which
can only be fulfilled in considerably anisotropic models. Thomson, Kendall and
Guest (1992) demonstrated analytically that the high—frequency asymptotic error
of the anisotropic ray theory is inversely proportional to the second or higher root
of frequency if a ray pass through the point of equal S—wave eigenvalues of the
Christoffel matrix. The coupling ray theory (Coates and Chapman, 1990) is appli-
cable at all degrees of anisotropy, from isotropic to considerably anisotropic mod-
els. The frequency—dependent coupling ray theory is the generalization of both the
zero—order isotropic and anisotropic ray theories and provides continuous transition
between them. PSencék and Dellinger (2001) numerically compared the coupling ray
theory with the isotropic ray theory, anisotropic ray theory and reflectivity method.
One of the simplest models, useful for demonstrating the limits of applicability of
the zero—order isotropic and anisotropic ray theories and for testing the coupling ray
theory, is the “simplified twisted crystal” model. Rumpker, Tommas: and Kendall
(1999) numerically compared their coupling ray theory algorithm, based on the “for-
ward propagator method”, with the anisotropic ray theory in the case of the plane
S wave vertically propagating in several simple 1-D anisotropic models, including
the simplified twisted crystal model.

The “twisted crystal” model is created of a homogeneous anisotropic elastic ma-
terial by uniformly helicoidally twisting the z;z5 coordinate plane about the z3
Cartesian coordinate axis. The great advantage of this model is that the exact an-
alytical solution for the plane S wave propagating along the axis of spirality can be
derived analytically (Lakhtakia, 1994; Klimes, 2004). The general plane—wave solu-
tion for the general initial conditions expressed in terms of displacement and stress
was derived by Lakhtakia (1994), who also presented explicit analytical equations
for the “simplified twisted crystal” model with vanishing elastic moduli ay333 and
@2333, iIn which the uy and wuy displacement components are strictly separated from
the longitudinal ug component. Klimes (2004) concentrated on the 2x 2 one—way
propagator matrices in the simplified twisted crystal model, suitable for comparison
with the coupling ray theory.

The simplified twisted crystal model is designed for testing purposes and has no
direct relation to geological structures, but the rotation of the eigenvectors of the
Christoffel matrix about the ray and the related wave—propagation phenomena are
similar to those in the models of geological structures. In the simplified twisted
crystal model, the rotation of the eigenvectors of the Christoffel matrix corresponds
to the rotation of the crystal axes. In the models of geological structures, the rotation
of the eigenvectors of the Christoffel matrix is usually caused by the heterogeneities
bending rays rather than by the rotation of the crystal axes.

The main objective of this paper is to demonstrate the applicability and accu-
racy of the coupling ray theory, of the anisotropic ray theory and of the isotropic
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ray theory. We compare numerically the exact analytical solution with four dif-
ferent approximate ray—theory solutions. The approximate solutions correspond to
the coupling ray theory of Coates and Chapman (1990) implemented according to
Bulant and Klimes (2002), to the quasi-isotropic perturbation of travel times in-
cluded in the quasi—isotropic approximation of the coupling ray theory according to
Psencik (1998a) and Psenéik and Dellinger (2001), and to the zero—order anisotropic
and isotropic ray theories. For the exact analytical solution and for the analytical
solutions of the equations of the four ray methods, refer to Klimes (2004).

The numerical comparison of the four ray methods with the exact solution in the
simplified twisted crystal model is discussed in Section 4. The numerical comparison
also draws our attention to the differences between various implementations of the
coupling ray theory, based on various quasi-isotropic approximations (Bulant and
Klimes, 2004; Klimes and Bulant, 2004).

In additional numerical tests summarized in Section b, the exact analytical solu-
tion and the approximate analytical ray—theory solutions are compared with analo-
gous numerical results of the general-purpose computer codes developed by the au-
thors of the paper. These comparisons are very important in checking the equations,
in debugging the 3-D ray tracing and coupling-ray—theory programs, in debugging
single—purpose programs for the analytical solutions, and in testing the numerical
accuracy of various computer codes. The exact analytical solution is numerically
compared with the results of finite differences (Vavrycuk, 1999). The analytical
solution of the equations of the coupling ray theory is compared with the results
of the 3-D ray tracing packages ANRAY (Psencik, 1998a,b) and CRT (Cerveny,
Klimes and Psencik, 1988). The analytical solution of the equations of the coupling
ray theory with the quasi—isotropic perturbation of travel times 1s compared with
the results of the 3-D ray tracing package ANRAY. The analytical solution of the
equations of the isotropic ray theory is compared with the results of the 3-D ray
tracing package CRT.

2. MODEL FOR NUMERICAL COMPARISON

In the 1-D anisotropic simplified twisted crystal model, with density—normalized
elastic moduli a;551 = a;551(x3) and constant density g, we take

azzg3z =0 . (1)
The lower—case subscripts take values ¢,j,k,... = 1,2, 3, the upper—case subscripts
take values I, J, K, ... = 1,2. For plane wave u; = u;(x3) propagating along the x3

axis, components ug are fully separated from uz. We choose elastic moduli arsis

iIl ‘he form Of
a a132 2
( 1313 13 3) = UOB (2)

@2313 A2323
with

B (1 + £ cos(2K x5) esin(2K x3) ) )

esin(2Kxz3) 1 —ecos(2Kx3)
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Refer to Klimes (2004) for more details.
We use the simplified twisted crystal model designed by Vavrycuk (1999). Pa-
rameter ¢ in (3), describing the degree of anisotropy, is

_ _—ysin’(0) (4)
1+ ysin®(0)
in the Vavrycéuk’s (1999) notation. The selected numerical values are
vsin?(0) = 0.15 x 0.75 = 0.1125 . (5)
The arithmetic average vg of density—normalized elastic moduli ay313 and asz23 18
vg = aaall +7sin®(0)] (6)
in the Vavrycéuk’s (1999) notation. The selected numerical values are

v2 = 6.0km?s™2 x [140.15 x 0.75] = 6.675 km?s™2 . (7)

The square of the reference isotropic velocity used in the quasi—isotropic perturbation
of travel times is

vh = 6.9km’s™2 . (8)

Parameter K describing the rotation of the crystal axes about the z3 axis has the
value

K =0.032km™" . (9)

The source-receiver distance corresponds to the crystal axes rotated through angle
@ = 7 radians,

3= ]1 ~ 9817477 . (10)

Note that Vavrycéuk (1999) also used %, % and % of the above value.

The central resonant frequency (Klimes, 2004, sec. 3.4; Lakhtakia and Meredith,
1999, sec. 3) is

Vo K

~ 0.0132 Hz (11)

T

and the coupling frequency (Klimes, 2004, sec. 4.2) is
2
‘E‘F%O.%OHZ . (12)

The anisotropic—ray—theory travel times are
T = 36.212310s o 2 40.079682s . (13)
Their arithmetic average, which is the best isotropic travel time, is

T~ 38.145996s . (14)
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3. RELATIVE DIFFERENCES OF THE ONE-WAY
PROPAGATOR MATRICES

For numerical comparison, we define the relative (with respect to the initial
conditions) difference between one-way propagator matrices U and Uy as

A= ﬁTr ([U0 —ufu, - U]) . (15)

This definition is equivalent to equation (87) of Klimes (2004), except for the res-
onant frequencies f € (F'\/1 — [¢], F\/1+ |¢]), but numerically no visible difference
between the definitions has been observed even at resonant frequencies.

If only the first columns u and ug of propagator matrices U and Ug are available
for comparison (package ANRAY), we define the relative difference analogously as

A:\/[uo_u]*[uo_u] . (16)

4. NUMERICAL COMPARISON OF RAY METHODS WITH THE EXACT
SOLUTION THROUGH THE ANALYTICAL SOLUTIONS

The numerical comparison consists of two steps:

(A) The comparison of the numerically evaluated analytical solutions with the corre-
sponding results of computer programs (finite differences, 3-D ray tracing packages
ANRAY and CRT) in order to check the equations and to debug both the 3-D codes
and single—purpose programs for the analytical solutions. For the summary of these
test calculations, refer to Section 5.

(B) The comparison of the exact solution with the analytical solutions of the equa-
tions for the zero—order isotropic and anisotropic ray theories, for the coupling ray
theory of Coates and Chapman (1990), and for the quasi-isotropic perturbation of
travel times included in the quasi-isotropic approximation of the coupling ray theory
according to Psencik (1998a) and Psencik and Dellinger (2001). The results of this
comparison are demonstrated in this section.

4.1. Comparison of four analytical ray—-theory solutions
with the exact solution in the frequency domain

The relative differences of the analytical solutions of the equations for the zero—
order isotropic and anisotropic ray theories, for the coupling ray theory of Coates
and Chapman (1990), and for the quasi-isotropic perturbation of travel times in-
cluded in the quasi—isotropic approximation of the coupling ray theory according
to PSencik (1998a) and Psenéik and Dellinger (2001) from the exact solution are
plotted on a log—log scale in Figure 1. The time—harmonic solutions are compared in
the frequency interval (0.001 Hz, 10 Hz), with frequency step Af = 0.00025 Hz in the
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subinterval (0.001 Hz, 0.1 Hz), step Af = 0.0025 Hz in the subinterval (0.1 Hz, 1 Hz)
and step Af = 0.025 Hz in the subinterval (1 Hz, 10 Hz).

Note that the i1sotropic ray theory is applied to the i1sotropic model with the
best propagation velocity as suggested by Klimes (2004) and that the results of the
quasi—isotropic perturbation of travel times depend on the reference velocity.

The differences from the exact solution correspond to the theoretical discussion
of Klimes (2004). Neither the isotropic ray theory, nor the anisotropic ray theory
is applicable at the coupling frequency. In the simplified twisted crystal model, in
which the difference between the S—wave eigenvalues of the Christoffel matrix is con-
stant along a ray, the high—frequency asymptotic error of the anisotropic ray theory
is inversely proportional to frequency, as expected. On the other hand, Thomson
et al. (1992) demonstrated analytically that the high—frequency asymptotic error
of the anisotropic ray theory is inversely proportional to the second or higher root
of frequency if the ray passes through the point of equal S—wave eigenvalues of
the Christoffel matrix. Their analytical estimate can also be obtained as a high—
frequency approximation to the solution of the coupling equation by Coates and
Chapman (1990, eq. 30; Bulant and Klimes, 2002, eq. 4) in the vicinity of the point
of equal S—wave eigenvalues of the Christoffel matrix.

The coupling ray theory of Coates and Chapman (1990) yields excellent results
in this model, except for the resonant frequencies, which are far outside the valid-
ity regions of the ray theories. The high—frequency asymptotic error of the cou-
pling ray theory is inversely proportional to frequency, but is considerably smaller
than the high—frequency asymptotic error of the anisotropic ray theory, by factor

1211/ 1+ (B22)’ & 36.8 (Klimes, 2004).

On the other hand, the coupling ray theory with the quasi—isotropic perturba-
tion of travel times does not bridge the gap between the isotropic and anisotropic
ray theories; there are frequencies where both the quasi—isotropic perturbation of
travel times and the anisotropic ray theory display a relative error of 60%. Note
that the only effect of the quasi—isotropic perturbation of travel times on the cou-
pling ray theory is the calculation of the anisotropic—ray—theory travel times used
in the coupling equation. Without the quasi—isotropic perturbation of travel times,
the anisotropic—ray—theory travel times are calculated by the numerical quadra-
tures of the corresponding slownesses along the reference ray (Bulant and Klimes,
2002, eq. 2). With the quasi-isotropic perturbation of travel times, the anisotropic—
ray—theory travel times are calculated from the reference travel time by the linear
perturbation with respect to the density—normalized elastic moduli.

The quasi—isotropic projection of the Green tensor, the quasi-isotropic approxi-
mation of the Christoffel matrix, and the common ray approximations do not affect
the coupling-ray—theory solution in the simplified twisted crystal model. The quasi—
isotropic projection of the Green tensor and the quasi—isotropic approximation of the
Christoffel matrix are demonstrated by Bulant and Klimes (2004) in the “oblique
twisted crystal model”. The errors of the isotropic common ray approximation and
anisotropic common ray approximation (Bakker, 2002) for both S—wave polariza-
tions have been studied by Klimes and Bulant (2004).
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Fig. 1. The relative differences of the coupling ray theory of Coates and Chapman (1990)
[green], the quasi-isotropic perturbation of travel times included in the quasi-isotropic
approximation of the coupling ray theory according to Pdenctk (1998a) and Psenéik and
Dellinger (2001) | ], the zero—order anisotropic ray theory [blue] and the zero—order
isotropic ray theory [red] from the exact solution. The two vertical lines denote the
central resonant and coupling frequencies (11), (12). A relative error of 200% occurs, e.g.,
for opposite polarization, or opposite phase. The (up to 1 Hz) quasi-isotropic curve
corresponds to reference velocity (8) used in package ANRAY, the quasi—isotropic
curve corresponds to reference velocity (7).
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Fig. 2. Synthetic seismograms for the initial displacement in the 1 direction modulated
by the Gabor signal of prevailing frequency 1.3 Hz. The z; displacement is on the left, the
z 9 displacement on the right. The exact solution is black, the coupling ray theory of Coates
and Chapman (1990) is and is obscured by the exact solution, the quasi-isotropic
perturbation of travel times included in the quasi-isotropic approximation according to
Psencik (1998a) and Psenéik and Dellinger (2001) with reference velocity (8) is ,
the zero—order anisotropic ray theory is blue, the zero—order isotropic ray theory is red
and is obscured by the blue on the right. The two horizontal lines denote the anisotropic—
ray—theory travel times (13).
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Fig. 3. Synthetic seismograms for the initial displacement in the 1 direction modulated
by the Gabor signal of prevailing frequency equal to coupling frequency 0.26 Hz. The z;
displacement is on the left, the x5 displacement on the right. The exact solution is black,
the coupling ray theory of Coates and Chapman (1990) is and is partly obscured
by the black exact solution, the quasi-isotropic perturbation of travel times included in
the quasi-isotropic approximation of the coupling ray theory according to Psencék (1998a)
and Psencik and Dellinger (2001) with reference velocity (8) is , the zero-order
anisotropic ray theory is blue, the zero—order isotropic ray theory is red and is obscured
by the blue on the right. The two horizontal lines denote the anisotropic—ray—theory travel
times (13).

Stud. Geophys. Geod., 48 (2004) 683



P. Bulant et al.
4.2. Synthetic seismograms for five analytical solutions

The synthetic seismograms corresponding to the exact solution and to the ana-
lytical solutions of the equations of the coupling ray theory of Coates and Chapman
(1990), for the quasi-isotropic perturbation of travel times included in the quasi-
isotropic approximation of the coupling ray theory according to Psenéik (1998a)
and for the zero—order isotropic and anisotropic ray theories are shown in Figures 2
and 3. The reference velocity given by (8) is used.

The initial displacement at £3 = 0 runs in the direction of the x; axis. Its time
dependence has the form of the symmetric Gabor signal

exp (_ [2”41: Ot] 2) cos (27 fol) (17)

with prevailing frequency

fo=1.3Hz (18)

for Figure 2, filtered by the cosine band—pass filter described by frequencies
0.00Hz 0.13Hz 2.47Hz | 2.60Hz . (19)

The frequency step for the fast Fourier transform is Af = 0.0125 Hz. As the prevail-
ing frequency in Figure 2 is five times larger than the coupling frequency, the two
S—wave arrivals are clearly split, and the only visible difference between the exact
solution and the anisotropic ray theory is the slightly different polarization. The
coupling ray theory is nearly exact.

Analogous seismograms for the prevailing frequency, equal to the coupling fre-
quency

fo=026Hz (20)

are shown in Figure 3. The cosine band—pass filter is changed to
0.00Hz | 0.026Hz , 247Hz | 2.60Hz . (21)

The frequency step for the fast Fourier transform is again Af = 0.0125 Hz. The time
shift due to the quasi-isotropic perturbation of travel times (Klimes, 2004, sec. 4.3)
can clearly be seen in both Figures 2 and 3. Since reference velocity vg is greater
than velocity vg, the time shift increases from anisotropic travel time 7 to 7. For
vR = vg, the quasi-isotropic seismogram would be shifted but not shrunk.
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5. NUMERICAL COMPARISON OF ANALYTICAL SOLUTIONS WITH
THE CORRESPONDING RESULTS OF COMPUTER PROGRAMS

The exact analytical solution is numerically compared with the results of finite
differences ( Vavrycuk, 1999). The analytical solution of the equations of the coupling
ray theory is compared with the results of the 3-D ray tracing packages ANRAY
(Psencik, 1998a,b) and CRT (Cerveny et al., 1988). The analytical solution of the
equations of the coupling ray theory with the quasi—isotropic perturbation of travel
times is compared with the results of the 3-D ray tracing package ANRAY. The
analytical solution of the equations of the isotropic ray theory is compared with the
results of the 3-D ray tracing package CRT.

These comparisons are very important in checking the equations, in debugging
the 3-D ray tracing and coupling-ray-theory programs, in debugging the single—
purpose programs for the analytical solutions, and in testing the numerical accuracy
of various computer codes.

We have used the frequency interval (0.001 Hz, 1 Hz), with frequency step Af =
0.00025Hz in the subinterval (0.001 Hz, 0.1 Hz) and step Af = 0.0025Hz in the
subinterval (0.1 Hz, 1 Hz), for the comparison with finite differences. We have used
the frequency interval (0.0 Hz, 2.6 Hz) with frequency step Af = 0.0125 Hz for the
comparison with the results of the 3-D ray tracing packages ANRAY and CRT.

5.1. Finite differences, exact solution

The time—harmonic finite—difference solution of the elastodynamic equation in the
simplified twisted crystal model (Vavrycuk, 1999), calculated for the “unit” initial
conditions in terms of displacement and stress, has been transformed to the initial
conditions corresponding to the exact analytical solution for the one-way propa-
gator matrix (Klimes, 2004). The finite-difference solution, calculated in double
precision, was then compared with the exact analytical solution, evaluated in single
precision. The relative difference of the one-way propagator matrices is proportional
to frequency and corresponds to the relative root—mean—square travel-time error of
0.0000004, which may correspond to the round-off errors in evaluating the exact
analytical solution.

5.2. CRT package, isotropic and coupling ray methods

The numerically evaluated analytical solutions of the coupling-ray—theory equa-
tions and of the isotropic—ray—theory equations have been compared with the results
of the CRT package. The relative differences between the numerical results of the
CRT package (Bucha and Klimes, 1999) and the corresponding analytical solutions
are at the level corresponding to the round-off errors of the travel time, i.e. less
than 0.1%. Note that the phase term 27 f7 corresponding to travel time 7 comes
up to the order of 103. Since the absolute error of the phase term is reflected in
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the relative error in the one-way propagator matrix, relative differences of less than
0.001 correspond to relative travel-time errors of less than 0.000 001.

5.3. ANRAY package, coupling and quasi—isotropic
ray methods

The ANRAY package is designed for the coupling ray theory with the isotropic
common ray approximation, the quasi—isotropic approximation of the Christoffel ma-
trix, and the quasi-isotropic perturbation of travel times (Psencik, 1998a; Psencik
and Dellinger, 2001). Of these quasi-isotropic approximations, only the quasi-
isotropic perturbation of travel times affects the coupling—ray—theory solution in the
simplified twisted crystal model. The ANRAY package (Psencik, 1998b) enables
the quasi—isotropic perturbation of travel times to be switched off optionally. The
numerically evaluated analytical solutions of the coupling ray theory with and with-
out the quasi—isotropic perturbation of travel times have been compared with the
analogous results of the ANRAY package.

The coupling equation in the ANRAY package is solved numerically by the Euler
method. The relative error of the one—way propagator matrix at frequency f due to
the Euler method with integration step At is

1 |T2 — T1|

AEuler R 527 27Tf AT ) (22)

T

see travel times (13) and (14). The relative error of the one-way propagator matrix
due to the accumulation of the travel-time rounding errors is roughly

1 7
Around R EE 27Tf T o ) (23)

where § is the relative rounding error, roughly § = 2724 on a PC. The optimum step
along the ray is then

Ar =7 T 6 . (24)
|72 = 71

The relative differences between the numerical results of package ANRAY at fre-
quency f = 2.6 Hz and the corresponding analytical solutions are about 2% for the
coupling ray theory with the quasi—isotropic perturbation of travel times, and about
2.5% without the quasi—isotropic perturbation of travel times. These numerical er-
rors are in good agreement with estimate (23) indicating 2.8% for the relative error
of the Euler method with § = 272* and step A7 = 0.025s along the ray, used to
solve the coupling equation in the ANRAY package numerically. The accuracy of
0.1% of the CRT package (Section 5.2) has been achieved by numerical integration
of the coupling equation using the method proposed by Cerveny (2001) and Bulant
and Klimes (2002). Note that the numerical integration of the coupling equation
by Rimpker and Silver (2002, eq. 6) based on the “forward propagator method” is
a rough approximation to the more accurate method by Cerveny (2001) and Bulant
and Klimes (2002) based on the method of mean coefficients.
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6. CONCLUSIONS

We have compared the exact analytical solution of the elastodynamic equation
in the simplified twisted crystal model with the analytical solutions of the equations
of the four ray methods, see Figure 1. The ray methods are (a) the coupling ray
theory, (b) the coupling ray theory with the quasi-isotropic perturbation of travel
times, (c) the anisotropic ray theory, (d) the isotropic ray theory. In the simplified
twisted crystal model, the coupling ray theory is considerably more accurate than
the isotropic and anisotropic ray theories. The error of the anisotropic ray theory is
considerably larger than the error of the coupling ray theory at all high frequencies.
In the simplified twisted crystal model, the quasi—isotropic perturbation of travel
times makes the accuracy of the coupling ray theory considerably worse at frequen-
cies higher than the coupling frequency. The quasi-isotropic perturbation of travel
times thus should be avoided.

The exact analytical solution of the elastodynamic equation has been checked by
comparison with Vavrycuk’s (1999) finite—difference code.

For additional information, including electronic reprints, computer codes and
data, refer to the consortium research project “Seismic Waves in Complex 3-D Struc-
tures” (“http://sw3d.mff.cuni.cz”).
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