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Abstract 

Tensor equations of the ray theory for homogeneous anisotropic elastic media are presented. For a point source, an explicit 
solution of the transport equation is obtained, thus the additional as well as principal components of the ray amplitudes for 
higher-order ray approximations are expressed only by differential operators of lower-order terms. Possibility of analytical 
calculation of higher-order approximations is exemplified for SH waves in a transversely isotropic medium. The ray series of 
the SH-wave Green tensor for the transversely isotropic medium involves only two non-zero terms and the complete ray solution 
coincides with an exact solution obtained by other complicated procedures. 

1. Introduction 

The ray equations for elastic waves in anisotropic media were first developed by Babich [ 1 ] and cervenf [ 91. 

Consequently, they were studied and applied by other authors (e.g., Cerveng et al. [ lo]; Gajewski and PSenEfl< 
[ 11,121; Norris [ 201; Kendall and Thomson [ 141; Ben-Menahem et al. [ 41) who paid attention in particular to 
numerical aspects and the development of effective computer codes for modelling wavefields in the so-called zeroth- 
order ray approximation. Apparently, the consideration of higher-order ray approximations can lead us to the further 
extension of ray theoretical applications. Including the higher approximations can extend the validity of the ray 

method to some areas, where the conventional ray method fails (for a review see Babich and Kiselev [ 21) . Let us 
mention as an example modelling of near-field waves in anisotropic media, which is performed so far by compu- 

tationally demanding algorithms (e.g., Mallick and Frazer [ 171; Mandal and Toksiiz [ 181; Tsingas et al. [ 241; 
Tsvankin and Chesnokov [ 251, Carcione et al. [ 81; VavryEuk [ 271) . In our paper we present an analytical approach 
to the calculation of higher-order ray approximations constraint to homogeneous anisotropic media. Although an 
exact formula for the Green tensor for such media is not simple (Buchwald [ 51; Lighthill [ 161; Burridge [ 61; 
Musgrave [ 191; Tverdokhlebov and Rose [ 261)) its approximation for the far-field waves is written in an explicit 

analytical form (e.g., Burridge [ 61; Ben-Menahem et al. [4] ; Kendall et al. [ 151). This approximation represents, 
in fact, the zeroth-order term of the ray theory and it can serve for the recurrent computation of each higher-order 
term of the ray series that physically means the near-field wave. For analytical calculations of the higher-order 
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approximations we use a transversely isotropic medium, which has already been studied by many authors (e.g., 
Payton [ 211; Carcione et al. [ 7 ] ; Kazi-Aouai et al. [ 133 ; Ben-Menahem and Sena [ 31; Sakai and Kawasaki [ 22) ) 
and it is widely applied in seismological applications. By calculating the Green tensor for SH-waves in transversely 
isotropic media we show that the higher-order ray approximations can give useful results and that the ray theory 

can even produce an exact solution. 

2. Higher-order approximations of the ray theory 

2.1. Basic equations of the ray theory 

The elastodynamic Green tensor for homogeneous anisotropic media satisfies the equation 

&in - CijkICkn.lj= %z6tx) S(r) 9 (1) 

where Gi” is the symmetric tensor of the second rank, p is the density, cijkl is the elasticity tensor, Si,, is the Kronecker 
delta, and 6(t) is the Dirac delta function. Einstein summation convention is applied, where repeated indices mean 

summation, We seek a solution in a form of the ray series [ 1, lo] : 

where d&t) =p+“(t> , (2) 

K denotes the order of the approximation, Uic,“) (Xi) is the ray amplitude tensor and T(~jj) is the traveltime. Inserting 

formula (2) into Eq. ( 1) leads to a recurrent system of equations for the amplitude tensors UF:‘: 

Nj,( u~fi’) -M;,( Use-“) +Li,,( Use-“) =O ) (3) 

called the basic equations of the ray theory. Differential tensor operators Nj~, Mjn and Lj~ are defined for homogeneous 
anisotropic media as follows 

A$,( I$:‘) = I-$$,“’ - vj;c) , MjnC"l,K'l =a,i,,cpiu~~~+piU~~~+Pi.lU~') 9 

a+! is the normalized elasticity tensor, rjk is the Christoffel tensor and pi is the slowness vector. The ray amplitude 
Uif’ for K < 0 equals zero. 

The only differences between our equations and those presented by Babich [ 11, Cerveny [ 9 ] or Cerveny et al, 
[ lo] lie in using homogeneous media instead of general inhomogeneous media, and in using tensors instead of 
vectors. Since the generalization of the vector notation to our tensor notation is straightforward, we do not give a 
detailed derivation. 

2.2. Principal and additional components 

In this section, we will present formulae for higher-order ray approximations of the P-wave. For S 1- or S2-waves, 
the equations can be rewritten in an analogous way except for shear-wave singular points where the eigenvalues of 
the Christoffel tensor corresponding to the two shear waves are identical. 

For calculation of higher-order ray approximations, it is convenient to introduce so-calledadditional andprincipal 

components ELK’ I and e$nK’ ‘I of the ray amplitude fliK) (K> 0) 
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(5) 

Calculation of each higher-order term of the ray series is performed in two steps: first, the additional component 
UrA,K’ i is calculated by the differentiation of the lower-order terms, and second, the principal component ELK’ ‘I is 
calculated by solving an ordinary differential equation called the transport equation. 

The additional component for the P-wave is calculated by the following formula corresponding to the vector 

formula (22) of Cerveny [ 91, 

u”(K)’ = {~;,(q$-1)) -~,<z$‘;K-2’)) 
g?‘gS’ 

,,lll 
I + 
@‘--GP (6) 

where G’, G”’ and Gs2 are the eigenvalues and g!‘, g;’ and gs2 are the eigenvectors of the Christoffel tensor. 
Superscripts P, S 1 and S2 indicate the wave types. The eigenvalue GP equals 1. Obviously, the additional component 
of the zeroth-order term EL” L equals zero. 

The principal component ELK’ ‘I is calculated by solving the transport equation (Cerveny [ 91, formula (28), 

which can be specified for homogeneous media as follows 

Taking into account that the Jacobian J in Eq. (7) can be expressed for point sources in homogeneous media in a 

simple form (see Appendix A) 

J= v-‘&sin 19, 

where IY is the angle between a ray and the vertical and v is the group velocity, we arrive at the transport equation 
which reads 

du:!:’ ” n,n UP(K) II 
------+------_ 

dr 
(8) 

r 
; (L,(rQ-‘)) -M;,(@K)*)}g;g;*. 

Eq. (8) is the ordinary differential inhomogeneous equation of the first order. The zeroth-order term is a solution 
of the respective homogeneous equation, the right-hand side of Eq. (8) being zero for K= 9. The solution has a 
form 

U PI 0) II = R’“” ” ( 6, cp) nm 
,l,P, 

7 
(9) 

where RL$!“” 6 ( , cp) is an integration constant being an arbitrary function of 19 and cp. Physically Rii”)ii (6. cp) 

represents the far-field P-wave radiation pattern of a point single force source in the zeroth-order ray approximation. 
The principal component in the first-order approximation is a solution of Eq. (8) for K= 1. Inserting Eqs. (9) 

and (5) into Eq. (6) it can be shown that @iI) L depends on r as 1 / ?, and consequently, that the right-hand side 

in Eq. (8) for K= 1 depends on was l/s. Using for the right-hand of Eq. (8) the following tentative notation 

the first-order transport equation and its solution can be written as follows 

where 
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is the radiation pattern of the P-wave principal component in the first-order ray approximation. The function 
C”“” (6 PO> is an arbitrary integration constant, since a general solution should involve also any solution of the n,n 
homogeneous equation. The function C,,,, ‘(‘)” ( fi, cp) affects the far-field wave radiation of the source in such a way 
that not only the amplitude but also the shape of the radiated far-field wave is directionally dependent. Since we 

shall focus only on sources generating waves with the waveforms in the farfield directionally independent (see 
p(‘)11 formulae ( 17) and (18)), the function C,,,, ( , 6 cp) is identically zero in this case. Analogously, we can write for 

the Kth-order ray approximation (K > 1) 

(13) 

where we used again a tentative notation for the right-hand side of Eq. (8) expressing the dependence on Texplicitly. 

The solution of Eq. ( 13) is as follows 

u 

where 

(14) 

(15) 

is the radiation pattern of the P-wave principal component in the Kth-order ray approximation and CELK”’ (a, cp) is 

an arbitrary integration constant. Similarly to the first-order ray approximation, we conclude that CKiK”’ (6, cp) is 
identically zero. From Eqs. ( 14) and ( 15), we arrive at an explicit general formula for the principal component of 

the Kth-order ray approximation for P waves (K > 0) 

ujp = L (Mi,( r_.$;K)i) -L,( up”))g;g;t. 
2K 

(16) 

From formulae (5), (6) and ( 16) we can see that all the higher-order ray approximations can be obtained only 
by the differentiation of the zeroth-order term, that is a mathematically elementary procedure. It should be noted, 
however, that this procedure is numerically unstable and analytically tends to produce rather extensive formulae. 

3. Green tensor for anisotropic media 

An exact solution of the Green tensor for homogeneous anisotropic media was found by Buchwald [ 51, Lighthill 

[ 161 and Burridge [ 61. It has three parts corresponding to P, Sl and S2 waves. Under the far-field approximation, 
each part GR ( xj, t) , Gz ( xj, t) and G:*(xj, t) of the Green tensor can be explicitly expressed in terms of the Gaussian 
curvature of the slowness surface I? and the group velocity v [ 6,151 

Gi,L(X, t) = L - 1 
@Z qt- T(X)) ) 

47rpKL/2v2 7 
(17) 

where we omitted superscripts denoting the particular wavetype. Alternatively in terms of the Gaussian curvature 
of the wave surface (group velocity surface) K* and slowness p 

G;&,, t) z -!- K*“*p* y 
4W 

&t- r(xJ) . 
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Formula ( 18) can be obtained from formula ( 12) of Ben-Menahem et al. [ 41 by applying an obvious relation 
between Gaussian curvature of the wavefront K** and Gaussian curvature of the wave surface K* (K** = K*?) 

or from formula ( 17) by taking the following identity into account (see Appendix B for a derivation) : 

1 
K*z= - 

p4v4. 
( 19) 

Formulae ( 17) and ( 18) fail in the vicinity of parabolic points at which the Gaussian curvature of the slowness 
surface is zero. These cases require a more careful analysis (see But-ridge [ 61) related to triplication of the wave 
surface and will not be considered in this paper. 

4. SH-wave Green tensor for a transversely isotropic medium 

4.1. The zeroth-order term 

Next, we will consider a transversely isotropic medium (hereafter called TI) . Without loss of generality we will 
assume the vertical axis of symmetry. The Christoffel tensor reads 

I’,, =%p:+%,P:+%4P: 3 r2?=a~hP:+a,,p:+a,,P: 3 r33=a,,(P:+Pz) +%P:. 

~I,=(~~,,+a,‘dP*P3, ~,*=(a,,-%,hP2, ~,s=(~13+~44)P,P3, (20) 

where ai, is the conventionally used 2-index notation of tensor uijkl (see Musgrave [ 191, formula (3.13.4)). 
Consequently, eigenvalues and eigenvectors of KY are expressed as follows 

where 

p’=p:+p;+p:, A=(u,,-a,,)*, 

B=( -2u:,- 2~1~33 + 6~11~44 + 2~33~4 + 4a:3 + @,a,,) 9 

c= (a;‘, +fu,,a,3+~:3- 4a,,a44 - 4a33a44 - 4& - 8a,,a44) > 

sin H= /z, cos *= /z, F,,=u,,(pf+p;) f%,Pi. 

(22) 

Emphasize that orthogonality of polarization vectors gp and gsv m Eq. (21) holds for a selected slowness vector, 

but not for a ray. According to Kendall et al. [ 151, the Gaussian curvature of the slowness surface is calculated by 

E= + 1 d( v2.2v3.3 - 63) f2QV3( ~l,?.~l.3 - ~1.1e.3) + vi< V3.3VI.I - &) +2+v,t v2.3v2.1 - v2.2v3.1 1 

+ v:(vI.Iu2.2-v:.2) +2v,v2~u3,1v3,2-~3,3v1.2~~ 3 (23) 
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where vi.] =av,/apj. Specifying for SH-wave in TI 

and 
1 

ksH = -;i a&a+., . 
V 

(24) 

Inserting formula (24) into Eq. ( 17) we can express the zeroth-order approximation of the Sk&wave Green tensor 

GLH,H’O’ (xi, t) = - - - 

4.2. Thejrst-order term 

For the additional component of the first-order term formula (6) yields ( see Appendix C for details) 

(25) 

(24) 

6 denotes the angle between a ray and the vertical, and r is the distance of an observation point from the source. 

The eigenvalue GSH equals 1. 
According to Eq. ( 16)) we can write for the principal component pm:(i)” 

The complete first-order ray amplitude @E(‘) is finally written as 

(27) 

(28) 

4.3. Complete formula fur the Green tensur 

Calculating higher-order terms, we substitute formulae (25) and (28) into Eqs. (6) and ( 16). We then reach a 

surprising result that the second-order term and all the higher terms equal zero. Thus the complete SH-wave Green 
tensor is expressed in a very simple following form 

1 1 
Gi”(Xj, t) = 7~ 

%J &L 

H(f-7) 
- (g;“gy+-gy”y~) 
r%in29 

(29) 

where ,T= r d sin29 cos26 
-+-* 

a66 a44 

H(t) denotes the Heaviside step function, r = IX 1 is the distance of an observation point from the source, 6 is the 
angle between a ray and the vertical, T is the traveltime, and gSH’- is defined in formula (26). Formula (29) 
coincides with an exact formula obtained by Ben-Menahem and Sena [ 31 derived in frequency domain. The first 

term of formula (29) describes the far-field wave, the second term describes the near-field wave. 
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5. Discussion 

We introduce tensor equations of the ray theory for homogeneous anisotropic media. For these media, we solved 
the higher-order transport equations explicitly and we obtained higher-order ray approximations only by the 

differentiation of lower-order terms. For exemplifying analytical calculations of higher-order ray approximations, 
we choose the SH-wave Green tensor for transversely isotropic media. For TI, the SH-wave is simple forming an 

ellipsoidal wavefront with no caustics and displaying a polarization perpendicular to a symmetry axis. We show 
that the final ray theoretical formula (29) coincides with an exact formula derived by Ben-Menahem and Sena [ 31. 
The complete ray theoretical Green function involves only the zeroth- and first-order terms. All the higher-order 

ray approximations are zero. Surprisingly, the SH-wave Green tensor for TI is even simpler than the S-wave Green 
tensor in isotropy, which involves also the non-zero second-order term (see VavryEuk and Yomogida [28] ). In 
order to understand this seeming incompatibility, we should decompose the S waves in isotropic media into SH and 

SV waves (polarization of SH wave being in the horizontal plane) and to calculate the higher-order ray approxi- 
mations for SV and SH waves separately. It can be shown that the ray expansion of the SV wave in isotropy consists 
of three non-zero terms, but the ray expansion of the SH wave has likewise in TI two non-zero terms only. 

The simplicity of the Green tensor will probably be lost for P- and SV-waves in TI media or for waves in more 
genera1 media than TI. The reason is a more complex directional variation of polarization vectors and a more 

complex shape of wavefronts where also complications due to caustics can arise. It is likely that the complete ray 
theoretical Green function will involve infinite number of non-zero higher approximations and it will not necessarily 

converge to an exact formula. Nevertheless, we assume that a further development of the proposed approach is 
promising and its application to more general cases than that presented here will be useful. Apparently, such 

calculations, which are mathematically elementary, will need, however, a sophisticated elaboration with rather 
extensive analytical formulae. 

Appendix A. Jacobian determination 

In this appendix, we derive the Jacobian of the transformation from the Cartesian to the ray coordinates for a 

point source in a homogeneous anisotropic medium. Since rays are straight lines in the homogeneous medium, we 

use traveltime r and take-off angles 9, cp of a ray as the ray coordinates. Emphasize that we use the take-off angles 

of a ray, but not the take-off angles of a slowness vector, that are in standard use. The forward and inverse 
transformations from the Cartesian coordinates x,, x2, x3 to the ray coordinates 7, 8, rp take the form 

.u,=Tv(~~, cp) sin 19~0s cp, x,=rv($, q) sin 79sin cp, x3=7v(a, cp) cos 6, 

‘T= &5-Z? 
, cp=arctanXZ, $j=arctanm, 

Y XI X3 

where v is the group velocity. Such transformations exist even in the case of triplicated wavefronts, but applied 
only locally for a particular branch and with except of caustic points. The Jacobian J is determined by 

ax, ax, ax, 
zasa(p vsin6coscp rcoscp vcos8+F6sin79 

( ) ( 
rsin79 -vsincp+Fcoscp 

) 

J,$&2%= 
a7 66 ap 

v sin 6 sin cp ?iin~(vcos19+$sin19) rsin77(vcos~+~sin~) 

ax, ax, ax, 
ZZacp 

v cos 6 7 
( 

-vsin-9+ $cos9 
> 

r%os I9 
acp 

= u’?sin 13. (A.1) 
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Analogously, the inverse transformation gives 

= 

Pl P2 P3 

cos 6 cos cp cos 19 sin cp sin 79 1 
-- =- 

r Y r v&in 6’ 
sin p cos cp 

-- - 
r sin 6 r sin 6 

0 

(A.2) 

wherep is the slowness vector, r = 7 $+2+x, = TV is the distance from the source. Here we used the following 

identity 

1 
- =p,sin 8 cos (o+p,sin 6 sin (p+p3 cos 6. 
V 

Appendix B. Gaussian curvatures of the slowness and wave surfaces 

Let US define a surface by equation x =x( yl, y2), where y,, y2 are the curvilinear coordinates of a point of the 
surface. Gaussian curvature K is defined as follows (Struik [ 231, p. 156) 

K= (B.1) 

where n denotes the unit normal to the surface. Since the slowness vector p is the normal to the wave surface 
v = v ( yt , y2) and the group velocity vector Y is the normal to the slowness surfacep =p( yl, y2) (Musgrave [ 191, 
p. 79), we can write 

K= 1 
V2 

(B.2) 

where I? and K* denote the Gaussian curvatures of the slowness and wave surfaces, respectively. Taking into 
account that 

where 8 is the angle between the group velocity vector and the slowness vector, we arrive at the equation 

cos26 K*E= - 
v’p’ . 

(B.3) 

(f3.4) 

Applying the following formula 

Y~p=vpcos 6=1, (B.5) 
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we get 

1 K*x= cos4S = - 
p4u4 . 

91 

(J3.6) 

Appendix C. Auxiliary formulae 

In this appendix, some details about the calculation of the first-order ray approximation of the SH-wave Green 
tensor in a homogeneous transversely isotropic medium are given. Evaluating differential operators Mi,L( qz’“‘) 

and Li,( rT$FcK)), we need the following relations and derivatives 

1 

ae6sin28 + ad4cos28 ’ 

al3 
ax, 
as 
ax, 
as 
ax, 

aP 
ax, 
aP 
ax,= 
ap 
ax, 1 

sin cp cos 9 cos 40 a44 -a% sin B cos’8 cos p - 
aG67p sin B 

P2 
a66v a66 7 

cos ($2 cos S sin p a&-a66 sin 8 cos28 sin p 

a&p sin 8 
P2 

a66v a66 7 

sin S 
0 

a&- a66 sin26 cos 8 -- -- P2 
k7p a66 7 

where 8 denotes the angle between slowness vectorp and the vertical axis. 
Evaluating M,,( U::(O)), we get 

M,"(qy))) = a 
66 

?Tn 8 

[ 

A sin 8 cos2q A sin 8 sin cp cos rp 0 

A sin 8 sin cp cos cp A sin 8 sin2tp 0 

-Bcos 8~0s cp -Bcos$sin(o 0 I 

, 

whereA=a,h-a,,, B=a,,+a,andC=(1/4~p)(lla,,&). 
Inserting formula (C.2) into Eq. (6)) we get the additional component 

sin cp cos cp 0 

sin2p 1 a66C 

0 
= - Psin2&%?:HL t 

where we used 

sin2 0 = 
GP - i+33 
G’_Gs”, cos*e= 

GP- i;ll 
Gp_-Gsv’ sin e c0s e= GP_@v’ 

a&?p2sin26=r%in29 and gSHL = 

cc.11 

(C.2) 

(C.3) 

jilk denotes the Christoffel tensor (Eq. (20) ) in the x,-x3 plane, 6 denotes the angle between a ray and the vertical 
axis, 8 is the angle between polarization vector gp and the vertical axis, and r is the distance from the source. 
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Operators Mi, ( @f( ’ ) L ) and Z+,( E:(O)) are evaluated in a similar way as Mi,,( @f(O)) having the final form as 
follows: 

(C.4) 

where C is defined in formula (C.2). 
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