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a b s t r a c t

Acoustic axes are directions in anisotropic elasticmedia, inwhich phase velocities of two or
three plane waves (P , S1 or S2 waves) coincide. Acoustic axes are important, because they
can cause singularities in the field of polarization vectors and anomalies in the shape of
the slowness surface. The maximum number of acoustic axes in triclinic anisotropy is 16,
and their directions depend on anisotropy parameters in a complicate way. Under weak
anisotropy approximation this dependence simplifies and the directions of acoustic axes
can be used for the inversion for anisotropy parameters. Themaximumacoustic axes under
weak anisotropy is 16, the minimum number of acoustic axes is zero. In the inversion, we
can retrieve 13 combinations of anisotropy parameters provided we use directions of 7
acoustic axes at least. Under weak anisotropy approximation, the directions of acoustic
axes are insensitive to strength of anisotropy; hencewe cannot invert for absolute values of
weak anisotropy parameters, but only for their relative values. Numerical tests have shown
that the inversion is applicable only to very weak anisotropy with strength of less than 5%,
provided that the acoustic axes used in the inversion are determined with an accuracy of
0.1◦ or better. In this case the inversion yields an average error for elastic parameters of
less than 10%. In order to invert for the total set of 21 anisotropy parameters it is necessary
to combine the measurements of the directions of the acoustic axes with measurements of
other attributes of elastic waves in anisotropic media.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic axes (singularities, degeneracies) are directions in anisotropic media, in which phase velocities of two or three
plane waves (P, S1 or S2 waves) coincide. Such directions are very important, because they can cause singularities in the
field of polarization vectors (see Fig. 1) and anomalies in the shape of the slowness surface [1–5]. Acoustic axes are frequently
associated with caustics and anti-caustics on the wave surface [6–8], with triplications and with energy focusing [7,9–11].
They also pose complications in tracing rays [12,13] and in wavefield modelling because of the coupling of waves [14–19].

We distinguish several types of acoustic axes [20–24]: they can form either single isolated points classified as kiss, conical
or wedge singularities, or they can combine into line singularities. The most typical acoustic axis in triclinic anisotropy is
the conical singularity. This singularity is stable, while the other singularities are unstable. The stable singularity is defined
as the singularity, which can change slightly its direction but it cannot split or disappear under any small perturbation of
elastic parameters. The unstable singularity is split into stable singularities or disappears under any small perturbation of
elastic parameters. The maximum number of isolated acoustic axes in triclinic anisotropy is 16 [25–27] as in monoclinic
and orthorhombic symmetries [28]. The directions are calculated by solving two coupled polynomial equations of the sixth
order in two variables [20,23,27]. Obviously this implies that the positions of acoustic axes are complicated functions of
anisotropy parameters.
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Fig. 1. The field of polarization vectors on the slowness surfaces near a conical singularity for the S1 and S2 waves. The polarization vectors are projected
into the plane perpendicular to the polarization vector of the non-degenerate wave in the singularity. The topological charge of the singularity is −1/2.
The dot marks the position of the singularity.

Properties of elasticwaves in anisotropicmedia often simplify under the assumption ofweak anisotropy [8,29–34]. Under
weak anisotropy, the shapes of slowness and wave surfaces and the behaviour of waves are usually much simpler and
modelling of propagating waves is easier than in strong anisotropy. The weak anisotropy is also a reasonable assumption
valid for many real materials including most rocks and geological structures in the Earth [29,35,36]. As regards the acoustic
axes, Vavryčuk [37] has shown that surprisingly their calculation remains complicated also under weak triclinic anisotropy.
The maximum number of acoustic axes remains 16 as in strong triclinic anisotropy. The only difference compared with
strong triclinic anisotropy is that instead of solving two coupled equations of the sixth order it is sufficient to solve two
coupled equations of the fifth order. This somewhat simplifies the problem and speeds up the calculations, though not
substantially. Although the weak anisotropy approximation does not simplify the problem of calculating the acoustic axes
significantly, it can find some useful applications. In this paper, I shall show that the weak anisotropy approximation can be
particularly advantageous in the inversion for anisotropy parameters from the directions of the acoustic axes.

2. Calculation of acoustic axes in strong triclinic anisotropy

The Christoffel tensor 0(n) is defined as [22,38,39]

Γjk(n) = aijklninl, (1)

where aijkl are the density-normalized elastic parameters and n is the unit vector defining the slowness direction. The
Einstein summation convention over repeated subscripts is applied. For physically realizable media, the elastic parameters
aijkl satisfy the stability conditions (Helbig [24, Eqs. (5.5)–(5.10)]) and the Christoffel tensor 0(n) is positive-definite for all
directions n. The Christoffel tensor 0(n) has three eigenvalues G(M) and three unit eigenvectors g(M), which are calculated
from

Γjkg
(M)
k = G(M)g(M)

j , M = 1, 2, 3, (2)

whereM denotes the type of wave (P, S1 or S2). The eigenvalue corresponds to the squared phase velocity, G = c2, and the
eigenvector defines the polarization vector of the wave.

Acoustic axes are directions, in which two eigenvalues of 0(n) coincide

G(1)(n) ≠ G(2)(n) = G(3)(n). (3)

Exceptionally, all three eigenvalues can coincide, but such acoustic axis is very rare and it will not be considered here. Using
the spectral decomposition of 0(n) and applying the condition for the acoustic axis (3), we obtain [40]

Γjk =

G(1)

− G(2) g(1)
j g(1)

k + G(2)δjk, (4)

and subsequently

aijklsisl = gjgk + δjk, (5)

where s = n/
√
G(2) is the slowness vector of the degenerate wave and g = g(1)


G(1) − G(2)


/G(2) is the eigenvector of

the non-degenerate wave of a generally non-unit length. Vectors s and gmay be real- or complex-valued. Eq. (5) is a system
of six quadratic equations in six unknowns: s = (s1, s2, s3)T and g = (g1, g2, g3)T . The number of solutions is 26

= 64. If we
take into account that solutions of different signs: ±s, ±g, correspond to the same acoustic axis, the maximum number of
acoustic axes is reduced from 64 to 16.
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Fig. 2. A sketch of slowness surfaces for P and S waves for isotropic media (a) and for P, S1 and S2 waves for weakly anisotropic media (b). The dots in (b)
mark the positions of the acoustic axes.

Eliminating eigenvalues and eigenvectors in Eq. (4), we obtain [20]:

(Γ11 − Γ22) Γ13Γ23 − Γ12

Γ 2
13 − Γ 2

23


= 0, (6a)

(Γ11 − Γ33) Γ12Γ23 − Γ13

Γ 2
12 − Γ 2

23


= 0, (6b)

(Γ22 − Γ33) Γ12Γ13 − Γ23

Γ 2
12 − Γ 2

13


= 0. (6c)

Eqs. (6a)–(6c) are suitable for calculating the acoustic axes numerically. They represent a system of sixth-order equations
for three unknown components of the unit direction vector n: n1, n2 and n3. The three Eqs. (6a)–(6c) are not independent;
hence we solve only two of them. We obtain 72 solutions, which are real- or complex-valued. Taking into account that ±n
describes the same direction, the number of directions reduces from 72 to 36. Since the maximum number of acoustic axes
is 16, 20 solutions of Eqs. (6a)–(6c) are spurious and must be eliminated [27].

3. Calculation of acoustic axes in weak triclinic anisotropy

3.1. Weak anisotropy approximation

Weak triclinic anisotropy with elastic parameters aijkl is obtained by perturbing an isotropic medium in the following
way:

aijkl = a0ijkl + ε bijkl, (7)

where

a0ijkl =

α2

− 2β2 δijδkl + β2 
δikδjl + δilδjk


=

λ

ρ
δijδkl +

µ

ρ


δikδjl + δilδjk


. (8)

Parameters α and β define the P and S velocities in an isotropic background medium, λ and µ are the Lamé constants, ρ is
the medium density, tensor bijkl defines the perturbations from isotropy into triclinic anisotropy, and ε is a small quantity
which measures anisotropy strength. In order to keep ε within a reasonable range of values, tensor bijkl should be scaled to
have a norm comparable to the norm of a0ijkl.

For ε = 0 in (7), weak anisotropy reduces to isotropy. The Christoffel tensor 0 in (1) is degenerate with eigenvalues
G(1)

= α2 and G(2)
= G(3)

= β2, which are independent of direction n. Consequently, the P- and S-wave slowness surfaces
are fully detached, G(1) > G(2), and the S1 and S2 waves have coincident phase velocities in all directions n,G(2)

= G(3).
For a small non-zero ε, the P wave remains detached from the S1 and S2 waves, but the global degeneracy of the S1 and
S2 waves is removed, and the phase velocities of the S1 and S2 waves can coincide only in selected directions (see Fig. 2).
Hence, under weak anisotropy we can observe just acoustic axes of the S1 and S2 waves. The acoustic axes of the P and S1
waves and the triple acoustic axes of the P, S1 and S2 waves cannot be observed.

3.2. Farra equations

Usingperturbation theory for a degenerate Christoffel eigenvalueproblem [30,32],we can express the difference between
the S waves in weak anisotropy as follows (Vavryčuk [8, Appendix A]):

1G = G(2)
− G(3)

=


M(22) − M(33)

2
+ 4


M23

2
, (9)
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where

M(KL)
= m(KL)

+
m(1K)m(1L)

β2 − α2
, K , L = 2, 3, (10)

m(rs)
= Γjkg

0(r)
j g0(s)

k , r, s = 1, 2, 3. (11)

Vector g0(1)
= n is the P-wave polarization vector in the isotropic background, and vectors g0(2) and g0(3) form an

arbitrary frame of perpendicular unit vectors lying in the plane with normal n. The condition for an acoustic axis, 1G = 0,
yields in the first-order approximation:

m(22)
= m(33) and m(23)

= 0. (12)

Consequently, we obtain

aijklninl


g0(2)
j g0(2)

k − g0(3)
j g0(3)

k


= 0, (13a)

aijklninlg
0(2)
j g0(3)

k = 0. (13b)

Since Eqs. (13a)–(13b) are valid identically for the isotropic background, the equations hold also when elastic parameters
aijkl are substituted by perturbation parameters bijkl.

3.3. Linearization of the Darinskii equations

An alternative approach how to specify acoustic axes in weak triclinic anisotropy is to linearize Eq. (4). To do so we have
to linearize equations for eigenvalues G and eigenvectors g for the Christoffel tensor 0 along an acoustic axis [8,30]:

G(1)
= aijklninjnknl = α2

+ ε bijklninjnknl, (14)

G(2)
= G(3)

=
1
2


Γii − G(1)

=
1
2


aijkinjnk − aljkmnjnknlnm


= β2

+
1
2
ε bljkmnjnk (δlm − nlnm) , (15)

g(1)
i = ni +

1
α2 − β2

ε bjlmknlnmnj (δik − nink) , (16)

where we have used

Γii = Tr (0) = G(1)
+ G(2)

+ G(3)
= G(1)

+ 2G(2). (17)

Quantities G(1) and G(2)
= G(3) are eigenvalues of the Christoffel matrix 0 for the P waves and for the degenerate S waves

along the acoustic axis, and vector g(1) is the P-wave polarization vector along the acoustic axis. Consequently, we obtain

G(1)
− G(2)

= α2
− β2

+
1
2

ε bljkmnjnk (3nlnm − δlm) , (18)

g(1)
i g(1)

l = ninl +
1

α2 − β2
ε bjopknonpnj (δiknl + δlkni − 2ninknl) . (19)

Inserting (18) and (19) into (4) and (5) we obtain

bpjkrnpnr(2δijδlk − δjkδil + ninlδjk + njnkδil − 2njnlδik

− 2ninjδlk + njnkninl) = 0, i, l = 1, 2, 3, (20)

where we have omitted all higher-order terms of ε. Eq. (20) represents a system of 6 equations in three unknowns n1, n2
and n3. Since n1, n2 and n3 are the components of unit vector n, only two components of n are independent.

3.4. Linearization of the Khatkevich equations

Acoustic axes in weak triclinic anisotropy can be calculated also linearizing Eqs. (6a)–(6c). Inserting (7) and (8) into
Eqs. (6a)–(6c) we obtain [37]:

ε

α2

− β22 P1 
bijkl, n1, n2, n3


+ ε2 

α2
− β2 P2 

bijkl, n1, n2, n3

+ ε3P3


bijkl, n1, n2, n3


= 0, (21a)

ε

α2

− β22 Q1

bijkl, n1, n2, n3


+ ε2 

α2
− β2Q2


bijkl, n1, n2, n3


+ ε3Q3


bijkl, n1, n2, n3


= 0, (21b)

ε

α2

− β22 R1

bijkl, n1, n2, n3


+ ε2 

α2
− β2 R2


bijkl, n1, n2, n3


+ ε3R3


bijkl, n1, n2, n3


= 0, (21c)
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where polynomials P1,Q1 and R1 are of the first order, polynomials P2,Q2 and R2 are of the second order, and P3,Q3 and R3
are polynomials of the third order in bijkl.

If we assume ε/

α2

− β2


→ 0 (but not equal to zero), we can neglect the higher-order terms in ε in Eqs. (21a)–(21c)
and keep only the linear terms in ε. Then we obtain:

i,j

pijuivj
= 0, (22a)


i,j

qijuivj
= 0, (22b)


i,j

rijuivj
= 0, (22c)

where pij, qij and rij are linear combinations of perturbation parameters bijkl, see Vavryčuk [37, Appendix B], and u = n1/n3
and v = n2/n3. Indices i and j run from zero to five and their sum is less than or equal to five. Eqs. (22) were derived under
the assumption that no acoustic axis lies in the coordinate planes.

3.5. Calculation of acoustic axes

The most suitable equations for calculating acoustic axes in weak triclinic anisotropy are the Khatkevich linearized
equations (22a)–(22c). The equations represent a system of three polynomial equations of the fifth order in two unknowns.
However, the three Eqs. (22a)–(22c) are not independent; hence we solve only two of them.We obtain 16 real- or complex-
valued solutions that lie out of coordinate planes. The real-valued solutions correspond to acoustic axes of homogeneous
waves (with a real slowness vector). The complex-valued solutions correspond to acoustic axes of inhomogeneous waves
(with a complex slowness vector); see Vavryčuk [27]. If the number of the solutions is less than 16, some of the acoustic
axes lie in the coordinate planes. In this case, the coordinates should be rotated to move them out of the coordinate planes
and the equations should be solved again.

The Darinskii linearized equations (20) represent a system of six equations in two unknowns. Similarly as for the
Khatkevich equations, the six equations are not independent; hence we solve only two of them. However, the equations
are of the sixth order in n, and thus less suitable for calculating the acoustic axes than the Khatkevich equations. Similarly,
the Farra equations (13a)–(13b) are not very suitable for calculating the acoustic axes. The equations contain vectors g0(2)

and g0(3), which should be eliminated. Using, for example, the following frame of vectors,

g0(2)
=

1
n2
1 + n2

2

(n2, −n1, 0)T and g0(3)
=

1
n2
1 + n2

2


n1n3, n2n3, −n2

1 − n2
2

T
, (23)

we obtain one polynomial equation of the sixth order in n from (13a), and one polynomial equation of the fifth order in n
from (13b). Note that the exact directions of the acoustic axes are calculated by Eqs. (6a)–(6c), which represent a system of
polynomial equations of the sixth order in n. Hence, approximate equations by Darinskii and by Farra bring no advantage,
because solving the approximate equations is as involved as solving the exact equations.

4. Inversion for anisotropy

The equations for the directions of acoustics axes in strongly anisotropic media are non-linear functions of elastic
parameters aijkl. However, under weak anisotropy, the equations become linear. This is advantageous when solving the
inverse problem: the determination of anisotropy from the directions of acoustic axes. Hereinafter, I shall formulate the
inverse problem using the Farra equations, and linearized Darinskii and Khatkevich equations. On numerical examples, I
shall calculate anisotropy from the directions of acoustic axes using all mentioned approaches and compare their accuracy.

4.1. Independent anisotropy parameters in the inversion

Eqs. (13), (20) and (22) can be used in the forward problem to seek the directions of acoustic axes from known anisotropy
parameters, but they can also be used in the inverse problem to calculate anisotropy parameters from the known directions
of acoustic axes. As expected, we cannot invert for the isotropic background, only perturbations into anisotropy can be
calculated. In the inversion for anisotropy, the equations represent a systemof linear homogeneous equations for coefficients
of perturbation matrix bijkl. The matrix contains 21 parameters, but not all of them stand in the equations independently.
Some of the parameters appear in combinations; hence the inversion can yield only the following 14 parameters:

ε(1)
= b45, ε(2)

= b46, ε(3)
= b56, ε(4)

= b44 − b66,
ε(5)

= b55 − b66, ε(6)
= b34 − b14, ε(7)

= b34 − b24, ε(8)
= b35 − b15,

ε(9)
= b35 − b25, ε(10)

= b36 − b16, ε(11)
= b36 − b26,

(24)
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ε(12)
=

1
2

(b22 + b33) − b23 − 2b66, ε(13)
=

1
2

(b11 + b33) − b13 − 2b66,

ε(14)
=

1
2

(b11 + b22) − b12 − 2b66.

Since the system of equations is homogeneous, one parametermust always be fixed to get a non-trivial solution. Thuswe
cannot retrieve absolute values, but only normalized values of the parameters. In other words, we cannot invert for strength
of anisotropy.

4.2. Formulation of the inverse problem

Since only two equations are independent for each acoustic axis, we have to know at least seven directions of acoustic
axes to obtain a properly determined system of equations. For seven acoustic axes, we obtain 14 equations. One equation
can be omitted to get 13 equations for 13 unknowns. If we know a smaller number of axes, the system of equations is
underdetermined and additional knowledge on anisotropy must be supplied for the system to be solvable. For example, we
can add phase velocities or polarization vectors of P waves at acoustic axes. If we know the directions of seven or more
acoustic axes, the problem is overdetermined and anisotropy can be calculated using the standard least-squares method.

Eqs. (13), (20) or (22) can be expressed as follows:

Ax = c, (25)

where

x =
1

ε(14)


ε(1), ε(2), ε(3), ε(4), ε(5), ε(6), ε(7), ε(8), ε(9), ε(10), ε(11), ε(12), ε(13)T (26)

is the 13 × 1 vector of unknown elastic parameters defining weak triclinic anisotropy, and A is the 2N × 13 matrix and c is
the 2N × 1 vector, which are defined as follows

A =


A(1)

A(2)

...

A(N)

 , c =


c(1)

c(2)

...

c(N)

 . (27)

N denotes the number of acoustic axes. Quantities A(i) and c(i) are the 2×13matrix and 2×1 vector, respectively, which are
calculated for the ith acoustic axis. Matrix A and vector c are specified in Appendix A for the Farra equations, in Appendix B
for the linearized Darinskii equations, and in Appendix C for the linearized Khatkevich equations. The elastic parameters
come out as

x = A−1c, (28)

where A−1 stands for the least-squares inversion of matrix A. As mentioned, Eq. (28) is solvable provided N ≥ 7 (A is the
14×13matrix). If N < 7, we have to complement Eq. (25) by other equations for the inversion for anisotropy to be feasible.

5. Numerical tests

In this section, I shall test the efficiency of the inversion for anisotropy using the above equations. I shall generate
synthetic triclinic anisotropy and calculate the number and directions of acoustic axes. The directions of the axes will be
inverted for anisotropy and the retrieved anisotropy parameters will be compared with the exact values.

The following tests will be performed: (1) Inversion for anisotropy of varying strength to determine the range of
applicability of the inversion. (2) Inversion for anisotropy from approximate directions of the acoustic axes to test the
sensitivity of the inversion to noise in the data. From this, the minimum accuracy required to measure the directions in
experiments will be estimated. (3) Inversion for anisotropy performed using three different sets of equations to decide
which method is the most efficient.

Weak triclinic anisotropy is calculated by Eqs. (7) and (8) with the P and S velocities of the isotropic background
α =

√
3 km/s, and β = 1 km/s, and with the following two perturbation matrices expressed in the Voigt notation (in

km2/s2):

b(A)
=


1.26 −1.02 −1.11 0.69 0.48 0.78

−1.14 0.81 0.51 1.17 −0.66
0.00 −0.24 −0.84 −1.38

0.96 −1.23 1.08
1.23 −0.45

0.00

 , (29)
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Fig. 3. A polar plot of positions of acoustic axes for Anisotropy A (a) and Anisotropy B (b). The vertical axis is marked by the plus sign. For anisotropy
parameters bijkl , see (29) and (30). Other parameters: α =

√
3 km/s, β = 1 km/s, and ε = 0.1.

b(B)
=


−0.09 0.33 −1.32 −0.57 1.14 −1.44

0.21 −0.24 0.81 1.44 1.50
0.00 0.87 −0.18 0.00

0.90 −0.84 0.45
−1.32 −0.51

0.00

 . (30)

The anisotropymodel defined by Eq. (29)will be referred to as Anisotropy A, the anisotropymodel defined by Eq. (30)will be
referred to as Anisotropy B. Inserting (29) and (30) into (24) and (26) we obtain the following exact values of the anisotropy
parameters, for which we shall invert

xExact (A)
= [−1.139, 1.000, −0.417, 0.889, 1.139, −0.861, −0.694,

−1.222, −1.861, −2.000, −0.667, −1.278, 1.611 ]
T , (31)

xExact (B) = [−3.111, −1.667, 1.889, −3.333, 4.889, −5.333, −0.222,
4.889, 6.000, −5.333, 5.556, −1.278, −4.722 ]

T . (32)

Parameter ε in (7) runs from 0.0001 to 0.1, and it thus covers awide range of anisotropy strength. Both anisotropymodels
have eight real-valued acoustic axes and their directions depend only very slightly on ε. For directions of acoustic axes for
ε = 0.1, see Fig. 3. We invert for anisotropy from the directions of all eight acoustic axes; hence, we use 16 independent
equations in (25) and (28). Matrix A and vector c are specified in Appendix A for the Farra equations, in Appendix B for the
Darinskii equations, and in Appendix C for the Khatkevich equations. We invert from the exact directions of the acoustic
axes as well as from the directions, which slightly deviate from the exact ones, to test the stability of the inversion. The
deviations were generated randomly and varied within a wide range of values to mimic observations of different accuracy.
For each specific accuracy, 2000 realizations of noisy directions of acoustic axes were generated and inverted for anisotropy.
The relative error of each inversion was calculated as the average error e of all components of vector xApprox,

e =
1
13

13
i=1

xExacti − xApproxi

xExacti

 · 100%. (33)

The relative error of the inversions for each accuracy of the directions of acoustic axes was calculated as the average
error over all 2000 random realizations of noisy directions. The relative error of the inversion is studied as a function of the
P-wave anisotropy strength aP calculated as

aP =
cmax

− cmin

cmax + cmin
· 200%, (34)

where cmax and cmin mean the maximum and minimum phase velocities of the P wave over all directions of propagation.
Fig. 4 shows the relative error of anisotropy parameters as a function of anisotropy strength. The inversion is performed

from exact directions of the acoustic axes, andwe invert for anisotropymodels A and B. As expected, if strength of anisotropy
increases, the elastic parameters are retrieved with lower accuracy. Fig. 4 also shows that different equations used in
the inversion yield a different accuracy. For both anisotropy models, the highest accuracy is achieved if we use the Farra
equations. The Darinskii and Khatkevich equations yield less accurate results. However, the efficiency of the equations
depends on themodel and the results of the inversion cannot be easily generalized on the basis of just two anisotropymodels.
Moreover, the efficiency of the equations also depends on noise in the data. This is exemplified in Fig. 5, where the results
of the inversion from inaccurate directions of acoustic axes are shown. The mean error in the directions is 0.1°. The figure
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Fig. 4. Errors of calculated elastic parameters as a function of the P-wave anisotropy strength for the Farra (dotted line), Khatkevich (solid line) and
Darinskii (dashed line) equations for Anisotropy A (a) and Anisotropy B (b). The inversion was performed using exact directions of acoustic axes.

Fig. 5. Errors of calculated elastic parameters as a function of the P-wave anisotropy strength for the Farra (dotted line), Khatkevich (solid line) and
Darinskii (dashed line) equations for Anisotropy A (a) and Anisotropy B (b). The inversion was performed using approximate directions of acoustic axes.
The average deviation ∆ of the approximate directions was 0.1°.

indicates that noise in the directions of acoustic axes can prevent from accurate retrieving of anisotropy parameters. This
applies to thewhole range of anisotropy strength including extremelyweak anisotropy. Fig. 5 also indicates that the accuracy
of the inversions is remarkably different for Anisotropy A but it is very similar for all three approaches for Anisotropy B. In
Anisotropy B, the Farra, Darinskii and Khatkevich equations yield accuracy which is roughly the same for the interval of
anisotropy strength 0.01%–1%. For higher anisotropy strength, the efficiency of the equations starts to differ.

Figs. 6–8 show a detailed comparison of the relative errors of anisotropy parameters as a function of anisotropy strength
for models A and B. The errors are shown for the inversion from exact directions (curve a) and from directions of limited
accuracy (curves b–f). Again, the errors of the inversion increase with increasing strength of anisotropy. If the anisotropy
strength is higher than 10%, the inversion fails. This applies to all three different sets of equations used in the inversion. This
limitation follows from applying the weak anisotropy approximation. As expected, the errors also increase with decreasing
accuracy of the directions of acoustic axes. If an average deviation between the exact and noisy directions of acoustic axes
used in the inversion is higher than 1° (curve f), the inversion yields errors ranging from 20% to 80%, irrespective of the
strength of anisotropy. This indicates rather high demands of the inversion on the accuracy of acoustic axes. To get results
with accuracy better than 5%, the acoustic axes must be determined with an accuracy of 0.1° or better, and the anisotropy
strength must be less than 1%. To achieve such a high accuracy is not probably feasible in real experiments.

6. Conclusions

In principle, it is possible to invert for weak anisotropy parameters from directions of acoustic axes. The minimum
number of acoustic axes, which can be inverted for weak anisotropy, is seven, and we can retrieve 13 combinations of
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Fig. 6. Errors of calculated elastic parameters as a function of P-wave anisotropy strength for Anisotropy A (a) and Anisotropy B (b) using Farra equations.
The inversion was performed using exact (curve a) and approximate (curves b–f) directions of acoustic axes. The average deviation of the approximate
directions from the exact directions was (in degrees): 0.0043 (curve b), 0.017 (curve c), 0.069 (curve d), 0.27 (curve e), and 1.1 (curve f). The dashed line
shows the error threshold of 10%.

Fig. 7. Errors of calculated elastic parameters as a function of P-wave anisotropy strength for Anisotropy A (a) and Anisotropy B (b) using linearized
Darinskii equations. The inversion was performed using exact (curve a) and approximate (curves b–f) directions of acoustic axes. The average deviation of
the approximate directions from the exact directions was (in degrees): 0.0043 (curve b), 0.017 (curve c), 0.069 (curve d), 0.27 (curve e), and 1.1 (curve f).
The dashed line shows the error threshold of 10%.

Fig. 8. Errors of calculated elastic parameters as a function of P-wave anisotropy strength for Anisotropy A (a) and Anisotropy B (b) using linearized
Khatkevich equations. The inversion was performed using exact (curve a) and approximate (curves b–f) directions of acoustic axes. The average deviation
of the approximate directions from the exact directions was (in degrees): 0.0043 (curve b), 0.017 (curve c), 0.069 (curve d), 0.27 (curve e), and 1.1 (curve f).
The dashed line shows the error threshold of 10%.
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elastic parameters. Under the weak anisotropy approximation, the directions of acoustic axes are insensitive to strength of
anisotropy; hence we cannot invert for absolute values of weak anisotropy parameters, but only for their relative values.
Numerical tests have shown that the inversion is applicable to very weak anisotropy with strength of less than 5%, provided
that the acoustic axes used in the inversion are determined with an accuracy of 0.1° or better. In this case, the inversion
yields an average error of elastic parameters less than 10%. The tests have also revealed significant differences between
different linearized equations: the Farra equations, the linearizedDarinskii equations or the linearizedKhatkevich equations.
The efficiency of the equations depends on the positions of the acoustic axes on the sphere and on their accuracy. This
dependence is complicated, and no simple rule indicates which method is preferable for the inversion.

If the studied weak anisotropy possesses less than seven real-valued acoustic axes or if they are not measured with a
sufficient accuracy, we cannot invert for the total set of 13 combinations of anisotropy parameters from acoustic axes only.
Since both conditions are quite restrictive being not fulfilled in many cases, we have to incorporate additional equations in
the inversion. For example, we can incorporate measurements of phase velocities in selected directions. The combination of
the directions of the acoustic axes with measurements of other attributes of elastic waves in the inversion is advantageous
also for the sake of improving the accuracy of the weak anisotropy parameters and retrieving other anisotropy parameters
which cannot, in principle, be obtained from acoustic axes including the strength of anisotropy.
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Appendix A. The Farra equations

Using Eqs. (13) we obtain the following components of submatrix A(i) and of vector c(i) specified for the ith acoustic axis:
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where superscript i denotes the sequential number of the acoustic axis, and n is the direction vector of this axis. Inserting
submatrices A(i) and vectors c(i) into (27) we construct matrix A and vector c required in the system of linear equations (28).

Appendix B. The linearized Darinskii equations

Using Eq. (20), we obtain the following components of submatrix A(i) and of vector c(i) specified for the ith acoustic axis:
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where superscript i denotes the sequential number of the acoustic axis, and n is the direction vector of this axis. Inserting
submatrices A(i) and vectors c(i) into (27) we construct matrix A and vector c required in the system of linear equations (28).

Appendix C. The linearized Khatkevich equations

Using Eqs. (22) and specifying coefficients pij, qij and rij according to Appendix B of Vavryčuk [37], we obtain the following
components of submatrix A(i) and of vector c(i) specified for the ith acoustic axis:
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where superscript i denotes the sequential number of the acoustic axis, and n is the direction vector of this axis. Inserting
submatrices A(i) and vectors c(i) into (27) we construct matrix A and vector c required in the system of linear equations (28).
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