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Seismic data from deep refraction and wide-angle reflection profiles intersecting the Western Carpathians show
distinct upper-mantle Pn phases with anomalous apparent velocities identified in the first and later arrivals. Their
systematic analysis indicates that such phases are present in numerous seismic sections both for in-line and off-
line shots. They are observed in data from profiles intersecting the Carpathians in the west at the contact with the
Bohemian Massif; similar feature was also found in data at the northern edge of the Carpathians at the contact
with the North European Platform. Modelling of these anomalous Pn phases shows that they originate due to
local structural anomalies of the Moho discontinuity detected in several places along the Western Carpathian
arc. Such anomalies are located in close lateral proximity of the Pieniny Klippen Belt representing the contact be-
tween the stable European Plate in the north and the ALCAPA (Alpine-Carpathian-Pannonian) microplate in the
south. Thus, the complex local Moho topography modelled from the Pn phases suggests tectonic relation to the
formation of the Carpathian orogen. The result is supported by correlation with the large-scale Carpathian
conductivity anomaly modelled in the Carpathians at a mid-crustal level. Relative lateral position of these two
structures together with the Pieniny Klippen Belt at the surface delineates a zone affected by deformations at var-

Keywords:

Western Carpathians
Seismic modelling
Crustal structure
Anomalous Moho
Bohemian Massif
Pannonian Basin

ious depths along the whole Western Carpathian arc.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The Moho is the outermost seismic discontinuity in the Earth and
defines the base of the crust. It ranges in depth from about 3 km at
ocean ridges to about 70 km in collisional orogens. This discontinuity
represents a boundary between the crust and the mantle and is marked
by an abrupt change of seismic P-wave velocity from less than ~7.2 km/s
to more than ~7.8 km/s. Since the composition of the crust is different
from the composition of the mantle, the Moho represents the striking
evidence of a differentiation in the Earth.

The seismic signature of the Moho depends, to a large degree, on
seismic methodology which was used to obtain the image. Con-
trolled source studies reveal the Moho as a sharp refraction velocity
contrast, while the Moho in normal incidence seismic reflection im-
aging is observed either as a reflective horizon or as an abrupt de-
crease of lower crustal seismic reflectivity. The characteristics of
the Moho boundary depend on geology and tectonic evolution of
the area. Detailed seismic reflection and refraction studies indicate
itis not a simple boundary worldwide but in some regions, especially
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at plate or former plate boundaries, the Moho is complicated and
forms a relatively complex transition zone. It can be steeply dipping
at contact of plates of different age (e.g., Grad et al., 2003a,b; Hauser
et al., 2007), it can be masked by reflectivity in the lower crust
(e.g., Hrubcova and Geissler, 2009; Jensen et al., 2002; Thybo and
Nielsen, 2012) or, as in collisional orogens, it can be offset by com-
plex crustal faults. An example of this situation is documented in
the Himalayan orogen where a 20 km offset of the Moho was recog-
nized beneath the Indus suture, which was interpreted as a result of
crustal slices thrust on top of each other during the Himalayan colli-
sion (Hirn et al., 1984a,b).

The Western Carpathians as the northernmost segment of the Alpine
orogenic belt represent another example of the collisional tectonics
where a complicated signature of the Moho can be expected. They
originated due to continental compression in central Europe and form
an arc-shaped mountain range related to the Alpine deformation during
the Cretaceous to Tertiary. Difficulties in the Moho determination were
firstly recognized at the western edge of the Western Carpathians by
Zatopek and Beranek (1975) and Beranek and Zatopek (1981) who
interpreted a broader complex zone with undisclosed pattern of the
Moho topography. They detected different crustal thickness on both
sides of tectonic plates but their methodology was not able to infer
details of the Moho topography at a place of the contact.

0040-1951/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.tecto.2014.10.013&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://dx.doi.org/10.1016/j.tecto.2014.10.013
mailto:pavla@ig.cas.cz
http://dx.doi.org/10.1016/j.tecto.2014.10.013
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.sciencedirect.com/science/journal/00401951

64

Vast amount of data from several seismic refraction and wide angle
reflection experiments recently acquired in the Western Carpathians —
CELEBRATION 2000, ALP 2002 and SUDETES 2003 (Briickl et al., 2003;
Grad et al., 2003a,b; Guterch et al., 2003) enables more intensive studies
of this region. Modelling of data from these experiments provides
constraints for seismic velocities of the crust and upper mantle in
the Carpathians and the surrounding tectonic units. The seismic data
recorded with high resolution and unified methodology enable not
only to model robust features but also to concentrate on more com-
plicated structural phenomena such as local complexity of the Moho
and its local topography along the Western Carpathian arc.

The Moho in regional seismic refraction studies is usually detected
as a relatively well defined structure with marked lateral continuity.
Its topography is inferred from the wide angle reflected PmP phases
complemented by modelling of the refracted uppermost mantle Pn
phases. In the Western Carpathians, at their contact with surrounding
tectonic units, the anomalous Pn phases were identified in the seismic
wavefields. These phases were detected not only in the first arrivals
but also with continuation to later arrivals. Such phases are not an
isolated phenomenon confined to only one profile, but they are present
in numerous seismic sections both for in-line and off-line shot points at
different profiles. However, their systematic analysis is still missing.

In this study, we concentrate on the interpretation of the anomalous
Pn phases using both kinematic and dynamic seismic approaches with
ray tracing and full waveform modelling. This enables to locate and
determine the shape of the structure at the Moho generating the
anomalous phases. We discuss possible origin of such structure and
compare it with results from previous geophysical studies. Since local
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changes in the Moho topography have tectonic significance, such inves-
tigation presents interpretational challenge to trace former tectonic
plate boundaries at depth. In the Western Carpathians, knowledge
about the course of tectonic suture to depth is missing, thus results
from this study can shed light on tectonic evolution of the orogen.

2. Geology and tectonic setting

The Western Carpathians represent the northernmost part of the
Alpine orogenic belt in Europe. They form a northward-convex arc
consolidated as a result of series of Jurassic to Tertiary subduction and
collision events during the Alpine orogeny (McCann, 2008). Their
geological evolution is related to the convergence of plates with south-
ward subduction of oceanic domains taking place between stable
European Plate in the north and mobile fragments of continental litho-
sphere of the ALCAPA (Alpine-Carpathian-Pannonian) microplate in
the south (PlaSienka et al., 1997). The northern foreland of the
Carpathians, the European Plate, encompasses the North European
Platform with the Matopolska Block consolidated in Paleozoic, and the
Precambrian East European Platform. To the west, the stable European
Plate is formed by the Variscan Bohemian Massif consolidated during
the Paleozoic with older autochthonous Brunovistulian Block (Tomek
and Hall, 1993) (Fig. 1).

The Carpathian region is characterized by an arcuate orogenic belt
(the Carpathians) with an extensional basin inside (the Pannonian
Basin). The collisional belt of the Western Carpathians consists of the
external and internal structural zones, i.e., Outer Western Carpathians
and Inner Western Carpathians, respectively (McCann, 2008). The
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Fig. 1. (a) Simplified tectonic map of central Europe with superimposed seismic profiles from refraction and wide-angle reflection experiments CELEBRATION 2000, ALPS 2002 and
SUDETES 2003 used for the interpretation of the anomalous Pn phases (solid lines). Other reflection and refraction profiles (dashed lines). Stars represent shot points; thick lines represent
stations with anomalous upper-mantle phases (in the west marked in red, in the north marked in yellow). BM, Bohemian Massif; PB, Pannonian Basin; TESZ, Trans-European Suture Zone;
OWC, Outer Western Carpathians; IWC, Inner Western Carpathians; PKB, Pieniny Klippen Belt. (b) Geographical map with refraction and wide angle reflection profiles CELEBRATION 2000,
ALP 2002 and SUDETES 2003 used for the interpretation (solid lines); other reflection and refraction profiles (dashed lines). Stars represent shot points and thick lines represent stations
with anomalous Pn phases (in the west marked in red, in the north marked in blue). Numbering refers to shot points discussed in the text.
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Fig. 1 (continued).

Outer Western Carpathians include the Carpathian Flysch Belt com-
posed of several north-west, north, and north-east verging nappes,
and the Carpathian Foredeep as the eastern/northern extension of the
Alpine Molasse Basin filled by the Neogene strata. The Inner Western
Carpathians were subject to extensive crustal shortening (Plasienka
et al,, 1997) and include various pre-Tertiary units partially covered
by Tertiary sediments of the Pannonian Basin System and Neogene
volcanic complexes (Fig. 1). The volcanics are represented by rhyolites
and dacites related to early back-arc spreading, island-arc type andes-
ites connected with the retreating subduction of the oceanic lithosphere
beneath the Inner Western Carpathians, and alkali basalts originated
due to post-subduction extension and asthenosphere updoming in the
Pannonian Basin (Kovac and Hok, 1996; Lexa and Kone¢ny, 1998).

Tectonically, the Outer Carpathians correspond to the Tertiary accre-
tionary complex related to the southward subduction of the oceanic to
the sub-oceanic crust at the European Plate margin. From the Inner
Carpathians, they are separated by the Pieniny Klippen Belt (PKB),
commonly considered as a deep-seated boundary between the colliding
European Plate and the microplate ALCAPA (McCann, 2008). The
Pieniny Klippen Belt is assumed to be one of the surface expressions of
the Late Cretaceous to Early Tertiary closure of the Penninic-related
oceanic domain forming a boundary between the inner and outer
units of the Carpathian orogen (PlaSienka et al., 1997).

The Pieniny Klippen Belt as the boundary between the Outer
Carpathians, overlying the subducted margin of the European Plate,
and the Inner Carpathians of the ALCAPA microplate, is an important

first-order tectonic structure in the Carpathians. It forms a 600-km
long and a few kilometres wide zone of extreme shortening which
extends along the Carpathian belt (McCann, 2008). The PKB is
composed of several successions of mainly deep- and shallow-water
limestones mostly of Jurassic to Cretaceous age and its sequences are
submerging sub-vertically down to depths of at least 5 km (e.g., Bielik
et al., 2004; Birkenmajer, 1986; Tomek, 1993; Vozar et al., 1998). Strong
tectonic deformation is a result of two main phases during the Alpine
orogeny. Its present surface structure can be explained as resulting
from extensive and complex transpressional to transtensional move-
ments that affected the originally shallow fold-and-thrust belt (Kovac
and Hok, 1996; Némcok and Némcok, 1994). In most areas, the Pieniny
Klippen Belt forms the axial part of a broad flower structure which also
includes the innermost units of the Carpathian Flysch and the frontal
units of the Inner Western Carpathians. Though there are attempts to
interpret the sub-vertical structure of the Pieniny Klippen Belt to depths
of about 12 km (Vozar et al., 1999), there is no seismic evidence about
its continuation to the middle and lower crust (Hrusecky et al.,, 2006).

3. Existing velocity models

The crustal and upper-mantle velocity structure gives the basis for
subsequent seismic studies of local features. In the Western Carpathians
and their surrounding units, it was derived from seismic refraction
experiments CELEBRATION 2000, ALP 2002, and SUDETES 2003
(Briickl et al., 2003; Grad et al., 2003a,b; Guterch et al., 2003) covering
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Fig. 2. Example of refraction and wide-angle reflection data with anomalous Pn phase. (a) Amplitude-normalized vertical component seismic section for the shot point SP 44210, profile
S04 plotted with reduction velocity of 8 km/s. (b) The same seismic section with marked anomalous Pn phase. Note strong first-arrival Pn phase with low apparent velocity <8 km/s (solid
red line). Green line represents continuation of this Pn phase to later arrivals determining the abrupt change of the Moho topography. Note the shape of the Pn phase and its continuation to

later arrivals resulting in the complex local Moho topography.

mainly the Czech Republic, Slovakia, Poland, Hungary, and Austria. Data
from these experiments were interpreted by standard tomographic and
trial-and-error forward modelling of the refracted and reflected seismic
phases resulting in 2D or 3D velocity models. These models indicate that
the thickness of the crust across the Western Carpathians changes from
25 to 30 km beneath the Pannonian Basin in the south, to 35-43 km
close to their axial part (PKB) and reaches 30-45 km in their northern
foreland (Grad et al., 2006; Hrubcova et al., 2010; Sroda et al., 2006).
In the north, a Moho depression was interpreted which seems to be con-
fined to the central part of the Western Carpathians as it was observed
in the CELO1, CEL04, and CELO5 profiles (Grad et al., 2006; Sroda et al.,
2006; Sroda, 2010). In the west, the Moho depth in the Bohemian Massif
ranges among 30-39 km with its maximum in central part of the Bohe-
mian Massif (Hrubcova et al., 2005). At the contact of the Western
Carpathians with the Bohemian Massif a sharp change of the Moho to-
pography close to the contact of the PKB was interpreted from the S04
profile (Hrubcova et al., 2010).

Knowledge of a shallow structure is essential for proper modelling of
deeper parts and its effect must be separated from modelled phases. The
upper crust with sedimentary successions of the Carpathian Flysch and
Foredeep shows pronounced lateral variations of seismic velocity,
causing substantial differences in the travel times of both crustal and
upper mantle phases emerging in this area. Considerably lower veloci-
ties of 3.8-4.2 km/s down to a depth of 7 km are detected in a distance
range of 370-460 km along the profile S04 modelled also by Hrubcova
et al. (2010); velocities in a range of 2.5-5.5 km/s down to a depth of
10 km are modelled along the profile CEL09 (Hrubcova et al., 2005).
Similar velocity structure was detected also in the northern rim of the
Western Carpathians along profiles CEL04 (Sroda et al., 2006) and
CELO5 (Grad et al., 2006). Such velocities correspond to the Tertiary

sediments of the Outer Western Carpathians: the Carpathian Flysch
and the Carpathian Foredeep. The thickness of sediments of the
Carpathian Flysch is also constrained by the reflection profile 8HR
(Tomek and Hall, 1993) and by geological information (e.g., Golonka
and Krobicki, 2004; Vozar et al., 1999). Very low velocities of ~2.2 km/s
to adepth of 0.5 km at a distance of 425 km along the CELO9 profile reflect
the Neogene to Quaternary sediments of the Alpine Molasse Vienna Basin
margin (Hrubcova et al.,, 2005).

4. Anomalous Pn phases

The anomalous upper-mantle Pn phases used for the interpreta-
tion were identified in seismic sections from all three experiments
CELEBRATION 2000, ALP 2002, and SUDETES 2003. The western part
of the Western Carpathians at the contact with the Bohemian Massif
is interpreted from data along profiles CEL09, CEL15 (CELEBRATION
2000 experiment), ALPO1 (ALP 2002 experiment), and S04 (SUDETES
2003 experiment). The northern rim of the Western Carpathians, at
the contact with the North and East European Platforms, is documented
from profiles CELO1, CELO4, CELO5, and CEL11 (CELEBRATION 2000
experiment). The situation of profiles is presented in Fig. 1; details of
data processing are described in Hrubcova et al. (2005) or Sroda et al.
(2006).

The seismic sections along all these profiles comprise Pn phases
coming from the upper mantle with anomalously low (western parts)
or high (northern parts) apparent velocities and of high amplitudes.
These phases are identified in the first arrivals, often with a continuation
to later arrivals, and are characterized by an abrupt change of the
apparent velocity in contrast to a typical Pn phase with the velocity of
~8 kmy/s. This suggests complex local changes of the Moho topography.
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Fig. 3. Examples of amplitude-normalized vertical component seismic sections with anomalous Pn phases originating at the contact of the Bohemian Massif and the Western Carpathians with shot points in the Pannonian Basin. Seismic sections plotted
with reduction velocity of 8 km/s and band-pass filtered from 2-15 Hz. Note strong seismic Pn phase and its continuation to later arrivals with low apparent velocity <8 km/s. Q
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Fig. 4. Examples of amplitude-normalized vertical component seismic sections with the anomalous Pn phases originating at the contact of the Carpathians with the European Plate and the
shot points in the north. Seismic sections plotted with reduction velocity of 8 km/s and band-pass filtered from 2-15 Hz. Note strong seismic Pn phase with high apparent velocity >8 km/s.

In the west, the NW-SE oriented profiles CELO9 (length 740 km),
CEL15 (length 530 km) and S04 (length 740 km) start at the north-
western edge of the Bohemian Massif, continue across the Western
Carpathians, and terminate in the Pannonian Basin. The anomalous
Pn phases are identified in seismic sections from both in-line and off-
line shots mainly located in the SE in the Pannonian Basin. One seismic
section from the off-line shot point located in the Pannonian Basin
exhibits the anomalous Pn phases along the N-S oriented ALPO1 profile
(length 645 km). The distinctive Pn arrivals show low apparent velocity
of about 7.3 km/s connected with a local increase of the amplitude. Fur-
thermore, these strong low-velocity first arrivals often continue to later
arrivals with higher amplitude than the preceding Pn phase (Fig. 2).
These phases do not represent an isolated phenomenon attributed to
only one place or one seismic section; they are visible in 14 seismic sec-
tions both for the in-line and off-line shot points located in the south-
east in the Pannonian Basin and recorded in the northwest direction
(Fig. 3). Though they are observed at various offsets from the shot points
(from 180 to 400 km), they are always located at a similar distance from
the Western Carpathian axis. This suggests that they originate close to
the contact of the Western Carpathians with the western units, the Bo-
hemian Massif.

The profiles crossing the northern rim of the Western Carpathians,
the CELO1 (length 880 km), CELO5 (length 1420 km) and CEL11 (length
430 km) are of the NNE-SSW direction; the profile CEL04 (length
630 km) is of the NNW-SSE direction. Here, strong upper-mantle ar-
rivals show abnormally high apparent velocity (~9 km/s or more) ob-
served for rays crossing the Carpathian orogen from the north at a
similar distance from the Pieniny Klippen Belt (recorded at distances
of ~0-150 km from PKB). The amplitude of these phases is higher or
at least equal to the typical Pn amplitude and these phases are clearly
visible even if the typical Pn phase is not observed at all. These phases
are observed in seismic sections of 43 in-line and off-line shot points

mostly located north of the Carpathians (Fig. 4). Sroda (2010) suggested
that they represent anomalous Pn or diffraction-like arrivals produced
by small, local anomalies of the Moho topography close to the Pieniny
Klippen Belt.

The distinctive Pn arrivals in the west and north of the Western
Carpathians differ in terms of the apparent velocities visible in seismic
sections. In the western part of the Western Carpathians, these phases
are visible in sections from the shot points in the southeast and show
low apparent velocities; in the northern parts they are visible for
the shot points located north of the Western Carpathians with high
apparent velocities. The detected apparent velocities differ due to
different position of shot points in respect to tectonic plates. Low
apparent velocities are observed in seismic sections with shots in the
over-thrusting ALCAPA microplate; high apparent velocities occur in
seismic sections with shots in the stable subsiding European Plate. How-
ever, independently of different apparent velocities and of different
propagation directions, modelling suggests that the origin of these
phases seems to be similarly confined to a relatively narrow anomaly
associated with localized structures at the Moho boundary close to the
axis of the Carpathian orogen.

5. Modelling of the anomalous Pn phases

The topography of the Moho in seismic refraction modelling is
inferred from the wide angle reflected PmP phases complemented the
refracted uppermost mantle Pn phases. In tectonic areas, especially
when the local Moho topography is complicated, the PmP phases are
not always distinguished in the recorded seismic sections and the
refracted Pn phases serve as the main source for modelling. In the
Western Carpathians, at their contact with surrounding tectonic units,
complex Moho geometry and strong attenuation in the deformed
crust does not allow for clear observations of the Moho PmP reflections.
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Instead, the anomalous Pn phases are identified in the seismic wave-
fields. Thus, in our approach, the Moho is constrained by the Pn phases.
However, strong amplitudes of the Pn phases give a solid basis for the
interpretation of the Moho topography.

To model the upper-mantle Pn phases, we applied forward iterative
travel time fitting using the ray-tracing program package SEIS83
(Cerveny and PSencik, 1984) supplemented by an interactive graphical
interface MODEL (Komminaho, 1997) and ZPLOT (Zelt, 1994). The
modelling involved calculation of travel times; synthetic sections
helped to constrain the velocity contrasts and the shape of the Moho
and generally showed good qualitative agreement with the relative
amplitudes of the observed phases.

Modelling of the Pn phases is based on the existing velocity models
of crust and upper-mantle, where also complicated shallow structure
is taken into account. These models explain a large part of the observed
wavefields and allow isolating the anomalies of the Pn phases close to
the contact with the Carpathians. Modelling of these phases enabled
to focus on local changes of the Moho topography.

5.1. Western side of the Carpathians

Modelling of the Moho structure at the western side of the Western
Carpathians at their contact with the Bohemian Massif was performed
with data from the profiles S04, CEL09, CEL15 and ALP1. For profile
S04, the seismic section from the shot point SP 44210 in the Pannonian
Basin shows the Pn phase with the apparent velocity of 7.3 km/s ob-
served in the first arrivals in a distance range of 320-390 km, which

continues to later arrivals up to a distance of 270 km. Based on the ve-
locity model of Hrubcova et al. (2010), modelling of the anomalously
low velocity Pn phase results in a NW-dipping Moho at a distance of
390-415 km with ~12 km change of the crustal thickness from 25 to
37 km. The shape of the Moho topography is constrained from shot
points SP 44210, 44140, and 44100. Fig. 5 shows the effect of the
Moho topography in data from seismic section for SP 44210. It compares
the effect of steeply dipping step-like Moho with response from a model
with a flat Moho. In the case of the step-like Moho anomaly, the fit for
the Pn phase is achieved for the first arrivals (Fig. 5a) and for both the
first and later arrivals (Fig. 5b). In both cases, the fit results in slightly
different shape of the Moho topography where later Pn arrivals control
the bending shape of the step. In case of the situation in Fig. 5b, the fit is
achieved in combination with a local upper mantle reflector at a dis-
tance of 370-460 km and a depth of ~50 km situated beneath the
Moho depth anomaly. In these examples, the shape of the Moho topog-
raphy slightly differs, nevertheless, the location of the anomaly along
the profile remains at the same place for both cases. On the other
hand, Fig. 5¢ shows the situation where the fit is missing for a flat Moho.

In case of the S04 profile, where later Pn phases are clearly detected,
the favourable model is presented in Fig. 5b. Here, the later arrivals are
modelled as the Pn refraction resulting from the steep inclination of the
step. The weaker preceding arrivals visible in seismic sections are
interpreted as reflection from the mantle and modelled with local
upper-mantle reflector close to the Moho anomaly. Nevertheless, not
all modelled sections with anomalous apparent velocities show contin-
uation of the Pn phase to later arrivals. Thus, the comparison of Fig. 5a
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and b illustrates the situation when later arrivals are observed or not
and, to some extent, documents the ambiguity of the modelling with re-
spect to the detected phase.

In a similar way, the shape of the Moho anomaly at the transition
between the Bohemian Massif and the Carpathians is modelled by
forward modelling of the seismic sections along other profiles, both
for in-line and off-line shot points. All 14 seismic sections used for the
interpretation have shot points located in the SE in the Pannonian
Basin along profiles CEL09, CEL15, S04 and ALPO1 and show distinct

low-velocity Pn phase sometimes with continuation to later arrivals.
The shape of the Moho modelled along the CELO9 profile located
~80 km to the south of profile S04 is presented in Fig. 6. There, the
velocity modelling of Hrubcova et al. (2005), who modelled the
Bohemian Massif up to its contact with the Carpathians, is extended
for two in-line shot points SPs 21031 and 25040 in the Pannonian
Basin where crossing profiles CELO1 and CELO5 (Grad et al., 2006;
Sroda et al., 2006) help to constrain local structure in the Pannonian
Basin beneath these shot points. New velocity model along extended
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CELO9 profile is constrained from SPs 29140, 29150, 21031 and 25040,
and suggests a depth change of the Moho topography to the NW from
28 to 35 km at a distance of about 380 km along CELO9 profile, close
to the contact of the Western Carpathians with the Bohemian Massif.
Previously, Hrubcova et al. (2005) modelled the crustal structure of
the Bohemian Massif up to its contact with the Carpathians along NW
part of the CELO9 profile. Beneath the Moravo-Silesian in the
Brunovistulian unit, i.e., NW of the Carpathians, the Moho reflections
were not observed. Especially, the section SP 29150 at a distance of
450 km along the CELO9 profile exhibited quite unusual character
where only the first arrivals were identified as a strong Pg phase turning
into a very strong Pn. Apart from this, a weak phase with a high apparent
velocity was identified beyond the bending point of the first arrivals in
place where the Pg turned into the Pn phase. Hrubcova et al. (2005)
interpreted such a shape of travel times with a vertical gradient increase
without velocity discontinuities. Instead of a sharp Moho, they proposed
a 17 km thick gradient zone at depths of 23-40 km with Vp velocities
ranging from 6.8 to 7.8 km/s as a characteristic feature of the
Brunovistulian unit. Since Hrubcova et al. (2005) concentrated on the
Bohemian Massif, their interpretation did not go beyond the contact
with the Carpathians. However, extending the modelling for seismic sec-
tions in the Pannonian Basin that we do in this study allows for a wider

range of possible solutions. Fig. 7 illustrates two possible interpretations
of the crust-mantle transition from the shot point SP 29150 in the
Carpathian Foredeep and the SP 25040 in the Pannonian Basin. It com-
pares the Pn for the first-order Moho discontinuity with the step-like
Moho anomaly (Fig. 7a) and the gradient crust-mantle transition zone
as according to Hrubcova et al. (2005) (Fig. 7b). Since the SP 29150 is
quite close to the Moho anomaly, its section cannot exhibit the anomalous
Pn phases. Nevertheless, Fig. 7a documents that the SP 29150 section can
be interpreted with the Moho step as well as with the gradient zone. From
the calculated travel times it is clear that both interpretations for the SP
29150 satisfy the data. Similar situation is for the reciprocal shot points,
e.g., SP 29060 (located in the Bohemian Massif), which allow both inter-
pretations. To decide which solution is preferable, we have to look at
the sections in the Pannonian Basin with the anomalous Pn phases. Sec-
tion SP 25040 shows that the fit of the calculated travel times with the
identified Pn arrivals is much better for the step-like Moho anomaly com-
pared to missing fit in case of the gradient zone (Fig. 7b). Thus, although
the usual approach is to try to reach an agreement with previously pub-
lished results, in this case we suggest the first-order Moho discontinuity
with the Moho topography change as a more probable solution at the
contact with the Bohemian Massif. Nevertheless, this is a complicated tec-
tonic area and a combination of the effect of a gradient zone at the Moho
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Fig. 9. Reflection profile 8HR at the contact of the Western Carpathians with the Bohemian
Massif. (a) Part of the migrated reflection profile 8HR in scale 1:1 (after Tomek and Hall,
1993). (b) The Moho topography modelled along the S04 profile (red line) superimposed
on top of the 8HR profile. Inset marks locations of 8HR and S04 profiles. Note well-defined
sub-horizontal reflections at a distance of 60-75 km, depth of 38 km, interpreted by
Tomek and Hall (1993) as the Moho reflection of the Bohemian Massif. They fade out at
~77 km distance, close to the projected location of the S04 Moho step. Similarly, strong
lower crustal reflectivity at 20-38 km depth, visible up to a distance of 70-75 km does
not continue beyond the location of the S04 Moho depth change. Spatial coincidence of
both features suggests their common origin.

level (proposed also by Hrubcova et al., 2008) next to a sharply pro-
nounced Moho with a step can represent the complexity of the area as
was also discussed by Hrubcova et al. (2010) along the profile CEL10.
The modelling along the extended profile CEL09 also involves seismic
sections located slightly off the CEL09 line (SP 27020, 27030, 27050,
27060, 27070, 28070, 28080 and 28090). Since these shot points are not
located at the CELO9 profile directly, the upper crustal parts near the
shot points were taken from the velocity models along the profiles
CELO7 and CELO8 (Malinowski and CELEBRATION 2000 Working Group,
2003) to avoid the influence of the local upper crustal conditions on the
interpreted mantle phases. Results of the forward modelling show a
change of the Moho topography from 28 to 38 km at a distance of
380 km along the CELO9 profile. Since the geometry for the off-line model-
ling is not exactly 2D, the actual position of the modelled Moho anomaly
in this case is off the CEL09 line, slightly more to the south. In a similar
way, the seismic section of the off-line shot point SP 37070 with anoma-
lous upper-mantle phases recorded along the ALPO1 profile can be used.
Such interpretation can give an indication of the location of the Moho
anomaly more to the south of the CEI09 profile, though in this case the
use of velocity model along the CELO9 profile would be more approximate

and the precision of determination the Moho structure would be lower.
For this reason, we did not include this modelling into our final results.

Similar shape of the Moho anomaly is also achieved from data along
the profile CEL15 located close to the S04 line. The seismic section from
the off-line shot point SP 25040, which is located at the prolongation of
the CEL15 line along the S04 line, also exhibits the anomalous Pn phases.
The CEL15 profile runs almost parallel with the S04 profile, and
terminates at a distance of 530 km along the S04. For modelling of the
seismic section from SP 25040, we combine the CEL15 velocity model
with the model along the S04 line (Hrubcova et al., 2010) with the aim
to concentrate on the Moho topography at the Western Carpathian
contact. The step-like Moho anomaly bending to the NW is modelled at
a distance of 400-420 km along the CEL15 with a depth change from 26
to 35 km.

5.2. Northern side of the Carpathians

The northern side of the Western Carpathians was studied from pro-
files CELO1, CELO4, CEL 05, and CEL11 of the CELEBRATION 2000 experi-
ment (Grad et al., 2006; Janik et al., 2009; Sroda et al., 2006), which
covered the contact between the European Plate (East European Platform,
Matopolska Block and Brunosilesian Unit) in the north, and the ALCAPA
plate in the south. Some of the results of the refraction modelling revealed
an abrupt change of the Moho depth from 35 km to 45 km forming local
Moho depression with a width of ~15 km in the proximity of the PKB. The
Moho anomaly at the northern rim of the Carpathians is different com-
pared to the western parts. The Moho there is characterized by a local
change of the Moho topography with similar depth on both sides forming
a trough-like structure.

The anomalous upper-mantle phases at the northern rim of the
Western Carpathians were interpreted by Sroda (2010), who analysed
them along profiles CELO1, CEL04, CELO5, and CEL11 and detected
high amplitude mantle arrivals of unusually high apparent velocity
(~9 km/s and more). These phases were generated by shots located
north of the Carpathians (Matopolska Block and East European
Platform) and recorded by stations in the Inner Carpathians. These
phases, visible at large offsets (200-400 km), were quite pronounced
and their amplitude was usually higher than the typical Pn amplitude
(see Fig. 4). These arrivals were observed at a similar distance from
the PKB (0-150 km to the south), which suggested that they originate
in a local structure in the uppermost mantle beneath the Outer and
Inner Carpathians. Sroda (2010) suggested two alternative explanations
of these phases: reflections from a north-declined discontinuity in the
uppermost mantle, or arrivals generated by a localized anomaly at the
Moho level (see Fig. 11d,e), acting similarly as a diffractor and turning
up the Pn waves propagating in the mantle back to the surface. Such a
localized anomaly could represent a relatively small fragment of the
crustal material submerged in the mantle immediately below the
Moho discontinuity with the velocity Vp of ~6.8 km/s forming a trough
in a size of ~5-20 times ~5-15 km. However, Sroda (2010) noted that
the modelled rectangular geometry of the anomaly was just one of
many possible solutions (including, e.g., irregularly shaped body)
because the method used in his study allowed estimating mainly
the size of the anomaly. Nevertheless, such an anomaly at the Moho
level is analogous to the results of modelling along the profile V/3K
(Uchman, 1975) where similar but wider Moho trough was also
observed. Also, it coincides with the results from refraction modelling
along profile CEL04 (Sroda et al., 2006).

Compared to Sroda (2010), local upper-mantle reflector close to the
Moho anomaly was also interpreted by Hrubcova et al. (2010) who
modelled local mantle reflector at a depth of 50 km at the western
side of the Western Carpathians at the contact with the Bohemian
Massif. Both in case of Sroda (2010) and Hrubcovi et al. (2010), local
upper-mantle reflector is confined to the same place beneath the
Moho depth change. Thus, the Moho anomaly and localized upper-
mantle reflector may be connected and together they may reflect the
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complexity of structure at the contact of the Western Carpathians with
the surrounding units.

6. Synthetic tests with full-waveform modelling

We performed synthetic tests to reduce misinterpretation of phases
and to separate the effect of the upper crustal parts and deeper Moho
topography. We tested for an effect of two structures: i) low velocities
sediments of the Carpathian Flysch and Foredeep and ii) an abrupt
change of the Moho topography. This approach enabled to document
the origin of the anomalous phases, analyse individual phases in the
recorded wavefields and verify the models from the ray tracing.

We applied finite-difference full-waveform modelling code of
Hansen and Jacobsen (2002), as the fast and efficient tool for calculation
of the full wavefield. The code uses fourth-order space and second-
order time finite-difference solver of the elastic wave equation. The
model was defined in terms of the P-wave velocities; S-wave velocity
distribution was obtained from constant Vp/Vs ratio of 1.73. The
velocity and density models were parameterized on a 2-D grid with
200 m spacing; the dominant frequency of the calculated wavefield
was 4 Hz. Random noise with the same amplitude for all traces was
added to the calculated seismograms to simulate realistic decrease of
the signal-to-noise ratio with offset.

Full waveform results are summarized in Fig. 8. This figure presents a
response from the model with complicated shallow structure represented
by the low velocity Carpathian Flysch and Foredeep (Fig. 8a), a response
from the abrupt change of the Moho topography modelled with steeply
dipping Moho (Fig. 8b), and a response from the model with combina-
tion of these two structures (Fig. 8c). Fig. 8d presents a full waveform
response of both effects in the realistic velocity model along the S04
profile derived from the ray tracing.

The models show that the thinning of the Carpathian Flysch
and Foredeep in the SE direction increases the apparent velocity
(8.7 kmy/s) in offsets closer to the shot points (offsets of 250-300 km),
while lower apparent velocity (<8 km/s) at larger offsets (offsets of
350-400 km) results from the delay introduced by the Moho step. Thus,
the variations in the upper crustal structure influence the apparent veloc-
ity of the Pn phase only at offsets of about 250-300 km. At larger offsets,
the low-velocity Flysch and Foredeep sediments thin out completely
and anomalies observed in this area originate from deeper crust or
more likely at the Moho level.

7. Analysis of uncertainty

In wide-angle refraction modelling, errors of the resultant models
come from a combination of several factors: data timing errors, travel
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time picking and phase misidentification, inaccuracy of modelling
(misfit between data and modelled travel times), isotropic approxima-
tion of a (potentially) anisotropic medium, and 2D method of inter-
pretation not accounting for 3D structure. These factors and their
limitations were discussed in Hrubcova et al. (2005, 2010).

According to that, realistic picking accuracy for the Pn phase is ~0.1-
0.2 s. In case of typical wide-angle experiments with geometry allowing
good ray coverage (with recordings from reciprocal directions) and
modelling involving crustal/upper-mantle phases and Moho reflections,
errors in determinations of the Moho depth is of the order of ~1-1.5 km.
However, in this study there are several factors that can further
influence the model accuracy. Thus, the analysis of uncertainty is more
complex.

First of all, the Moho topography in the anomalous zone is not
modelled from the PmP reflections, the most common phase for
constraining the Moho. It is because the PmP phase in this part of the
Carpathians is not observed or its amplitude is not high enough, so
that it is not identified in the seismic sections with sufficient confidence.
However, good quality PmP arrivals in the surrounding units in the
north and west of the Carpathians allow for a robust modelling of the
Moho depth beneath the Pannonian Basin or the Bohemian Massif and
this serves as a reference for modelling in our study. Since the Moho ge-
ometry in the anomalous zone does not allow for clear observations of
the PmP reflections and their detection in the seismic wavefields, the
Moho topography is constrained by the Pn refractions from the upper-
most mantle. These Pn phases and their continuations to later arrivals
are correlated with the accuracy of ~0.2 s.

Even if the geometry of measurements enables recordings from re-
ciprocal directions, the anomalous Pn phases are prevailingly available
from shot points at one side of the profiles. This factor increases the am-
biguity of the solution since the source of the modelled phases can be lo-
cated in a 3-D volume as a result of side-reflected or diffracted energy.
However, the anomalous arrivals cannot be interpreted by side-
reflected waves propagating in the crust — in this case they would be
observed at travel times later than crustal refracted waves. We do not
observe this; the anomalous phases are part of the Pn phase, so that
we interpret them as coming from the uppermost mantle. Also, we ex-
clude the possibility of a crustal velocity anomaly reflecting/diffracting
the emerging Pn phase — such an anomaly in the crust should influence
the crustal phases as well, which we do not observed either.

Apart from the determination of the local Moho geometry, this study
focuses also on positioning of the Moho anomaly relative to the axis of
the Carpathian arec, i.e., its relation to the PKB. In this respect, we tested
the uncertainty in the lateral position of the Moho anomaly. We calcu-
lated the response for modified SO4 models where only the Moho step
was shifted on both sides along the profile from the original location.
These tests show that the lateral estimated uncertainty is ~15 km.

8. Comparison with other geophysical studies
8.1. Deep seismic soundings and reflection seismics

The first deep seismic models of the Western Carpathians were
published by Uchman (1975) and Zatopek and Beranek (1975) along
the N-S trending deep seismic sounding international profile V/3K
located in Poland and Slovakia. Along this profile, they found an area
with 50 km thick crust beneath the Outer Carpathians, separating the
~40 km thick crust of the North European Platform from thinner
~35 km crust of the ALCAPA beneath the Inner Carpathians. In the
area of the thick crust, they modelled the Moho depression as a
~40 km wide trough, delimited by two sub-vertical fracture zones
located beneath the PKB and to about 40 km north of it.

Regional seismic profile KII showed relatively deep and complex
Moho with multiple reflectors over several kilometres depth to the west
of the PKB compared to shallower, single Moho discontinuity to the east
(Bucha and Blizkovsky, 1994). Along the NW-SE profile KIII, the vertical

Moho step of ~6-8 km was also modelled near the Pieniny Klippen Belt
(Beranek et al., 1979). In the west, the deep seismic sounding along pro-
file VI showed an abrupt change of the Moho depth at the contact with
the Bohemian Massif (Beranek and Zatopek, 1981). In the east, the
Moho step is also suggested along the profile Ill (Uchman, 1975).

The reflection profile 8HR crossed the contact of the Western
Carpathians with the Bohemian Massif in the NW-SW direction.
Tomek and Hall (1993) interpreted the reflection data from the 8HR
profile as an image of the European continental crust obliquely
subducted beneath the Carpathians. In the reflection section, the SE
dipping and ~13 km thick unreflective area was interpreted as the
upper crust of the European plate, relatively transparent compared to
underlying highly reflective European lower crust and Moho. The
upper edge of the subducting plate was imaged with a high curvature,
but the Moho, imaged at ~38 km depth, showed sub-horizontal reflec-
tions strongest at a distance of 60-75 km along the 8HR line. However,
further to the SE, the Moho reflections faded out at a distance of
~77 km. Similarly, strong lower crustal reflectivity, visible in a depth
range of 25-38 km up to a distance of 60-77 km in the 8HR section,
did not continue to SE.

The 8HR profile intersects at a very low angle the seismic refraction
profile S04 close to the contact of the Carpathians with the Bohemian
Massif. This intersection is near the place where the anomalous
upper-mantle phases were interpreted (Fig. 9). Fig. 9a shows a part of
the migrated time section of the 8HR profile between distances of 50
and 100 km (after Tomek and Hall, 1993); Fig. 9b displays the Moho
topography modelled along the refraction profile SO4 (Hrubcova et al.,
2010) superimposed on top of the 8HR seismic section. In the 8HR
section, bands of strong sub-horizontal reflections in NW at a depth of
38 km, interpreted by Tomek and Hall (1993) as the Moho reflection
of the Bohemian Massif, fade out at ~77 km distance, close to the
projected location of the S04 Moho step. Similarly, strong lower crustal
reflectivity at 20-38 km depth, visible up to a distance of 70-75 km,
does not continue beyond the location of the S04 Moho depth change.
Taking into account that in this place the profiles run ~20 km away, spa-
tial coincidence of both features (even if approximate) is meaningful
and suggests their common origin.

8.2. Magnetotelluric studies

In the area of the Western Carpathians, the magnetotelluric sound-
ings revealed a prominent zone of reversals of the Wiese induction
vectors (Wiese, 1965). The individual reversals were perpendicular to
the orogen strike, while the axis of the reversal zone ran along the
axial part of the whole Western Carpathians. This zone was interpreted
as an effect of the Carpathian Conductivity Anomaly produced by more
than 1000 km long and ~40 km wide area located in the upper/middle
crust (to a depth of ~16 km) consisting of rocks of very low electrical
resistivity (~1-4 Qm). Geographically, the anomaly forms an elongated
arcuate area following the Pieniny Klippen Belt in its vicinity (up to few
tens of kilometres), though the resolution of determination of such
anomalies is limited and decreases with depth due to the nature of
potential field methods (Cerv et al., 2001; Jankowski et al., 2005).

Jankowski et al. (1985, 2008) explained this conductive zone by a
presence of mineralized aqueous fluids contained in the sediments
subducted at the European plate margin. Alternative hypothesis links
the high conductivity with a high content of organic matter in the
sediments subducted to bigger depth, which resulted in metamorphism
and graphitization of the organic carbon (e.g., Zytko, 1997). Hiibert et al.
(2009) discusses that the anomaly with such a low resistivity requires
the conductive components (fluids or graphite layers) to be inter-
connected. In both cases, the anomaly suggests the presence of a
long and relatively narrow area beneath or close to the PKB, where
sediments were submerged to the upper/middle crustal depths of
~10-16 km and metamorphosed, which most likely reflects the
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Miocene subduction/collision processes at the contact of plates
(Jankowski et al., 1985, 2008).

8.3. Gravity constraints

Bouguer anomalies are dominated by linear minima that extend
from the Eastern Alps along the Carpathians and their northern foreland
(Bucha and BliZkovsky, 1994). The zone of negative gravity anomalies
includes: Carpathian Foredeep, Outer Carpathians, Pieniny Klippen
Belt and northern part of the Inner Carpathians (Bielik et al., 2006).
Since these anomalies are located close to the area of the abrupt change
of the Moho topography, it is advisable to check if gravity modelling
gives any additional constraint in modelling of this feature. Hrubcova
et al. (2010) calculated a gravity response from two models, a model
with the Moho step and a model with a flat Moho. They concluded
that there are no substantial differences in the gravity response from
both models. The prominent negative velocity anomaly intersecting
the S04 profile in the Western Carpathians can be attributed to the
presence of thick low-velocity flysch nappes and overlying Neogene
sedimentary basins. Consequently, the difference in calculated gravity
fields cannot help with discriminating between such extremes at the
Moho level.

9. Discussion

Both in the west and north of the Western Carpathians, the origin of
the anomalous upper-mantle Pn phases is similarly confined to the
crust/mantle boundary located beneath the axis of the orogen. Though
the phases show different apparent velocity, they represent the
structures of a similar origin. Results of modelling document a localized
anomaly or an abrupt change of the Moho topography. Such Moho
anomalies are traced alongside the Western Carpathian arc and are
located in the proximity of the Pieniny Klippen Belt, though their
position and shape slightly differ.

9.1. Western side of the Carpathians

At the western edge of the Western Carpathians, the Moho anomaly
is similar and dips steeply from about 25-28 km depth to about
36-38 km depth in the north-westward direction (Fig. 10). The Moho
anomalies follow the trend of the Pieniny Klippen Belt but they are lo-
cated ~50 km westward/north-westward from the PKB (Fig. 10). The
shape of the Moho topography in the west slightly differs and is influ-
enced by surrounding units at depth. More to the north, along the
CEL15 and S04 profiles, we observe an abrupt step-like change of the
Moho topography from the southeast to the northwest. More to the
south, along the CELO9 profile for both in-line and off-line shot points,
the Moho is modelled more as a triangular trough, with Moho sharply
dipping from the SE to the NW and rising up in the same direction.
The shape of the Moho in these parts is influenced by the increase
of crustal thickness for units of the Bohemian Massif: the Moravo-
Silesian, Brunovistulian, and the Moldanubian, different in the south
and in the north of the massif.

9.2. Northern side of the Carpathians

At the northern rim of the Western Carpathians, the upper-mantle
phases were modelled by a local change of the Moho topography
forming a rectangular, trough-like anomaly separating areas with simi-
lar Moho depths. Such a phenomenon is also documented along the N-S
oriented profile V/3K (Uchman, 1975; Zatopek and Beranek, 1975),
close to profiles CELO4 and CELO1, where a ~40 km wide Moho trough
occurs northwards from the Pieniny Klippen Belt (Fig. 11). It is also
visible at the NW-SE trending profile KIIl where the Moho discontinuity
is disturbed by a vertical step of 6-8 km height (Beranek et al., 1979).
Fig. 11 illustrates the character of the Moho anomalies at the northern

contact with the European Plate along profiles KIII, CELO1, V/3K,
CELO4, and CELO5 (Beranek et al., 1979; Sroda, 2010; Sroda et al,,
2006; Uchman, 1975). Though the shape of the Moho anomaly in
these models is a simplified image of the actual structure resulting
from different seismic methods and can differ, they all show common
feature as is the spatial correlation of the Moho anomalies with the
Pieniny Klippen Belt. Sroda (2010) studied the upper-mantle arrivals
along the profiles CELO1, CEL0O4, and CELO5 and suggested two models
suitable for their interpretation: a model with a small size (of the
order of 10 km) velocity anomaly at the Moho level diffracting waves
from the upper mantle, and a model with northward inclined reflecting
discontinuity of 50-150 km length possibly connected with the crust. In
both cases, the anomalous structures were located beneath or close to
the PKB.

The diffracting Moho anomaly is more in agreement with the
structures modelled along previous DSS profiles. Nevertheless, the
position of such presumed diffractor varies. Westward of CELO1 profile
it is located ~20 km north of the PKB; along the CELO1 line it is located
beneath the PKB; near the crossing of the CELO4 and CELO5 profiles it
is located at 20-25 km south of PKB; and finally in the east at the
CEL11 line it is located at ~10 km north of the PKB. The latter position
of the Moho anomaly is in agreement with the result suggested by
Uchman (1975) along profile IIL.

9.3. Position of the Moho anomalies and the PKB

Local changes in the Moho topography have tectonic significance
and their position can trace former plate boundaries at depth. Consider-
ing the Pieniny Klippen Belt as a major tectonic unit representing the
contact between the European Plate and the ALCAPA at surface, we
can relate its position to the position of the Moho anomalies. Fig. 12
displays a projection of the Moho anomalies onto the surface geology
to show their location in respect to the PKB. In the western segment of
the Carpathian arc, the Moho anomaly runs parallel to the PKB though
it is shifted by ~50 km to the NW to the outer side of the Carpathians.
Further to the north, the location of the Moho trough in the northern
segment of the Western Carpathians follows the trend of the PKB
more closely, deviating to the south or north by no more than 25 km.
Since the PKB is an important lineament, extending along most of the
Western Carpathian arc and is thought to separate the European Plate
from the microplate ALCAPA at the surface (e.g., Krobicki et al., 2003;
Plasienka et al., 1997), the abrupt change of the Moho topography in
its proximity may be related to the collisional deformations near the
contact of plates. Since the modelled Moho anomalies can be traced at
several places along the Carpathians, we can assume they can be related
to the processes of the Carpathian convergence during Tertiary rather
than to some older crust-forming processes.

9.4. Analogies with the SE Carpathian structure

The locations of the Moho anomalies in the west follow the trend of
the Pieniny Klippen Belt but they are located ~50 km north-westward
from the PKB. Some similarity can be found at the opposite end of the
orogen, in the SE Carpathians in Romania. There, a substantial change
of the Moho depth from seismic studies was also suggested based on
the data from the profile VRANCEA 2001 (Hauser et al., 2007). This pro-
file is a 700 km long WNW-ESE trending seismic refraction line and
documents thickening of the crust to the ESE from 35 km to 44 km
with maximum of the Moho depth located beneath the margin of the
outer nappes of the Eastern Carpathians. More importantly, the location
of this Moho depth change coincides with the surface projection of the
Vrancea seismogenic zone of intra-continental intermediate-depth
seismicity (Radulian et al., 2002). This zone is thought to result from
the final stages of a subduction/collision process due to the convergence
of the Tisza-Dacia and the European Plate during the closure of the
Tethys Ocean (e.g., Cloetingh et al., 2004; Girbacea and Frisch, 1998;
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Popescu and Radulian, 2001; Sperner et al, 2001), where the
seismogenic zone is caused by sinking of a lithospheric fragment
detached from the European Plate margin delineating a contact
of tectonic plates at the upper-mantle depths. The seismicity is also in
agreement with regional teleseismic P-wave tomography (Bijwaard
and Spakman, 2000; Wortel and Spakman, 2000) imaging the presence
of a high velocity body beneath Vrancea at a depth interval of about
60-200 km that outlines the seismogenic zone. The contact of the plates
at surface is a matter of debates but in some interpretations
(e.g., Girbacea and Frisch, 1998; Sperner et al., 2004) it is supposed to
be located ~80-100 km more to the NW, inwards from the surface
projection of the seismogenic zone. Coincidence of the Moho depth
change and the seismogenic zone suggests that these features may be
related to the contact of plates at depth, which can be regarded as an
analogy to the situation at the western side of West Carpathians
discussed in this paper.

10. Tectonic implications

The Moho anomalies are visible in several locations following the
trend of the orogen, not only along the western part of the Carpathian
arc but also at its northern rim (Fig. 12). Such an abrupt change of
the Moho topography is quite a prominent phenomenon observed
consistently in several places along the Western Carpathians. For this
reason, we interpret it as fragments of possibly continuous, arcuate
anomalous zone extending along most of the Carpathian belt. From
a tectonic point of view, such course of the anomalous zone can
suggest that its origin is related to plate convergence that lead to
creation of the Western Carpathian mountain chain, i.e., with collisional/
transpressional processes during and after the Tertiary subduction.

Comparison of the presented seismic results with previously
published seismic models and seismic reflection data, supplemented
by present knowledge about geological structure and other geophysical
studies points to a new image of the lithosphere at the contact of the
European Plate and the ALCAPA microplate. Spatial correlation of the
features evidenced by these datasets allows for linking together several
phenomena observed at different levels through the crust to the upper
mantle (Fig. 12).

At the upper crustal level, the ~600 km long Pieniny Klippen Belt
forms a narrow zone of heavy deformations, extending along most
of the Western Carpathian orogen. It is considered as a unit resulting
from complex tectonic processes, involving compressional and trans-
pressional regime due to oblique convergence and rotation of plates.
Therefore, several authors (e.g., Kova¢ and Hok, 1996; Némcok and
Némcok, 1994; Ratschbacher et al., 1993) see the PKB as a surface
manifestation of the contact between the European Platform (overridden
by Outer Carpathian nappes) and ALCAPA (comprising the Inner
Carpathians).

At the upper/middle crustal level (down to about ~10-15 km), a
highly conductive zone of the prominent Carpathian conductivity
anomaly, extends over ~1000 km along the mountain belt (Jankowski
et al,, 1985, 2005). Though the resolution of this conductivity anomaly
is different and much lower compared to the resolution of the
Moho shape obtained from seismic data, the central part of this conduc-
tivity anomaly follows roughly the trend of the PKB and, according
to Jankowski et al. (1985), it is related to the contact of plates. This
zone is interpreted either as composed of sediments with organic
content, subducted atop of the European Platform margin to large
depths, which resulted in graphitization of the organic carbon. Alterna-
tive hypothesis links high conductivity with aqueous fluids released
from the subducted sediments (Jankowski et al., 1985, 2008). In both
cases, such zone evidences the presence of relatively narrow and long
area where sediments were submerged to the middle crustal depths
of ~15 km and metamorphosed, which was most likely due to the Mio-
cene subduction/collision processes at the contact of the plates.

At the lower crust/upper-mantle level, the abrupt anomalies of the
Moho depth with the amplitude of up to ~15 km are observed along
large parts of the orogen, from its western part, near the intersection
with CELO9 profile to the eastern part, at the CEL11 profile. This zone of
anomalous Moho follows roughly the above-mentioned upper and mid-
dle crustal zones of deformations. However, in the western part of the
study area (beneath the profiles CEL09, S04) its course deviates from
the PKB by as much as ~50 km to the northwest, while in the northern
part (profile CELO1) it is close to the PKB or even slightly deviates to the
south by some 20-25 km (near the crossing of profiles CEL04 and
CEL05). Similar trend is visible along DSS profiles KIII, V/3K and III.

The lateral position of these anomalies delineates a zone affected by
deformations at various depths: from the upper/middle crust to the
upper mantle, extending along the Western Carpathians. Though their
resolution at different crustal levels differs, close spatial correlation
among them and their course along the orogenic arc suggest that
they all may represent a trace of the same collisional/transpressional
processes forming the Carpathian orogen during the Tertiary. Such
processes were likely to cause heavy localized deformations and
metamorphism in the vicinity of the contact of two lithospheric plates —
the European Plate and the ALCAPA. They created an elongated area
of shallow and deep crustal deformations, metamorphism or phase
changes beneath the Carpathians with horizontal extent, location and in-
tensity of deformations varying along the arc.

Proximity of shallow (PKB), middle-crust (conductivity anomaly), and
deep (Moho) deformation zones encourages to delineate the suture at
depth. However, such a geometrical correlation would result in a
variable orientation of the suture: from a sub-vertical (or steeply
dipping) orientation in the north to a west/north-west inclined orienta-
tion of the suture in the west (Fig. 12). Such an interpretation might not
be consistent with the present view of the south and south-eastward sub-
duction processes driving the Carpathian orogeny in the north and west,
respectively (e.g., McCann, 2008; Tomek and Hall, 1993). Nevertheless,
the sub-vertical suture was discussed by Lexa and Konecny (1998) and
Némcok et al. (1998), who suggested verticalization of the subducting
slab and it's tearing during the final collisional stage of the orogen to ex-
plain the location of the andesitic arc-type volcanics in the Carpathians.

The western parts exhibit outward offset of the Moho deformations
from the PKB zone involving the step-like Moho anomaly and crustal
thickness change, different from trough-like Moho anomaly separating
crustal fragments of similar thickness in the north. To some extent, a
similar situation is discussed at the eastern edge of the SE Carpathians
where the crustal thickness changes from the northwest to the south-
east (Hauser et al., 2007) and where, according to some interpretations,
the suture in the upper mantle is also offset from the location of
presumed contact of plates at the surface (e.g., Girbacea and Frisch,
1998; Sperner et al., 2004). Assuming such an interpretation, in both
cases the Moho depth change occurs outwards from the surface
manifestation of the plate contact.

The Tertiary continental collisional events in the Carpathians started
in the western part, then continued to the north and finally reached the
SE Carpathians most likely with variable character of the collision along
the orogen. In the west, where the Carpathian convergence exhibits a
large strike-slip component we detect the Moho deformations with
the outward offset from the PKB zone. On the other hand, in the
north, where mostly compressional component is assumed, the Moho
deformations are located beneath the PKB. However, it is not clear
why the transpressional tectonics in the west should result in an
outward offset of the deep suture relatively to the contact at the surface,
different from a near vertical contact in the north with largely compres-
sional tectonics.

11. Conclusions

Anomalous upper-mantle Pn phases in data from seismic refraction
and wide-angle reflection profiles originate near the contact of the
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Western Carpathians with the surrounding units and document
localized anomalies of the Moho topography. Their modelling allowed
for determination of the shape and precise location of these Moho
anomalies. The anomalies are modelled systematically along the
Carpathian arc, both in the west and the north. Though their position
and shape slightly differ, they are located in the proximity of the Pieniny
Klippen Belt, major tectonic unit representing the contact of the ALCAPA
and the European Plate at surface. Considering that these anomalies are
observed consistently along the Western Carpathians, we interpret
them as fragments of possibly continuous, arcuate zone, extending
along most of the Western Carpathian belt. Comparison of the Moho
anomalies with previously published seismic models and seismic
reflection data, supplemented by present knowledge about geology
and other geophysical studies enables to delineate the area affected by
deformations at various depths: from the upper/middle crust to the
upper mantle, extending along the Western Carpathians. Tectonically,
such course of the anomalous zone suggests that its origin is related
to the lithospheric deformations occurring near the contact of the
European Plate and the ALCAPA microplate during the Carpathian
orogeny, i.e., it is related to the collisional/transpressional processes
during and after the Tertiary.

The present view of the tectonic evolution of the Western
Carpathians during the Tertiary assumes the oblique south to
southeast-ward subduction of the oceanic lithosphere of the European
Plate beneath the units of the ALCAPA (e.g., Plasienka et al., 1997,
Tomek and Hall, 1993). However, there is practically no geophysical
evidence that would allow positioning of the former plate contact at
the Moho level substantially southwards from the PKB, as should be
expected in case of assumed south to southeast-dipping subduction.
On contrary, complex local Moho anomalies presented in this study
document the location of the suture in the immediate vicinity of the
PKB rather than far to the south/southeast from the PKB suture. This
opens a new consistent view on the suture between the European
Plate and the ALCAPA and on the lithospheric structure of the Western
Carpathians from the surface to the uppermost mantle.
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