Is cosmic microwave background relic radiation of Big Bang or thermal radiation of cosmic dust?

Václav Vavryčuk

The Czech Academy of Sciences Institute of Geophysics

www: <u>https://www.ig.cas.cz/en/contact/staff/vaclav-vavrycuk/</u> video: <u>https://youtu.be/DVejwsJGOK8</u>

Theoretical predictions and observations

- Ralph Alpher & Robert Herman (1948) the existence of 'relic radiation' as radiation remaining form the hot Big Bang, the blackbody temperature estimated to 5 K
- George Gamov (1952, 1956) temperature estimates 7 and 6 K
- Yakov Zel'dovich and Robert Dicke in the early 1960s rediscoveries and re-estimates of the CMB temperature
- Arno Penzias & Robert Wilson (1965) discovery of strong microwave radiation from all directions, the blackbody temperature of ~3 K, <u>Nobel prize in 1978</u>
- Robert Dicke et al. (1965) proposed to interpret the CMB as blackbody radiation originated in the hot Big Bang
- George Smoot & John Mather, 1992 FIRAS on the COBE satellite, discovery of the CMB anisotropy, <u>Nobel prize in 2006</u>
- **CMB experiments**: COBE, BOOMERANG, DASI, WMAP, Planck

Light coming from the Universe

Temperature of galactic dust in the Milky Way

- Dust temperature *T* varies between 15 K and 30 K
- *T* depends on the dust density and light emitted from nearby stars

- The CMB temperature is quite stable and uniform $T = 2.72548 \pm 0.00057 \text{ K}$
- Still it displays some fluctuations called the temperature anisotropies

- The CMB is linearly polarized with two types of polarization (E-modes, B-modes)
- Polarization anomalies correlate with the temperature anisotropies

CMB as relic radiation of Big Bang

CMB as relic radiation:

- Radiation produced at very high redshifts ($z \sim 1100$, last scattering surface)
- Radiation is cooling due to adiabatic expansion of the Universe
- Temperature anisotropies: reflect density and velocity fluctuations at $z \sim 1100$
- Polarization anisotropies: Thomson scattering in a heterogeneous plasma

Difficulties and open questions:

- Unexpected features at large angular scales
 - non-Gaussianity of the CMB anisotropies (Vielva et al., 2004)
 - violation of statistical isotropy and scale invariance (Planck 2014)
- Light from the very early Universe should be distorted in later epochs (Vavryčuk, 2017)
 - due to absorption by galactic dust
 - due to absorption by intergalactic dust

- The total CMB intensity should be declined
- The distortion is at least 1 nWm⁻² sr⁻¹, well above the sensitivity of the COBE/FIRAS, WMAP or Planck

Model A: constant proper dust density with redshift

Model B: proper dust density is related to the global stellar mass density

CMB as thermal radiation of intergalactic dust

CMB as thermal radiation of dust:

- Dust is thermalized by absorbing light of stars and emits thermal radiation
- Galactic dust produces thermal radiation at FIR wavelengths (EBL)
- Intergalactic dust is colder than galactic dust and emits CMB
- Proposed and discussed by: Wright (1982), Pan (1988), Bond et al. (1991), Peebles (1993), Aguirre (2000), Narlikar et al. (2003)

Difficulties and open questions:

- Why the CMB radiation is so uniform and isotropic, although dust distribution is very likely quite heterogeneous?
- Why the CMB is not affected by a variety of redshifts of radiating dust grains? We should observe a mix of differently redshifted spectra.
- What is the origin of the CMB polarization anisotropies?
- Why the CMB temperature and polarization fluctuations are correlated?

abandoned

Dust theory – revisited

Alternative origin of the CMB: dust in the Universe

- Universe is not transparent but partially opaque due to light absorption by dust
- Dust grains are warming up and emit thermal radiation:
 - galactic dust produces the EBL at FIR wavelengths ($T \sim 15 40K$)
 - intergalactic dust produces the CMB $(T \sim 3K)$???

example of reddening

Precollapse Black Cloud B68, ESO

• Size and shape

typically ~ 1 μ m, needle-shaped or elongated dust grains, complex fluffy aggregates

• Origin

Jessberger et al. (2001)

supernovae collapses – outflow of material into the space

Composition

graphite, silicates, metals

Properties

- electrical conductivity
- wavelength-dependent

light absorption

Galactic and intergalactic opacities

Galactic opacity & type of a galaxy

(Calzetti 2001, Holwerda et al, 2005)

- elliptical galaxies: 0.04-0.08 mag
- Sa-Sab: 0.5-075 mag
 Sb-Scd: 0.65-0.95 mag
- irregular galaxies: 0.3-0.4 mag

Mean value A_V over type and occurrence: 0.15-0.30 mag

Intergalactic opacity

(Menard et al. 2010, Xie et al. 2015)

- dust in the IGM, damped Lyman absorbers
- near galaxies and in intracluster space
- studied by quasar composite spectra which show a systematic variance with redshift
- strongly redshift dependent

Mean local value A_V : ~ 0.02 mag Gpc⁻¹

elliptical galaxy

spiral galaxy

ESO

ergs

Flux,

1600

1800

Hydrogen column densities

Studied by the Lyman- α absorption lines of dampled Lyman absorbers (DLAs)

$N_{\rm H}$ versus colour excess: $N_{\rm H} / (A_B - A_V) = 5.8 \ge 10^{21} \,{\rm cm}^{-2} \,{\rm mag}^{-1}$

$N_{\rm H}$ versus extinction:

$$N_{\rm H} / A_V \approx 1.87 \text{ x } 10^{21} \text{ cm}^{-2} \text{ mag}^{-1} \text{ for } R_V = 3.1$$

(Bohlin et al., 1978, Rachford et al., 2002; Zwaan et al, 2005)

DLA properties

mean cross-section density ~ 10^{-5} Mpc⁻¹ column density $N_{\rm HI}$ ~ 10^{21} cm⁻²

Intergalactic extinction

$$A_V \sim 0.02 \text{ mag Gpc}^{-1}$$

2200

2000

2400

Wavelength, Å

2600

Charlton & Churchill (2000)

2800

3200

3000

Light in dusty universe

How opacity affects the light in the Universe?

EBL – light summed from all galaxies

$$I_0^{\text{EBL}} = \frac{1}{4\pi} \int_0^{z_{\text{max}}} \frac{j(z)}{(1+z)^2} e^{-\tau(z')} \frac{c}{H_0} \frac{dz}{E(z)}$$

j(z) = nL - luminosity density (in W m⁻³)

- L galaxy luminosity (in W) n – galaxy number density (in m⁻³)
- H_0 Hubble constant

E(z) – dimensionless Hubble parameter

 $\tau(z)$ – optical depth, decrease of amplitude

$$\tau_{\nu}(z) = \frac{c}{H_0} \int_0^z \left(\frac{\kappa_{\nu}}{\gamma_0} + \lambda_{\nu 0} \right) (1+z')^2 \frac{dz'}{E(z')}$$

- λ_0 intergalactic opacity (~ 0.02 Gpc⁻¹) κ – mean galactic opacity (~ 0.22)
- γ_0 the galaxy mean free path (~ 160 Gpc)

Vavryčuk (2017)

Universe occupied a small volume in previous epochs:

- high dust density (small distances between dust grains)
- high galaxy number density
- high frequencies of light due to redshift

dust absorption strongly increases with redshift!

Opacity ratio

What is more important:

galactic or intergalactic opacity?

Opacity ratio R_{κ} - average ratio between attenuation caused by intergalactic dust vs galaxies

$$R_{\kappa} = \frac{\lambda_0 \gamma_0}{\kappa} \sim 13.5$$

 n_0 – the galaxy number density (0.02 Mpc⁻³) a – the galaxy radius (10 kpc)

 λ_0 – intergalactic opacity (~ 0.02 mag Gpc⁻¹) κ – mean galactic opacity (~ 0.22) γ_0 – the galaxy mean free path (~ 160 Gpc)

Intergalactic opacity is higher by more than one order than galactic opacity!

$$\gamma_0 = \frac{1}{n_0 \pi a^2}$$

Energy balance of intergalactic dust and galaxies I

- Galaxies produce light
- Light is absorbed by dust and dust is heated up
- The dust temperature **continuously** increases

Thermal catastrophe

(known from the Olbers' paradox)

Energy balance of intergalactic dust and galaxies II

- Dust is heated up due to absorption of light from galaxies
- Dust emits thermal radiation, radiation is partly absorbed by galaxies
- Dust and galaxies are in energy balance **____** temperature is **stable**

Energy balance between galaxies and intergalactic dust:

E absorbed by galaxies

E radiated by galaxies

- *I^D* intensity of intergalactic dust radiation (in nWm⁻²sr⁻¹)
- R_{κ} opacity ratio (~13.5)
- I^{EBL} intensity of the EBL radiation (~80 nWm⁻²sr⁻¹)

Predicted dust temperature

$$T^{D} = \left(\frac{I^{D}}{\pi\sigma}\right)^{\frac{1}{4}} = 2.776 \text{ K}$$

$$\sigma$$
 – Stefan-Boltzmann constant

$$I^{D} = R_{\kappa} I^{EBL}$$

Observed CMB temperature

$$T^{\rm obs} = 2.725 \ {\rm K}$$

T error < 2%

- The total intensities of the EBL and CMB are not independent!
- The multiplication factor is the opacity ratio R_{κ}

Evolution of dust radiation with redshift

• Transparent universe

equation of radiative transfer for adiabatic expansion:

$$\frac{d}{dt}I_{\nu} + 3HI_{\nu} = 0$$

H – Hubble parameter, v – frequency

• Opaque universe

equation of radiative transfer for adiabatic expansion:

$$\frac{d}{dt}I_{\nu} + 3HI_{\nu} = \frac{c}{4\pi}j_{\nu} - c\kappa_{\nu}I_{\nu} \stackrel{!}{=} 0$$
sources = losses

$$I^{\text{dust}} = I_0^{\text{dust}} (1+z)^4$$
$$T^{\text{dust}} = T_0^{\text{dust}} (1+z)$$

 $I^{\text{relic}} = I_0^{\text{relic}} (1+z)^4$

 $T^{\text{relic}} = T_0^{\text{relic}}(1+z)$

 j_v – luminosity density, c – light speed, κ_v – opacity

balance between sources and losses

Why the radiation is not distorted by redshift? Increase of *T*^{dust} with *z* exactly compensates change of wavelengths!

Assumption of the model:

The number of galaxies and the amount of dust are time independent!

Is such assumption physically reasonable?

No light from the early universe is evidenced by:

decline of the luminosity density with z

decline of the global stellar mass with z

Dark or opaque early universe?

Darkness vs. opacity of the early universe ($z \sim 5-20$)

Redshift-dependent luminosity density

Luminosity density *j* - volume energy density of light in the Universe (Wm⁻³)

- increases from z = 0 to z = 3
- decreases for z > 3 4

$$j_{UV}^A = j_{UV}(z)(1+z)^3 e^{-\tau(z)}$$

Transparent universe: j reflects evolution of number of galaxies, unknown origin**Dusty universe:** j reflects expansion and dust absorption

Redshift-dependent stellar mass density

Stellar mass density ρ – number of stars per volume (in M_{sun} Mpc⁻³)

• apparent stellar mass density ρ^A increases with time

$$\rho^{A}(z) = \rho(z) e^{-\tau_{v}(z)}$$

Transparent universe: stellar mass density increases with time, the rate decreases **Dusty universe:** stellar mass density is constant in time

Temperature and polarization anisotropies of CMB

Temperature anisotropy of CMB

CMB fluctuations are caused by the EBL fluctuations due to clusters and voids Correlation between CMB fluctuations and voids and clusters (Kovács et al. 2017) **Cold Spot** – related to Eridanus Supervoid (Szapudi et al, 2015) scale: \pm 70 μ K Cold Spot Cold Spot WMAP https://map.gsfc.nasa.gov/media/

The CMB is linearly polarized with two types of polarization (E-modes, B-modes) Polarization anomalies correlate with the temperature anisotropies

https://www.cfa.harvard.edu/~cbischoff/cmb/

Interaction of dust with cosmic magnetic fields:

- Needle-shaped conducting dust grains cause polarized thermal radiation
- Galactic dust polarization anomalies at FIR wavelengths
- Intergalactic dust polarization anomalies at the CMB wavelengths

Summary

Dust theory provides a consistent explanation of the CMB origin

- The CMB is thermal radiation of intergalactic dust grains.
- The temperature of the CMB is controlled by energy balance between galaxies and intergalactic dust.
- The CMB temperature is predicted with a high accuracy and it linearly increases with redshift.
- The CMB temperature anisotropies are caused by fluctuations of the EBL related to clusters and voids in the universe.
- The CMB polarization anisotropies are caused by alignment of conducting dust grains in magnetic fields in the universe.
- The CMB temperature and polarization anisotropies are correlated because they have a common origin: large scale structures in the universe.

Summary II – cosmological consequences

Dust theory is incompatible with the Big Bang

- Opacity strongly increases with redshift.
- No light from the early universe is due to its opacity rather than due to its darkness.
- Proper luminosity density corrected for the universe opacity is time independent.
- Global stellar mass corrected for the universe opacity is time independent.

Constant number of galaxies and constant amount of dust in the universe point to a cyclic cosmological model rather than to an evolution of the universe from a singularity.

Universe chronology based on the Big Bang theory

- CMB is the only direct observation of the Big Bang
- if CMB is not relic radiation, the Big Bang theory is questioned

A speculation repeated a thousand times becomes respected theory.

Motto:

Be critical and distinguish between hypotheses and theories supported by observations.

Thank you for your attention

References:

V. Vavryčuk (2017), Universe opacity and EBL, MNRAS, 465, 1532-1542 V. Vavryčuk (2017), Missing dust signature in the CMB, MNRAS, 470, L44-L48 V. Vavryčuk (2018), Universe opacity and CMB, MNRAS, 478, 283–301

