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Abstract This paper presents a fast sweeping method (FSM) to calculate the first‐arrival traveltimes of
the qP, qSV, and qSH waves in two‐dimensional (2D) transversely isotropic media, whose symmetry axis
may have an arbitrary orientation (tilted transverse isotropy [TTI]). The method discretizes the anisotropic
eikonal equation with finite difference approximations on a rectangular mesh and solves the discretized
system iteratively with the Gauss‐Seidel iterations along alternating sweeping orderings. At each mesh
point, a highly nonlinear equation is solved to update the numerical solution until its convergence. For
solving the nonlinear equation, an interval that contains the solutions is first determined and partitioned
into few subintervals such that each subinterval contains one solution; then, the false position method is
applied on these subintervals to compute the solutions; after that, among all possible solutions for the
discretized equation, a causality condition is imposed, and the minimum solution satisfying the causality
condition is chosen to update the solution. For problems with a point‐source condition, the FSM is extended
for solving the anisotropic eikonal equation after a factorization technique is applied to resolve the source
singularities, which yields clean first‐order accuracy. When dealing with the triplication of the qSV wave,
solutions corresponding to the minimal group velocity are chosen such that continuous solutions are
computed. The accuracy, efficiency, and capability of the proposed method are demonstrated with
numerical experiments.

1. Introduction

The traveltimes of seismic waves are often used to study the interior structure of the Earth. Numerical meth-
ods for calculating the traveltimes of seismic waves play an important role in many seismic techniques, such
as raypath backtracking, quality factor inversion, formation stress inversion, and Kirchhoff prestack depth
migration. Accurate traveltimes can be calculated by ray‐tracing methods and finite difference eikonal sol-
vers. The ray‐tracing method computes the traveltimes by solving an appropriate initial or boundary value
problem for a system of ordinary differential equations. It can provide high‐order accuracy for the traveltime
tables (Cerveny, 1972; Shearer & Chapman, 1988). However, (1) raypaths often diverge from each other, and
large spatial gaps often exist between two adjacent rays, especially in complicated heterogeneous velocity
models (Vidale, 1990); (2) traveltimes are only calculated for shot‐receiver pairs such that they must be inter-
polated onto a large number of grid nodes when they are used for seismic migration and tomography (Gray
& May, 1994; Huang & Bellefleur, 2012; Vinje et al., 1993); (3) the two‐point ray‐tracing problem can be
highly nonlinear such that it is difficult to solve efficiently; and (4) it can be difficult or time‐consuming
to distinguish whether the solution is a first or later arrival where triplication occurs. On the contrary, the
eikonal solvers such as the finite difference traveltime calculation methods have no such disadvantages.
For the past four decades, many eikonal solvers have been developed (Cao & Greenhalgh, 1993; Fomel et al.,
2009; Hole & Zelt, 1995; Kim, 2002; Lan et al., 2014; Podvin & Lecomte, 1991; Sethian & Popovici, 1999;
Stovas & Alkhalifah, 2012; Vidale, 1988; Zhao, 2005). Among these eikonal solvers, the fast marching
method (FMM) and the fast sweeping method (FSM) are the two most popular ones. It is worth noting that
finite difference eikonal solvers in general can only compute first arrivals. They may require well‐designed
numerical procedures for solving a complicated nonlinear system, and the number of iterations are problem
dependent if an iterative scheme is used.

The kinematic and dynamic features of seismic waves have great differences when they propagate in isotro-
pic and anisotropic media. In isotropic media, only compressional and shear waves exist. While in
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anisotropic media, there may have three wave modes: one quasi‐compressional wave (qP) and two
quasi‐shear waves (qS1 and qS2). Each wave mode propagates with its own wave speed and polarization.
The phase and group velocities of each wave mode are not only functions of elastic moduli parameters
but also functions of the propagation direction. Many finite difference eikonal solvers have already been
extended to calculate the traveltimes of seismic waves in anisotropic media (Dellinger & Symes, 1997;
Eaton, 1993; Kim & Cook, 1999; Lecomte, 1993; Perez & Bancroft, 2001; Qian & Symes, 2002a). But most
of them have been developed to deal with the tilted elliptically anisotropic (TEA) case only, for example,
the fast marching method for the TEA eikonal equation (Cristiani, 2009; Lou, 2006; Sethian &
Vladimirsky, 2003) and the FSM for the TEA eikonal equation (Luo & Qian, 2012; Qian et al., 2007; Tsai
et al., 2003). Han et al. (2017) developed an FSM, which uses a quartic solver to tackle the quartic equation
of the slowness surface with limited value range for the possible solutions, and obtained the traveltime of
the qP wave. Bouteiller et al. (2018) developed a time‐dependent discontinuous Galerkin method for com-
puting the traveltime of the qP wave in 2D cases by transferring the static quartic anisotropic eikonal equa-
tion into a time‐dependent equation. Waheed et al. (2015) and Waheed and Alkhalifah (2017) proposed an
iterative FSM, like the fixed‐point iteration method, to compute the traveltime of the qP wave by solving a
sequence of TEA eikonal equations, where the slowness field of the TEA eikonal equation is updated itera-
tively whenever the numerical solution is updated until it converges to the solution of the original quartic
anisotropic eikonal equation.

Finite difference eikonal solvers are efficient. However, they all suffer from the source singularities due to
the nondifferentiability of the solution at the point source (Qian & Symes, 2002b). The source singularities
induce large errors near the source, which will further spread to the whole computational domain and make
the traveltime inaccurate.Without any treatments of the source singularities, suchmethods, even high‐order
methods, have onlyOðhloghÞ convergence order with the mesh size h. Moreover, this poses a problem to cal-
culate some quantities involving derivatives of the traveltime, such as take‐off angles and geometric spread-
ing factors (Noble et al., 2014). This also poses a problem for iterative eikonal solvers involving derivatives of
the traveltime as in Waheed et al. (2015). In order to overcome the difficulty caused by the source singula-
rities, several different methods have been proposed. The first method wraps a small region around the
source, assumes that the medium in the region is homogeneous such that the analytical solution can be
obtained, and carries out the computation only outside of this region (Sethian & Popovici, 1999). This
method is feasible only when the medium around the source is homogeneous. The second method refines
the grid around the source in order to compensate the truncation error, but it involves ad hoc parameters
without a clear selection criterion (Kim & Cook, 1999; Rawlinson et al., 2008). The third method uses an
adaptive grid refinement near the source to control the error, but it incurs an additional heavy computa-
tional burden (Qian & Symes, 2002b). And the fourth method makes finite difference approximations for
the eikonal equation on spherical grids centered on the source point in order to reduce inaccuracy
(Alkhalifah & Fomel, 2001). However, the final result has to be interpolated to traveltime tables in
Cartesian coordinates, which increases the computational cost.

In order to resolve the source singularities effectively without involving ad hoc parameters, a factorization
approach has been proposed in Pica (1997), Zhang et al. (2005), Fomel et al. (2009), Luo and Qian (2012),
and Waheed and Alkhalifah (2017) for the isotropic eikonal equation and anisotropic eikonal equation
with weak anisotropy. The traveltime is factored into two factors. One factor is a known function that cap-
tures the singularities around the source, and the other factor is smooth near the source. The smooth fac-
tor satisfies a modified/factored equation that can be solved efficiently with high accuracy. Hence, the
original traveltime is recovered with high accuracy. Luo and Qian (2011) and Luo et al. (2012) extended
this factorization method to higher‐order schemes to calculate first‐arrival traveltimes and amplitudes.
Treister and Haber (2016) and Treister and Haber (2017) used the first‐order and second‐order finite dif-
ference schemes in the fast marching method to solve the factored eikonal equation. Luo and Qian (2012)
gave a systematic procedure to obtain analytical approximations for the known factor that captures the
source singularities and extended the factorization approach to eikonal equation in the TEA media.
Following this approach, Tavakoli et al. (2015), Waheed and Alkhalifah (2017) and Waheed et al.
(2014) proposed an iterative factored eikonal solver for computing the first‐arrival traveltime of the qP
wave in TTI media with a simplified formulation of the anisotropic eikonal equation. Bouteiller et al.
(2018) extended the factorization approach to a high‐order method in the framework of discontinuous

10.1029/2019JB018868Journal of Geophysical Research: Solid Earth

HUANG ET AL. 2 of 20



Galerkin method by transforming the simplified anisotropic eikonal equation into a time‐dependent
equation.

In review of the traveltime calculation methods in anisotropic media with the finite difference schemes, one
finds that most of them are the eikonal solvers for the qP wave governed by a weak or simplified anisotropic
eikonal equation, because the qSV wave involves a triplication phenomenon when several qSV waves can
propagate along the same raypath (Vavrycuk, 2003a, 2006). This phenomenon is mostly associated with
strong anisotropy or with directions close to point singularities in anisotropy (Vavrycuk, 2003b). In this
work, we propose an anisotropic eikonal solver for the qP, qSV, and qSH waves, in the framework of the
FSM, in 2D TTI media with arbitrary anisotropic strength. Themethod has the following important features:
(1) the anisotropic eikonal equation is discretized on a mesh covering the computational domain; (2) the
coupled system of the discretized equations among all grid points is solved iteratively by combining the
Gauss‐Seidel iterations with alternating sweeping orderings; (3) at each grid point, the subintervals that con-
tain the solutions of the discretized equation are predetermined such that each subinterval contains exactly
one solution at most, and the false position method can be applied to compute the solutions efficiently; (4)
among all possible solutions at a grid point, a causality condition is imposed to pick the one that corresponds
to the first‐arrival traveltime; (5) the scheme is monotone, and the numerical solution will converge to the
viscosity solution as themesh size approaches 0; and (6) themedium can have arbitrary anisotropic strength,
and the symmetric axis of the anisotropic medium can have arbitrary orientation. These features make the
eikonal solver more applicable to general situations and can obtain first‐arrival traveltimes for the three
waves. In order to resolve the source singularities for the anisotropic eikonal equation with point‐source con-
ditions, the factorization approach is applied such that a factored anisotropic eikonal equation is derived.
The proposed anisotropic eikonal solver is further extended to solve the factored anisotropic eikonal equa-
tion following the similar procedures, which results in the FSMs for the factored anisotropic eikonal equa-
tion. The proposed methods enjoy all the appealing features of the usual FSM. The number of iterations are
independent of the mesh size, and the numerical solution will converge to the desired weak solution as the
mesh size approaches 0.

The paper is organized as follows: the general anisotropic eikonal equation for TTI media and the factored
anisotropic eikonal equations by use of the multiplicative and additive factorization techniques are intro-
duced in section 2. The numerical schemes in the framework of the FSM for solving the general and factored
anisotropic eikonal equations are presented in section 3. Several anisotropic models are used in the numer-
ical experiments to verify the accuracy and efficiency of the proposed methods, which are discussed in
section 4. Conclusive remarks are given at the end.

2. Anisotropic Eikonal Equation

The determination of the traveltimes of seismic waves in general anisotropic media involves solving a
sixth‐order partial differential equation, that is, the Christoffel equation (Cerveny, 2001),

det aijklnjnl − v2δik
�� ��¼ 0; (1)

where aijkl is a rank‐4 density normalized stiffness tensor, n is the normal vector of the wavefront, v is the
phase velocity, and δik is the Kronecker delta function. From the Christoffel equation and by introducing

the slowness vector p¼ n
v
, one can derive the anisotropic eikonal equation as

vj∇Tj ¼ 1; (2)

where T is the traveltime and p =∇T. In 2D cases, Equation 2 can be rewritten as

HðP; QÞ≡ vm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p
− 1¼ 0; ðm¼ 1; 2; 3Þ; (3)

where vm(m = 1,2,3) is the phase velocity for the qP, qSV, and qSHwaves, respectively, and (P,Q) = (Tx,Ty). A
general 2D TTI medium can be defined by five elastic moduli {a11,a13,a33,a44,a66} and the angle of the
symmetry axis θ0 (Thomsen, 1986). The expressions for vm corresponding to the three wave modes are given
as (Daley & Hron, 1977; Zhou & Greenhalgh, 2004)
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v1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − N

pp
;

v3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a44 þ ða66 − a44Þsin2ϑ

q
;

(4)

where M and N are defined as

M ¼ 0:5ðK1 þ K2Þ;
N ¼ K1K2 − K3;

(5)

and

K1 ¼ a44cos2ϑþ a11sin2ϑ;

K2 ¼ a33cos2ϑþ a44sin2ϑ;

K3 ¼ 0:25ða13þa44Þ2sin22ϑ:

(6)

Here the angle ϑ is formed by the phase slowness direction and the direction of the symmetry axis of the
medium, that is, ϑ = θ−θ0 with θ as the phase slowness angle. The relationship of these three angles is
illustrated in Figure 1. According to Thomsen (1986), the phase slowness angle θ is formed by the wavefront
normal and the vertical axis of the medium, and it can be computed by

θ¼ arccos
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ Q2
p

 !
: (7)

With Equations 4 to 7, the phase velocity vm can be computed for an anisotropic TTI media, and vm depends
on the phase slowness angle θ.

2.1. Multiplicatively Factored Anisotropic Eikonal Equation

The multiplicative factorization method decomposes the solution of Equation 2 as a product of two factors:
the first factor is calculated analytically or numerically to capture the source singularities, and the second
factor is a smooth correction near the source. Let us consider a multiplicatively factored decomposition,

T ¼ T0τ; (8)

where T0 is the predetermined factor to capture the source singularities and τ is the unknown factor that is
smooth near the source.

Substituting Equation 8 into Equation 2 yields the following multiplicatively factored anisotropic eikonal
equation for τ,

vm ðP1; Q1Þj j ¼ 1; ðm¼ 1; 2; 3Þ; (9)

with P1 and Q1 defined as

P1 ¼ T0xτ þ T0τx ;

Q1 ¼ T0yτ þ T0τy:
(10)

Then, Equation 9 can be rewritten as

HðP1; Q1Þ≡ vm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ Q2

1

q
− 1¼ 0; ðm¼ 1; 2; 3Þ: (11)

2.2. Additively Factored Anisotropic Eikonal Equation

For the additively factored method, the traveltime T is decomposed as

Figure 1. Definition of three different angles: (a) ϑ is the angle between the
phase slowness direction and the symmetry axis direction. (b) θ is the angle
between the phase slowness direction and the vertical y‐axis. (c) θ0 is the
angle between the symmetry axis direction and the vertical y‐axis.
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T ¼ T0 þ τ; (12)

where T0 and τ are defined similarly.

Substituting Equation 12 into Equation 2 yields the additively factored
anisotropic eikonal equation for τ,

vm ðP2; Q2Þj j ¼ 1; ðm¼ 1; 2; 3Þ; (13)

with P2 and Q2 defined as

P2 ¼ T0x þ τx ;

Q2 ¼ T0y þ τy:
(14)

Then, Equation 13 can be rewritten as

HðP2; Q2Þ≡ vm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2 þ Q2

2

q
− 1¼ 0; ðm¼ 1; 2; 3Þ: (15)

3. Fast Sweeping Method

To compute the first‐arrival traveltimes for the three wave modes, we will solve the anisotropic eikonal
Equation 3 numerically in the sense of viscosity solutions, for which the FSM is presented. For simplicity,
we illustrate the scheme on a uniform mesh (nx×ny) covering the rectangular computational domain, with
mesh size (hx,hy). We take hx = hy = h for notational simplicity.

3.1. General Eikonal Equation

Figure 2 shows an interior grid point C with four neighboring grid points W, E, N, and S. The anisotropic
eikonal equation can be discretized on the four triangles associated with point C: ΔCEN, ΔCNW, ΔCWS,
and ΔCSE. Taking ΔCWS as an example, the discretized eikonal equation can be written as

vm
TC − TW

h
;
TC − TS

h

� �����
���� − 1¼ 0; ðm¼ 1; 2; 3Þ; (16)

where TW and TS are traveltimes at grid points W and S, respectively.

Given TW and TS, Equation 16 must be solved to find solutions for TC at C. Similarly, the anisotropic eikonal
Equation 3 is discretized on the remaining three triangles and is solved for solutions TC at C with given
neighbor values. For each possible solution for TC, it is required to satisfy a causality condition such that
it becomes a candidate for updating TC at C. The causality condition is related to the characteristic direction,

∂H
∂P

¼ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p vmðθÞ− Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p ∂vm
∂θ

;

∂H
∂Q

¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p vmðθÞþ Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ Q2

p ∂vm
∂θ

:

(17)

In triangle ΔCWS, it requires
∂H
∂P

≥ 0 and
∂H
∂Q

≥ 0. In general, the causality condition requires that (HP,HQ)

passes through C and lies in the triangle used in the discretization. Then, for all possible candidates for TC
from all the four triangles, we pick the minimum one that corresponds to the first‐arrival traveltime. If there
are no candidates, TC will be updated along the edges, for example, on triangle ΔCWS,

TC ¼min TW þ h

UWC
m

; TC þ h

USC
m

� �
; ðm¼ 1; 2; 3Þ; (18)

where UWC
m and USC

m are group velocities along edges WC
��!

and SC
�!

, respectively.

Figure 2. Rectangular mesh in the 2D case. Four triangles (ΔCEN, ΔCNW,
ΔCWS, and ΔCSE) are used to calculate traveltime candidates for the center
grid point C.
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The discretized Equation 16 at all grid points is coupled together to form a system of nonlinear equations
that can be solved using the Gauss‐Seidel iteration with alternating sweeping orderings, which is the FSM.

Algorithm Sketch: FSM for Anisotropic Eikonal Equation

1. Initialization: assigning exact/approximate values at grid points according to given boundary conditions,
which will be fixed during the iterations, and assigning large positive values at all other grid points.

2. Gauss‐Seidel iteration: sweeping the computational domain with four alternating orderings iteratively:

ðaÞ i ¼ 1:nx ; j ¼ 1:ny; ðbÞ i ¼ 1:nx ; j ¼ ny :1;

ðcÞ i ¼ nx :1; j ¼ 1:ny; ðdÞ i ¼ nx :1; j ¼ ny :1;

and at each grid point C, updating TC according to the above numerical procedure.
3. Termination: terminating the iteration if the L1‐norm difference of the solutions between two successive

iterations is smaller than the specified accuracy requirement.

During the Gauss‐Seidel iteration of the FSM, the discretized Equation 16 must be solved efficiently, and the
group velocity along edges needs to be computed.

3.2. Multiplicatively Factored Eikonal Equation

Taking ΔCWS as an example, the discretized equation of the multiplicatively factored eikonal equation can
be written as

vm P1; Q1ð Þj j − 1¼ 0; ðm¼ 1; 2; 3Þ; (19)

where P1 and Q1 are defined as

P1 ¼ T0xτC þ T0
τC − τW

h
;

Q1 ¼ T0yτC þ T0
τC − τS

h
:

(20)

Given τW and τS, this equation can be solved to find solutions for τC at C. Similarly, each possible solution for
τC should satisfy a causality condition such that it becomes a candidate for updating τC at C. The causality
condition is similar as above with the characteristic direction given by

∂H
∂P1

¼ P1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ Q2

1

q vmðθÞ− Q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ Q2

1

q ∂vm
∂θ

;

∂H
∂Q1

¼ Q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ Q2

1

q vmðθÞþ P1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ Q2

1

q ∂vm
∂θ

:

(21)

In triangle ΔCWS, it requires
∂H
∂P1

≥ 0 and
∂H
∂Q1

≥ 0. Similarly, the factored anisotropic eikonal equation must

be discretized and solved on the remaining three triangles. And from all possible candidates for τC that
satisfy the causality condition, we pick the minimum one corresponding to the first‐arrival traveltime. If
there are no candidates, we will update τC along the edges in the following way as in Fomel et al. (2009)
and Luo and Qian (2012).

The characteristic equations of the multiplicatively factored eikonal equation are given as

dx
dt
;
dy
dt

� �
¼ ∂H

∂p
;
∂H
∂q

� �
¼ T0

∂H
∂P1

;
∂H
∂Q1

� �
;

dτ
dt

¼ ðp; qÞ ∂H
∂p

;
∂H
∂q

� �T

¼ 1 − T0x
∂H
∂P1

þ T0y
∂H
∂Q1

� �
τ;

(22)
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where (p,q) = (τx,τy) are derivatives of τ with respect to x and y, respectively. According to the first equation,
we have

dx
dt

� �2

þ dy
dt

� �2

¼ T2
0U

2
m; ðm¼ 1; 2; 3Þ; (23)

where Um is the group velocity that will be defined in Equation 34. Using the method of characteristics, we

can approximate τC at C along the edgeWC
��!

(or SC
�!

) by imposing that the ray falls onWC
��!

(or SC
�!

). Let us

take the edge WC
��!

= (δx,δy) as an example. According to Equation 23, we have

δt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δx2 þ δy2

p
T0Um

; ðm¼ 1; 2; 3Þ: (24)

Then, from the second equation of the characteristic equations, the approximation for τC, denoted as τWC,
can be computed by

τWC ¼ τW þ δt

1þ T0x
δx
T0

þ T0y
δy
T0

: (25)

Similarly, τC can also be calculated along SC
�!

, denoted as τSC. And we will pick the minimal one by min
τWC; τSCf g to update τC at C.

The discretized Equation 19 at all grid points is coupled together to form a system of nonlinear equations.
This set of nonlinear equations can be solved similarly using the FSM. The algorithmic sketch of the FSM
for the multiplicatively factored eikonal equation is similar to that of the general eikonal equation.
However, the latter one involves three extra parameters T0, T0x, and T0y.

3.3. Additively Factored Eikonal Equation

Similarly, taking ΔCWS as an example, the discretized equation of the additively factored eikonal equation
can be written as

vm P2; Q2ð Þj j − 1¼ 0; ðm¼ 1; 2; 3Þ; (26)

where P2 and Q2 are defined as

P2 ¼ T0x þ τC − τW
h

; Q2 ¼ T0y þ
τC − τS

h
: (27)

Given τW and τS, this equation can also be solved to find solutions for τC at C. A similar causality condition is
imposed on the solution such that it becomes a candidate for updating τC at C. The characteristic direction
for the additively factored eikonal equation is given as

∂H
∂P2

¼ P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2 þ Q2

2

q vmðθÞ− Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2 þ Q2

2

q ∂vm
∂θ

;

∂H
∂Q2

¼ Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2 þ Q2

2

q vmðθÞþ P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
2 þ Q2

2

q ∂vm
∂θ

:

(28)

In triangle ΔCWS, it requires
∂H
∂P2

≥ 0 and
∂H
∂Q2

≥ 0. Similarly, from all possible candidates that satisfy the

causality condition, the minimum one is chosen to update τC at C. If there are no candidates, τC will be cal-

culated along the two edges WC
��!

and SC
�!

, respectively.

The characteristic equations of the additively factored eikonal equation are given as
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dx
dt
;
dy
dt

� �
¼ ∂H

∂p
;
∂H
∂q

� �
¼ ∂H

∂P2
;
∂H
∂Q2

� �
;

dτ
dt

¼ ðp; qÞ ∂H
∂p

;
∂H
∂q

� �T

¼ 1 − T0x
∂H
∂P2

þ T0y
∂H
∂Q2

� �
:

(29)

According to the first equation, we have

dx
dt

� �2

þ dy
dt

� �2

¼U2
m; ðm¼ 1; 2; 3Þ: (30)

Using the method of characteristics, we can compute τC at C along the edgeWC
��!

(or SC
�!

) by imposing that the

ray falls on WC
��!

(or SC
�!

). Let us take the edge WC
��!

= (δx,δy) as an example. According to Equation 30, we
have

δt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δx2 þ δy2

p
Um

; ðm¼ 1; 2; 3Þ: (31)

According to the second equation of the characteristic equations, the approximation for τC, denoted as τWC,
can be computed as

τWC ¼ τW þ δt − T0xδx þ T0yδy
� �

: (32)

Similarly, τC can also be calculated along SC
�!

, denoted as τSC. And the minimum one,min τWC; τSCf g, is cho-
sen to update τC at C.

The algorithmic sketch of the FSM for the additively factored eikonal equation is also similar to that of the
general eikonal equation. And it also involves three extra parameters T0, T0x, and T0y.

3.4. Calculation of Traveltime T0

For the two factorization techniques, T0 should be computed for a homogeneous anisotropic model, where
themedium parameters are assigned as those of the orginal model at the source point. T0 can be computed as

Tm
0 xð Þ ¼ x − x0j j

UmðθÞ ; ðm¼ 1; 2; 3Þ; (33)

where x0 is the source position and x is a position in the model domain. Um(θ) is the group velocity along
the ray direction x−x0.

The expression of the group velocity can be found in previous work (Berryman, 1979),

U2
m ¼ v2m þ ∂vm

∂ϑ

� �2

; ðm¼ 1; 2; 3Þ; (34)

where

∂v1;2
∂ϑ

¼ 1
2v1;2

∂M
∂ϑ

±
M
∂M
∂ϑ

− 0:5
∂N
∂ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − N
p

2
64

3
75;

∂v3
∂ϑ

¼ ða66 − a44Þ
2v3

sin2ϑ;

(35)

and

∂M
∂ϑ

¼ 0:5ða11 − a33Þsin2ϑ;
∂N
∂ϑ

¼ K1ða44 − a33ÞþK2ða11 − a44Þ½ �sin2ϑ − 0:5ða44þa13Þ2sin4ϑ:
(36)
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The phase slowness angle θ, as well as the angle ϑ, is defined implicitly in
that they depend on the solution T. Wewill present a numerical procedure
to compute the group velocity and phase velocity along a ray direction in
section 3.8.

3.5. Solving the Discretized Equation 16

At grid point C, the discretized Equation 16 must be solved among all the
four triangles. The equation is highly nonlinear in TC, and it may have
multiple solutions for TC. Therefore, solving Equation 16 for TC is challen-
ging. We present our numerical procedures for solving the equation: (1)
determine an interval that contains all possible solutions, (2) partition
the interval into subintervals such that each subinterval contains exactly
one solution, and (3) apply false position method to find the solution in
each subinterval (Press et al., 1992). We elaborate the numerical proce-
dures by taking ΔCWS as an example.

According to the Fermat's principle, the interval that contains all possible
values for TC is

IWS ≡ minðTW ; TSÞ; min TW þ h

UWC
m

; TS þ h

USC
m

� �	 

; ðm¼ 1; 2; 3Þ: (37)

In order to determine subintervals that contain exactly one solution, we need to locate the extrema ofH as a
function of TC and use the extreme points to partition the interval into few subintervals (see Figure 6). We
can determine the extreme points by calculating the critical points through

∂H
∂TC

¼ ∂H
∂P

∂P
∂TC

þ ∂H
∂Q

∂Q
∂TC

¼ 0; (38)

which is an equation of the angle θ after algebraic manipulation, that is,

FðθÞ≡ sinθvmðθÞ−cosθ
∂vm
∂θ

þ cosθvmðθÞþsinθ
∂vm
∂θ

� �
1
h
¼ 0: (39)

Therefore, we can solve Equation 39 for all possible solutions θi and then
find corresponding extreme points for H as a function of TC through

Ti
C ¼ sinθiTS − cosθiTW

sinθi − cosθi
; ði¼ 1; 2; 3; … Þ: (40)

We note that the solutions for F(θ) can be precomputed and saved. Then,

during the Gauss‐Seidel iteration, Ti
C are computed through formula (40)

to partition the interval IWS into subintervals. Once the subintervals are
determined, we can simply apply the false position method to find the
solution in each subinterval; hence, we can find all solutions in the inter-
val IWS.

3.6. Solving the Discretized Equation 19

Similarly, at grid point C, the discretized Equation 19 needs to be solved in
all the four triangles. The equation is also highly nonlinear in τC, and it
may have multiple solutions for τC. In order to introduce the procedures
conveniently, we also take ΔCWS as an example.

Figure 3. Function G(θ) for three wave modes (qP, qSV, and qSH waves) in
the homogeneous anisotropic model with the inclination angle θ0 = 0o.

Figure 4. Group velocities of the qSV wave mode for three different
directions of the symmetry axis (θ0 = 0°, 45°, and 90°). The group
velocity is plotted against the ray angle from −π/2 to π/2.
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According to the Fermat's principle, the interval that contains all pos-
sible values for τC is

IWS ≡ min
τWT0W

T0C
;
τST0S

T0C

� �
; min τWC; τSCð Þ

	 

; (41)

where τWC and τSC can be calculated by the method of characteris-

tics along two edges WC
��!

and SC
�!

, respectively.

In order to partition the interval IWS into a few subintervals such that
each subinterval contains exactly one solution, we can locate the
extreme points of H as a function of τC and use the extreme points
as the partitioning points. We can determine the extreme points by
calculating the critical points through

∂H
∂τC

¼ ∂H
∂P1

∂P1

∂τC
þ ∂H
∂Q1

∂Q1

∂τC
¼ 0; (42)

which is an equation of the angle θ after algebraic manipulation, that is,

FðθÞ≡ sinθvmðθÞ−cosθ
∂vm
∂θ

� �
L1 þ cosθvmðθÞþsinθ

∂vm
∂θ

� �
L2 ¼ 0; (43)

with
L1 ¼ T0x þ T0

h
;

L2 ¼ T0y þ
T0

h
:

(44)

From the solutions of Equation 43, denoted as θi,(i = 1,2,3,…), the extreme points ofH as a function of τC can
be computed by

τiC ¼ sinθiT0τS − cosθiT0τW
sinθiT0yhþ sinθiT0 − cosθiT0xh − cosθiT0

; ði¼ 1; 2; 3; … Þ: (45)

The solutions of F(θ) can be precomputed and saved for repeated use
during the Gauss‐Seidel iterations. In the local solver, τiC can be cal-
culated using formula (45) to partition the interval IWS into few sub-
intervals. And then, the false position method is applied to find the
solution in each subinterval. Hence, all solutions in the interval can
be found.

3.7. Solving the Discretized Equation 26

Similarly, at grid point C, the discretized Equation 26 needs to be
solved for τC in all the four triangles. We also take ΔCWS as an exam-
ple to demonstrate the procedures.

According to the Fermat's principle, the interval that contains all pos-
sible values for τC is

IWS ≡ min T0W − T0C þ τW ; T0S − T0C þ τSð Þ; min τWC; τSCð Þ½ �:
(46)

The interval IWS is also partitioned into few subintervals such that
each each subinterval contains exactly one solution. The partitioning
points are also the extreme points of H as a function of τC, and they
can be determined by calculating the critical points through

Figure 5. Extreme points of the eikonal equation partition the solution interval
IWS into subintervals. LB and UB are the lower bound and upper bound of the
solution interval, respectively. The blue solid circles represent the extreme points
in the solution interval, while the blue hollow circles represent the extreme
points outside of the solution interval.

Figure 6. Curves of the critical point function F(θ) for the three wave modes in
the homogeneous anisotropic model.
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∂H
∂τC

¼ ∂H
∂P2

∂P2

∂τC
þ ∂H
∂Q2

∂Q2

∂τC
¼ 0; (47)

which is also an equation of the angle θ after algebraic manipulation, that is,

FðθÞ≡ sinθvmðθÞ−cosθ
∂vm
∂θ

þ cosθvmðθÞþsinθ
∂vm
∂θ

� �
1
h
¼ 0: (48)

Similarly, from the solutions of Equation 48, denoted as θi,(i = 1,2,3,…), we can compute the extreme points
of H as a function of τC by

τiC ¼ cosθiT0xh − sinθiT0yh − cosθiτW þ sinθiτS
sinθi − cosθi

; ði¼ 1; 2; 3; … Þ: (49)

The solutions of F(θ) can be precomputed and saved for repeated use during the Gauss‐Seidel iterations. In
the local solver, these critical points, associated with each grid point, can be used to partition the interval IWS

Figure 7. Traveltime comparison for the three wave modes between the reference and numerical solutions in the
homogeneous anisotropic model with θ0 = 0°. Black contour line stands for the reference solution; red contour line
stands for the numerical solution calculated by the FSM method; blue and magenta contour lines represent the
numerical solutions calculated by the additively and multiplicatively factored FSM methods, respectively. The
traveltimes are in seconds.
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into few subintervals. After that, we can use the false position method to find the solution in each
subinterval. Hence, all solutions in the interval can be found.

3.8. Group Velocity Um Along Ray Direction

When calculating T0, τWC and τSC, the group velocityUm along a given ray directionmust be determined. For
example, Um along edges is used in the local solver for a given grid point C. However, the group velocity is a
function of the phase slowness direction but not a function of the ray direction. If the phase slowness direc-
tion for a given ray direction can be determined, then the group velocity along the ray direction can be com-
puted. Previous works (Vavrycuk, 2006, 2008; Zhang & Zhou, 2018) have investigated how to calculate the
slowness vector for a given ray direction.

If the phase slowness direction n¼ ðsinθ; cosθÞ and the phase velocity vm are given, the slowness vector pm
can be written as

pm ¼ n
vm

; ðm¼ 1; 2; 3Þ: (50)

According to Cerveny (2001), the phase slowness vector pm and the group velocity vectorUm should satisfy
the following equation:

Figure 8. Traveltime comparison for the three wave modes between the reference and numerical solutions in the
homogeneous anisotropic model with θ0 = 45°. Black contour line stands for the reference solution; red contour line
stands for the numerical solution calculated by the FSM method; blue and magenta contour lines represent the
numerical solutions calculated by the additively and multiplicatively factored FSM methods, respectively. The
traveltimes are in seconds.
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pm ·Um ¼ 1: (51)

The phase slowness direction n and the ray direction N are given as

n¼ pm

pmj j; N¼ Um

Umj j: (52)

By dividing Equation 51 with pmj j Umj j, one can derive the following equation:

n ·N −
vm
Um

¼ 0: (53)

For a given ray direction, denoted as N = (N1,N2), Equation 53 provides a way to calculate the phase slow-
ness angle θ, as well as the phase velocity vm and the group velocity Um, that is, by solving the following
equation:

GðθÞ≡N1sinθþ N2cosθ −
vmðθÞ
UmðθÞ ¼ 0: (54)

Figure 9. Traveltime comparison for the three wave modes between the reference and numerical solutions in the
homogeneous anisotropic model with θ0 = 90°. Black contour line stands for the reference solution; red contour line
stands for the numerical solution calculated by the FSM method; blue and magenta contour lines represent the
numerical solutions calculated by the additively and multiplicatively factored FSM methods, respectively. The
traveltimes are in seconds.
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From Equation 54, we can see that the only unknown is θ. If the phase
slowness angle θ is computed, then group velocity Um and the phase velo-
city vm along the ray direction N can be calculated.

Equation 54 can be presolved for θ, as well asfor vm and Um, along a set of
ray directions. For example, on ΔCWS, this equation can be presolved for

the two ray directions along two edges WC
��!

and SC
�!

, respectively, and
hence, the group velocity along these two directions can be saved for
repeated use during the Gauss‐Seideliterations.

3.9. Discussion of the Methods

The proposed method is developed in the framework of the FSM.
Therefore, it has all the desired properties of the FSM, such as consistency,
monotonicity, and convergence (Luo & Zhao, 2016; Qian et al., 2007;
Zhao, 2005). The scheme is consistent with the first‐order finite difference
approximations; that is, the discretized equation will converge to the ori-
ginal equation as the mesh size approaches 0. The causality condition
implies that the scheme is monotone; that is, at each grid point C, the
numerical Hamiltonian H is nondecreasing with respect to the solution
at C and nonincreasing with respect to the solutions at neighbor points.
The consistency and monotonicity assure the stability of the scheme such
that the numerical solution will converge to the viscosity solution (Barles
& Souganidis, 1991; Luo & Zhao, 2016; Qian et al., 2007; Zhao, 2005),
which corresponds to the first‐arrival traveltime (Lions, 1982).

Table 1
Accuracy of the First‐Order FSM Method in the Homogeneous
Anisotropic Model

qP wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

101×51 1 0.0138 ‐ 0.7
201×101 1 0.0082 0.7510 1.0
401×201 1 0.0047 0.8030 4.0
801×401 1 0.0027 0.8090 20.0

qSV wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

101×51 1 0.0272 ‐ 1.0
201×101 1 0.0153 0.8301 2.0
401×201 1 0.0084 0.8651 8.0
801×401 1 0.0046 0.8789 29.0

qSH wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

101×51 1 0.0369 ‐ 1.0
201×101 1 0.0221 0.7396 1.0
401×201 1 0.0129 0.7767 6.0
801×401 1 0.0074 0.8111 25.0

Figure 10. Anisotropic parameters of the overthrust TTI model. (a) a11 model, (b) a13 model, (c) a33 model, (d) a44
model, (e) a66 model, (f) θ0 model. The scale of shades of grey is in km2/s2 in (a–e) and in degrees in (f).
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Similarly, as in the usual FSM, the number of iterations depends on the
problems and the desired accuracy requirement. However, for a given pro-
blem with a prescribed accuracy requirement, it is independent of the
mesh size as the mesh size approaches 0 (Luo & Zhao, 2016; Qian et al.,
2007; Zhao, 2005).

In the local solver for solving the highly nonlinear equations to compute
all possible updates at each grid point, necessary ingredients can be prede-
termined prior to the Gauss‐Seidel iterations. That is, Equations 39, 43, 48,
and 54 can be presolved with any appropriate root‐finding methods, and
their solutions can be saved for repeated use during the Gauss‐Seidel itera-
tions. Moreover, their solutions can be computed efficiently in parallel.

4. Numerical Examples

We present several numerical experiments to demonstrate the efficiency
and accuracy of the developed methods. In the numerical implementa-
tions, we denote one iteration as four sweeps over all grid points.
Numerical errors at all grid points in L1 norm are recorded. The stopping
criterion is 10−9. Wherever applicable, the solutions computed by the

shortest path method (SPM) on densely sampled meshes are used as the reference solutions (Huang et al.,
2014; Zhou & Greenhalgh, 2006).

4.1. Homogeneous Anisotropic Model

We first use a homogeneous anisotropic model to test the effectiveness and feasibility of the proposed meth-
ods, along with demonstration of the necessary ingredients in the methods. The moduli parameters are
a11 = 5.2, a13 = 0.93, a33 = 4.0, a44 = 1.0, and a66 = 1.0 km2/s2, and the inclination angle θ0 is set to
0° (VTI), 45° (TTI), or 90° (HTI). The computational domain is a 5×2.5‐km rectangular domain, with a point
source located at x = 2.5 km and y = 0 km.

For computing the group velocity along a given ray direction, Equation 54, that is, G(θ) = 0, needs to be
solved. Figure 3 shows an example of the function G(θ) with θ0 = 0o for the three wave modes. From
Figure 3, one can see that at least one root of G(θ) exists for each of the three wave modes. If more than
one root exist, for example, in the case of triplication for the qSV wave (Vavrycuk, 2003a, 2003b, 2006),

the one corresponding to the minimal group velocity is chosen. Figure 4
shows an example of the triplication for the qSV wave.

For solving the discretized equation on a triangle at a given grid point, the
roots of F(θ) are used to partition the solution interval into subintervals
(see Figure 5). Figure 6 shows an example of the function F(θ) that has
about two to six roots for the three wave modes. These roots correspond
to the extreme points of H in the solution interval.

Traveltime tables of the qP, qSV, and qSH waves computed by the pro-
posed methods are compared with the reference solutions in Figures 7–
9. The number of iterations, L1‐norm errors, CPU times, and convergence
orders are listed in Table 1. We observe the expected order of convergence
OðhlogðhÞÞ that is normal for the FSM. For the two factored methods, the
machine error is dominant. For example, with θ0 = 0o: for the qP wave,
the maximal relative error of the original method is 0.14, and the maximal
relative errors of the two factored methods are close to 2.75 × 10−5; for the
qSV wave, the maximal relative error of the original method is 0.33, and
the maximal relative errors of the two factored methods are close to
8.5×10−6; for the qSH wave, the maximal relative error of the original
method is 0.21, and the maximal relative errors of the two factored meth-
ods are close to 1.7×10−5.

Table 2
Accuracy of the First‐Order FSM Method in the Overthrust TTI Model

qP wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0181 ‐ 1.0
151×101 2 0.0101 0.8416 2.0
301×201 2 0.0061 0.7275 10.0

qSV wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0298 ‐ 0.8
151×101 2 0.0173 0.7845 2.0
301×201 2 0.0106 0.7067 9.0

qSH wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0283 ‐ 1.0
151×101 2 0.0161 0.8137 2.0
301×201 2 0.0099 0.7016 10.0

Table 3
Accuracy of the First‐Order Additively Factored FSM Method in the
Overthrust TTI Model

qP wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0058 ‐ 1.0
151×101 1 0.0030 0.9511 2.0
301×201 2 0.0015 1.0000 11.0

qSV wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0103 ‐ 2.0
151×101 2 0.0053 0.9586 5.0
301×201 2 0.0026 1.0275 25.0

qSH wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0093 ‐ 2.0
151×101 2 0.0051 0.8667 8.0
301×201 2 0.0025 1.0286 23.0
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Table 4
Accuracy of the First‐Order Multiplicatively Factored FSM Method in the Overthrust TTI Model

qP wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0034 ‐ 0.8
151×101 1 0.0014 1.2801 3.0
301×201 2 5.6251e‐04 1.3155 11.0

qSV wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0045 ‐ 1.0
151×101 2 0.0020 1.1699 3.0
301×201 2 7.5947e‐04 1.3969 13.0

qSH wave mode

Mesh Iteration L1 error Convergence order Time cost (s)

76×51 1 0.0054 ‐ 1.0
151×101 2 0.0022 1.2955 4.0
301×201 2 9.6072e‐04 1.1953 15.0

Figure 11. Comparison of the qP wave traveltimes (in sec) between the reference and numerical solutions in the
overthrust TTI model. (a) Black contour line stands for the reference solution, red contour line stands for the
numerical solution calculated by the FSM method, and blue and magenta contour lines represent the numerical solutions
generated by the additively and multiplicatively factored FSM methods, respectively. (b) Zoom‐in map of the square area
as shown in (a), from which we can see that traveltimes solved by the factored methods have better accuracy.
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4.2. Overthrust TTI Model

We further test the proposed methods on the overthrust TTI model, with the model parameters shown in
Figure 10. The computational domain is a 6×4‐km rectangular domain with a point source located at
x = 3 km and y = 0 km. The reference solution is computed by the irregular grid shortest path method
(SPM) (Huang et al., 2014; Zhou & Greenhalgh, 2006) on a 601×401 mesh, with five secondary nodes added
to each cell boundary in the computation. The number of iterations, L1‐norm errors, convergence orders,
and CPU times are listed in Tables 2–4, where we observe a clean first‐order convergence for the two factored
methods. The numerical plots are presented in Figures 11–13, where we can see that the solutions match
very well and the solutions computed by the two factored methods have better resolutions than those com-
puted by the original FSM.

5. Conclusions

We present an efficient FSM for calculating first‐arrival traveltimes of the three wave modes (qP, qSV, and
qSH) in 2D heterogeneous, transversely isotropic media with arbitrary dipping symmetry axes. No weak ani-
sotropy approximation is assumed, and no simplification is made to the phase and group velocities. The pro-
posed methods enjoy all the appealing features as in the fast sweeping method for the isotropic eikonal
equation (Zhao, 2005), that is, consistency, monotonicity, and convergence.

Figure 12. Comparison of the qSV wave traveltimes (in sec) between the reference and numerical solutions in the
overthrust TTI model. (a) Black contour line stands for the reference solution, red contour line stands for the
numerical solution calculated by the FSMmethod, and blue and magenta contour lines represent the numerical solutions
generated by the additively and multiplicatively factored FSM methods, respectively. (b) Zoom‐in map of the square area
as shown in (a), from which we can see that traveltimes solved by the factored methods have better accuracy.
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For problems with a point‐source condition, a factorization approach is applied to resolve the source singu-
larities such that clear first‐order convergence is obtained. Numerical experiments, including a homoge-
neous model, a three‐layered model (supporting information), and the overthrust TTI model, verify the
effectiveness of the proposed methods.

Extension of the proposed methods to 3D anisotropic eikonal equation in TTI media is underway. The for-
mulations of the methods are similar as those in 2D cases. The main difference is in Equations 39, 43, and 48
for precomputing the partitioning points and Equation 54 for computing the group velocity along a given ray
direction. For 3D cases, these equations will depend on two unknown angles (just like the spherical coordi-
nate system in 3D versus the polar coordinate system in 2D), which is more challenging than 2D cases where
these equations depend on one unknown angle. Solving a nonlinear equation of two unknowns is nontrivial.
An extra condition/equation is required, which can be provided through the relation among the slowness
vector, the ray vector, and the symmetric axis. The resulting system of two equations will be solved to deter-
mine the two unknown angles, and the solutions can be saved and repeated used to compute the partitioning
points in the Gauss‐Seidel iterations, similarly as in 2D cases. We will report the results once the work is
completed.
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