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The paper shows that the commonly used Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric describing the expanding Universe must be modified to properly predict
the cosmological redshift. It is proved that the change in the frequency of redshifted
photons is always connected with time dilation, similarly as for the gravitational redshift.
Therefore, the cosmic time runs differently at high redshifts than at present. Consequently,
the cosmological time must be identified with the conformal time and the standard FLRW
metric must be substituted by its conformal version. The correctness of the proposed
conformal metric is convincingly confirmed by Type Ia supernovae (SNe Ia) observations.
The standard FLRW metric produces essential discrepancy with the SNe Ia observations
called the ‘supernova dimming’, and dark energy has to be introduced to comply
theoretical predictions with data. By contrast, the conformal FLRW metric fits data well
with no need to introduce any new free parameter. Hence, the discovery of the supernova
dimming actually revealed a failure of the FLRW metric and introducing dark energy was
just an unsuccessful attempt to cope with the problem within this false metric. Obviously,
adopting the conformal FLRWmetric for describing the evolution of the Universe has many
fundamental cosmological consequences.
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1 INTRODUCTION

Friedmann [1] applied the Einstein equations of General Relativity (GR) for describing the Universe
and firstly showed that the space filled by uniformly distributed matter might evolve in time. The
possibility that the Universe is really dynamic but not static was later supported by Lemaitre [2] and
Hubble [3], who observed a systematic redshift of nearby galaxies, which was roughly proportional to
their distance. This observation (called the Hubble-Lemaitre law) was interpreted as the Doppler
effect produced by galaxies moving away from the Earth due to the Universe expansion.

However, the intuitive idea of the redshift as the Doppler effect was later abandoned. At present,
the Universe is described by the so-called Friedmann-Lemaitre-Robertson-Walker (FLRW) metric
[4–8], which introduces the scale factor a(t) for describing the space expansion. The redshift is not
related to the speed of the expansion as for the Doppler effect but to the ratio between sizes of the
space, in which the photons were emitted and received [9, 10].

1 + z � a r( )
a e( ) (1)

where z is the redshift, and a(e) and a(r) are the scale factors for the emitter and receiver, respectively.
Hence, the redshift of distant galaxies would be observed even in the case, when the Universe is not
expanding anymore at the present epoch.
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In contrast to the space coordinates, the time coordinate is
assumed to be invariable during the Universe history. This is
somewhat strange and surprising, because other solutions in GR
such as the well-known Schwarzschild solution [11–13] involve
distortions in space and time together. Therefore, some authors
pointed out to other alternative theories admissible in GR and
introduced more general metrics for describing isotropic
homogeneous Universe evolving in time [14–16]. In this case,
another function is considered in the metric tensor gαβ, which
describes the evolution of the time component g00.

Among many possibilities how to define this function, the
simplest way is to assume that the time and scale factors are
defined by the same function a(t). This option has a clear
advantage, because the cosmological redshift will be defined by
the same formula as the gravitational redshift

1 + z �
������
g00 r( )
g00 e( )

√
(2)

where g00(e) and g00(r) are the time components of the metric
tensor gαβ for the emitter and receiver, respectively.

Introducing the same scale factor for time and space coordinates
has also other advantages. Firstly, this metric evolves in time
according to the so-called conformal transformation, properties of
which are intensively studied inGR in recent years [17–19]. The new
time coordinate is called the conformal time and the metric utilizing
this time is called the conformal metric [14–16]. This metric is
particularly interesting, because it leaves the Maxwell’s equations
unchanged from their form in the Minkowski spacetime [20–22].
The conformal metrics have also other exceptional properties and
open space for new cosmological models as the Conformally Flat
Space-Time Cosmology [14, 15, 23], Conformal Gravity [17, 24] or
the Conformal Cyclic Cosmology [19, 25–27].

Nevertheless, introducing the conformal time into the FLRW
metric is commonly viewed as a mathematical concept different
from the physical cosmic time [16]. Otherwise, we have to admit a
variable coordinate speed of light dependent on the scale factor a(t).
Although, theories of variable speed of light (VSL) exist [28, 29], they
are not paidmuch attention, because they are against a deeply rooted
concept of the speed of light as a nature constant. Nevertheless,
Dicke [30] argues in his pioneering work on gravity that VSL is
physically admissible. Also Dirac [31] states that “The laws may be
changing, and in particular quantities which are considered to be
constants of nature may be varying with cosmological time.”

In this paper, the problem of cosmic time dilation and
cosmological redshift in the standard FLRW metric is revisited. It
is shown that time dilation and redshift observations are, actually,
inconsistent with the original FLRW metric. Instead, the conformal
FLRWmetric should be used for describing the Universe evolution,
because it predicts time dilation and redshift correctly. Cosmological
consequences of this correction are discussed.

2 THEORY

2.1 FLRW Metric
The space filled by a homogenous and isotropic matter is
described by the following general metric [12, 16, 22, 32]:

ds2 � −A2 t( )c2dt2 + B2 t( )dΣ2, (3)
where ds = cdτ is the spacetime element, c is the speed of light, τ is
the proper time, t is the coordinate time, Σ is the 3-dimensional
coordinate in space of uniform curvature, and A(t) and B(t) are
arbitrary functions describing time evolution of time dilation and
space expansion, respectively.

The standard FLRW metric is based on the assumption of the
space expansion described by the scale factor a(t) = B(t) and with
no time dilation A(t) = 1. Hence, the metric reads in the spherical
coordinate system as [9, 10, 33].

ds2 � −c2dt2 + a2 t( ) dr2

1 − kr2
+ r2dΩ2( ),

dΩ2 � dΘ2 + sin2Θdϕ2,

(4)

k is the curvature index of the space, r is the comoving distance,
and Θ and ϕ are the spherical angles.

An alternative to Eq. 4 is the so-called conformal form of the
FLRW metric [16], which assumes the same factor a(t) for time
dilation and space expansion, A(t) = B(t) = a(t),

ds2 � a2 t( ) −c2 dt2 + dr2

1 − kr2
+ r2dΩ2( ), (5)

where time t has a different physical meaning than in Eq. 4 being
often denoted as η.

Obviously, Einstein’s equations do not constrain functions A(t)
and B(t) in Eq. 3 and they do not give us any preference between Eq.
4 for the standard FLRWmetric and Eq. 5 for the conformal FLRW
metric. Both metrics are based on the assumption of perfect isotropy
and homogeneity and they satisfy the GR equations.

2.2 Coordinate Freedom of Choosing Time
We can see that Eq. 5 is obtained from Eq. 4 by a simple
transformation

dt � a t( )dη, (6)
where η is called the conformal (comoving) time and t is the
proper time. Commonly, the conformal time η is considered as a
mathematical concept different from the physical coordinate
time. In this case, Eqs 4, 5 are physically equivalent, because
we applied just rescaling of time using Eq. 6 and the Einstein
equations are coordinate invariant [12, 34].

However, we should be aware that the coordinate invariance of
the Einstein equations does not mean that we can rescale time and
space coordinates arbitrarily with no physical consequences. The
physically meaningful coordinates should be identified with the
“cosmological coordinate system,” in which all fundamental
bodies are in rest [14, 15, 20, 21]. Also, we cannot mix
comoving and proper coordinates in the metric. If we ignore
this condition and do not distinguish between comoving and
proper coordinates, Eqs 4, 5 can possibly describe the static
Universe, provided distance r is substituted by the proper distance
R as

dr � dR

a t( ) . (7)
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Hence, the key for understanding Eqs 4, 5 is to define, which
quantities are physical (being related to the cosmological
coordinate system) and which quantities describe just an
arbitrary coordinate with no physical meaning. If r is the
comoving distance, Eqs 4, 5 do not describe the static
Universe but the expanding Universe.

Similarly, if the conformal time η is the comoving timemeasured
by clocks in the cosmological coordinate system, then Eqs 4, 5 define
two physically different Universe models. This is obvious, because
Eq. 4 assumes the cosmic time being invariant of the space
expansion, while Eq. 5 assumes the cosmic time being dependent
on the space expansion. Consequently, the coordinate speed of light
is invariant in Eq. 4 but it depends on a(t) in Eq. 5, see Appendix
A. Since both equations are admissible in GR, the correct form of
the metric of the cosmological coordinate system must be found
from observations. Primarily, the correct metric should
satisfactorily explain observations of the cosmological redshift.

2.3 Cosmological Redshift Inconsistency
The cosmological redshift in the standard FLRWmetric is commonly
explained as the change of the photon wavelength due to the space
expansion [9, 10, 33, 35, 36]. The common derivation in textbooks is
as follows. Light travels along the null geodesic, ds = cdτ = 0, hence

c2dt2 � a2 t( )dl2, (8)
where dl is the element of the comoving distance. Consequently,

cdt

a t( ) � dl. (9)

Suppose the distant galaxy emits photons at constant rate Δte
and with wavelength λe. The photons are observed at rate Δtr and
with wavelength λr. The first photon is emitted at time te and
received at time tr. Taking into account that the comoving
distance between the galaxy and the observer is the same for
the two successive photons

∫tr

te

cdt

a t( ) � ∫tr+Δtr

te+Δte

cdt

a t( ) (10)
and subtracting the integral

∫tr

te+Δte

cdt

a t( ) (11)
we get

∫te+Δte

te

cdt

a t( ) � ∫tr+Δtr

tr

cdt

a t( ) (12)

Since the scale factor a(t) varies slowly and does not change much
during emission and observation of the two successive photons,
we write

1
a te( )∫te+Δte

te

cdt � 1
a tr( )∫tr+Δtr

tr

cdt. (13)
Hence,

de

a te( ) �
dr

a tr( ) (14)

where de = cΔte and dr = cΔtr are the distances between two
successive photons at the emitter and the receiver, respectively.
Subsequently, we can conclude that the wavelengths of photons λe
and λr obey the same relation

λe
a te( ) �

λr
a tr( ) (15)

This derivation is not, however, correct. Using Eq. 13, we can
also obtain the following equation

Δte
a te( ) �

Δtr
a tr( ) (16)

which indicates that the coordinate time depends on the scale
factor a(t). Obviously, Eq. 16 is inconsistent with the standard
FLRW metric described by Eq. 4, where the coordinate time is
invariant. Alternatively, we can keep the coordinate time
independent of the scale factor, but then we have to assume
that the light speed c depends on the scale factor a(t) and we have
to distinguish between the light speed in the emitter, ce, and in the
receiver, cr. This is again inconsistent with Eq. 4.

The basic difficulty with the above derivation of redshift-
dependent wavelengths of photons lies in an incorrect
definition of the wavelength as distance between two different
spacetime events, see Appendices B, C. Obviously, the distance
must be measured at one coordinate system, but not as a distance
between points in two different coordinate systems connected
with two photons measured at different times. Once we consider
two photons travelling along the same ray path with distance d
between them at the same coordinate time, the effect of increasing
the distance between photons during the space expansion
disappears. After any time t, both photons travel the same
distance along the same ray, and consequently the distance
between them keeps time independent, see Appendix B.

Mathematically, we modify Eq. 10, in which we do not assume
the equality of the comoving distance but the equality of the light
travel distance of the photons propagating along the same raypath
from the emitter to the receiver:

∫tr

te

cdt � ∫tr+Δt

te+Δt
cdt. (17)

Using the same logic as above, we obtain that if time and speed of light
is not changing, the wavelength of photons does not change. Hence,
two successive photons travelling along the same raypath keep their
mutual proper distance constant and independent of redshift.However,
the proper distance between two photons travelling along two parallel
rays at the same time depends on redshift and increases with the space
expansion. This is because the comoving distance between two photons
moving along parallel raypaths is constant, hence the proper distance
must increase with the space expansion, see Appendix C. Only the
proper distance between two successive photons travelling along the
same ray does not change, see Appendix B.

The above derivation proves that the standard FLRW metric
cannot be applied to the Universe, because it does not predict the
cosmological redshift. The cosmological redshift can be observed only
if the cosmic time depends on the scale factor a(t) and it runs
differently at high redshift than at present. Therefore, the cosmological
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redshift is not a consequence of the space expansion but of time
dilation. A disputable character of the original FLRW metric is
also indicated by comparing this metric with other solutions in
GR, where the expansion/contraction of space is tightly
connected with time dilation. If we insist on no time
dilation, no redshift will be observed.

The variability of the cosmic time during the Universe
evolution would be supported by the fact that the mass
density in the Universe is time dependent. At previous
epochs, the Universe was much denser and the gravitational
field much stronger. Going back in time to high redshifts is
analogous to the case, when an observer moves towards the
black hole. According to the Schwarzschild solution, the
coordinate time for the observer close to the black hole runs
differently than for the observer far from the black hole.
Similarly, the coordinate time must run differently at the
high redshift Universe than at the present epoch.
Consequently, assuming that the Universe expands but the
cosmic time is invariant is physically unjustified.

Hence, the correct metric is the conformal form of the FLRW
metric described by Eq. 5 and the cosmological redshift obeys the
same formula as the gravitational redshift:

]e
]r

� 1 + z �
������
g00 r( )
g00 e( )

√
(18)

where z is the redshift, ]e and ]r are the frequencies of the photon
at the emitter and receiver, and g00(e) and g00(r) are the time
components of the metric tensor gαβ at the emitter and receiver,
respectively.

2.4 Properties of the Conformal FLRW
Metric
The conformal FLRW metric is essentially different from the
original FLRW metric with fundamental physical consequences:

• Eq. 5 implies that the comoving speed of light is constant
but the proper speed of light depends on redshift. Hence,
the volume of the Universe and distance between
galaxies were smaller at high redshift, but photons
emitted by a galaxy reach a neighbouring galaxy after
the same time at high redshift as well as at the present
epoch. In other words, this Universe model is conformal
with the static Universe.

• The frequency ]e of photons emitted at redshift z is higher
than the frequency ]r of photons received as:

]e
]r

� 1 + z. (19)

• Not only the frequency ] of photons but also the rate of
photons increases with redshift as (1 + z).

• The proper speed of light c in the cosmological coordinate
system decreases with redshift as (1 + z)−1.

• The wavelength λe of photons emitted at redshift z is shorter
than the wavelength λr of photons received as:

λe
λr

� 1 + z( )−2. (20)

This includes a decrease of frequency ] and an increase of the
speed of light c with cosmic time.

2.5 Friedmann Equations Revisited
If the expansion of theUniverse is described by the conformal FLRW
metric, the Friedmann equations must be modified. The standard
Friedmann equations for the pressureless fluid read [10, 33].

_a

a
( )2

� 8πG
3

ρ − kc2

a2
+ 1
3
Λc2, (21)

€a

a
� −4πG

3
ρ + 1

3
Λc2, (22)

where a � (1 + z)−1 is the scale factor, G is the gravitational
constant, ρ is the mean mass density, k/a2 is the spatial curvature
of the Universe, and Λ is the cosmological constant.

In order to express the Friedmann equations for the conformal
FLRWmetric, we have to substitute time t by the conformal time
η and time derivative _a � da/dt by a′ � da/dη � a _a. Hence, the
conformal Friedmann equations read

a′
a

( )2

� 8πG
3

ρa2 − kc2, (23)
a″
a

� −4πG
3

ρa2, (24)

where we omitted the cosmological constant, because it was
inserted into Eqs 21 and 22 artificially in order to fit Type Ia
supernova observations. Considering the matter-dominated
Universe, we get

8πG
3

ρ � H2
0 Ωma

−3 (25)

and Eq. 23 reads

H2 a( ) � H2
0 Ωma

−1 +Ωk( ) (26)
with the condition

Ωm +Ωk � 1, (27)
where H(a) = a′/a is the Hubble parameter, H0 is the Hubble
constant, Ωm is the normalized matter density, and Ωk is the
normalized space curvature. Since this model is basically the
Einstein-de Sitter (EdS) model but applied to the conformal FLRW
metric, it will be called as the “conformal EdSmodel” in contrast to the
standard EdS model based on the original FLRW metric.

3 SUPERNOVAE OBSERVATIONS

The correctness of Eq. 26 for the time evolution of the
Universe can be checked by Type Ia supernova (SNe Ia)
observations, which provide the most accurate
measurements of cosmological distances and of the
expansion history of the Universe. A discrepancy between
the supernova observations and the predictions of the
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standard EdS model was called the “supernovae dimming” [37,
38], and led to reintroducing the cosmological constant Λ into
the Einstein and Friedmann equations. The observation of the
unexpected SNe Ia dimming motivated large-scale systematic
searches for SNe Ia and resulted in a rapid extension of
supernovae compilations.

The current supernovae compilations Union2.1 [39–44], and
Pantheon [45, 46] comprise of hundreds of SNe Ia discovered and
spectroscopically confirmed. The Pantheon dataset is the most
accurate SNe Ia compilation at present. Every SN Ia is described
by its apparent rest-frame B-band magnitude mB, the absolute
B-band magnitude MB, the stretch parameter x1, and the colour
parameter c. These parameters are used in the Tripp formula [47,
48] for calculating the redshift-dependent distance modulus μ(z),
which serves for testing the cosmological models,

μ � mB −MB + αx1 − βc (28)
where coefficients α and β are the global nuisance parameters to
be determined when seeking an optimum cosmological model.
The expansion history is calculated from μ using the following
equations,

μ � 25 + 5 log10 dL( ) , dL � 1 + z( )∫z
0

cdz′
H z′( ) (29)

where dL is the luminosity distance expressed for the flat
Universe. The Hubble function H(z) is expressed for the flat
Universe described by the standard ΛCDM model as

H2 z( ) � H2
0 Ωm 1 + z( )3 + ΩΛ[ ], (30)

by the standard EdS model as

H2 z( ) � H2
0 Ωm 1 + z( )3 +Ωk 1 + z( )2[ ], (31)

and by the conformal EdS model as

H2 z( ) � H2
0 Ωm 1 + z( ) +Ωk[ ]. (32)

While the ΛCDM model contains dark energy ΩΛ as a free
parameter, which must be adjusted by fitting with the SNe Ia
observations, the conformal EdS model requires no free
parameter for the flat Universe, and the curvature parameter
Ωk is needed for a curved Universe. Since the Universe is nearly
flat, this parameter should be close to zero and can be determined
from other independent observations. Model-independent
methods for estimating Ωk are based on reconstructing the
comoving distances by Hubble parameter data and comparing
with the luminosity distances [49–51], on the angular diameter
distances [52], on strongly gravitational lensed SNe Ia [53] or on
gravitational waves [54]. The authors report the curvature term
Ωk ranging between −0.3 and −0.1 indicating that the Universe is
nearly flat and closed.

Figure 1 shows a comparison of the SNe Ia measurements
with predictions of the ΛCDM model and the standard and
conformal EdS models. The standard EdS model is in a visible
disagreement with the SNe Ia measurements and this
disagreement led to developing the ΛCDM model by
introducing the normalized density of dark energy ΩΛ into

Eq. 30 to get a satisfactory fit. Strikingly, the conformal EdS
model defined by Eq. 32 fits data equally well as the ΛCDM
model with no assumption on dark energy (see Figure 2). This
confirms that the solution of the puzzle with the supernovae
dimming does not lie in introducing dark energy but in correcting
the metric used in the Friedmann equations.

4 DISCUSSION

The Friedmann equations introduce the expansion of the Universe
and form fundamentals of modern cosmology. Intuitively, the space
expansion can explain the cosmological redshift, because the distant
galaxies are moving away due to the expansion and we observe their
light distorted by the Doppler effect. This was probably the
motivation for describing the Universe by the standard FLRW
metric. The problem is, however, more involved, and we know
that the cosmological redshift is not due to theDoppler effect but due
to distortion of the spacetime described by GR. The redshift of
distant galaxies would be observed even for a non-expanding
Universe at the present epoch. From this point of view, there is
no clear argument, why the standard FLRW metric introduces just
the space expansion with no time dilation.

In fact, it is surprising to assume distortion of space only, because
other solutions in GR such as the well-known Schwarzschild solution
involve distortions in space and time together. At previous epochs, the
Universe was much denser and the gravitational field much stronger,
hence going back in time to high redshifts is analogous to an observer
moving towards the black hole. Since the coordinate time runs
differently close to and far from the black hole, we can expect to
observe a similar effect when comparing clocks at the high redshift
Universe and at the present epoch.

In addition, the assumption of no time dilation during the
Universe evolution is not strange only from the theoretical point
of view but it is also in contradiction with astronomical observations.
The existence of cosmic time dilation and its real physical nature is
supported by observations of gamma ray-bursts [56–58] and Type Ia
supernovae light curves [59, 60]. For example, Zhang [61] studied a
sample of 139 SWIFT long gamma-ray bursts (GRBs) with redshift
z ≤ 8.2 and obtained a significant correlation between their duration
and redshift. Similarly, Littlejohns and Butler [62] analysed 232
GRBs detected by the Swift/Burst Alert Telescope (BAT) and
revealed that the observed durations are consistent with cosmic
time dilation. As regards supernovae, the SNe Ia display rather
uniform light curves and thus they can be used as local clocks. The
spectral evolution of the light curves and stretching of time in the
observer frame was disclosed by many authors [59, 63–65], and
corrections for time dilation are now routinely applied to the SNe Ia
data [60, 66].

The re-examination of light propagation in space defined by the
standard FLRW metric reveals another severe contradiction with
observations: this metric actually does not predict the cosmological
redshift. This is surprising and against the common opinion that the
standard FLRW metric produces the cosmological redshift.
However, it is shown that the mathematical derivation originally
proposed by Lemaitre [2] and repeated in textbooks is not correct.
Lemaitre [2] analysed the change of the wavelength of photons
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FIGURE 1 | The Hubble diagram with Type Ia supernovae observations. Blue dots show measurements of the SNe Pantheon compilation [45, 46]. The red line in
(A) shows the ΛCDMmodel described by Eq. 30withΩm = 0.3 andΩΛ = 0.7. The red line in (B) shows the conformal EdSmodel described by Eq. 32withΩm = 1.2 and
Ωk = −0.2. The black line in (A,B) shows the standard EdS model described by Eq. 31 with Ωm = 1.0 and Ωk = 0. The Hubble constant is H0 = 69.8 km s−1 Mpc−1,
obtained from observations of the SNe Ia data with a red giant calibration [55].

FIGURE 2 | Residual Hubble plots for (A,B) the individual SNe Ia data and (C,D) the binned SNe Ia data. (A,C) The flat ΛCDM model, (B,D) the conformal EdS
model. For parameters of the models, see caption of Figure 1. The error bars in (C,D) show the 99% confidence intervals. Data are taken from the SNe Pantheon
compilation [45, 46].
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propagating in expanding space and he came to a wrong conclusion
that the wavelength of photonsmust increase, similarly as the proper
distance between objects in rest. An increasing wavelength of
photons is then transformed into the change of their frequency
under the assumption of the constant speed of light. Since this
derivation gave intuitively acceptable results, there was no reason to
critically check its correctness by other cosmologists.

A correct analysis shows, however, that the wavelength of photons
does not increase and the frequency of photons is constant during the
space expansion defined by the standard FLRWmetric. The change in
the frequency of photons is always connected with time dilation and
with a variation of the time metric g00 in GR, similarly as for the
gravitational redshift. Therefore, the standard FLRW metric must be
substituted by the conformal FLRW metric that predicts the cosmic
time dilation and the cosmological redshift properly. Consequently,
the cosmic time should be identified with the conformal time and the
space-time evolution of the Universe should be described by the
conformal FLRW metric only.

Obviously, we can ask a question: why atoms radiate photons
with the same (rest-frame) frequency at all redshifts and why this
frequency is not affected by time dilation? The answer is
straightforward: the frequency of emitted photons is
independent of redshift, because it depends on quantized
energy levels of electrons in atoms and these energy levels are
redshift independent. Once the photon is emitted, its frequency
decreases due to time dilation when photon propagates along the
ray path from the emitter to the receiver. Since the comoving
speed of light is constant, the proper speed of light must be
variable. In this way, the emitted photons with frequency ] have
shorter proper wavelengths at high redshift than the photons with
the same frequency ] but emitted at the present epoch.

The correctness of the conformal FLRW metric is convincingly
confirmed by SNe Ia observations. In fact, observations of the SNe Ia
were originally proposed by Riess et al. [37] and Perlmutter et al. [38]
for testifying the existing cosmological model and the SNe Ia
observations surprisingly revealed essential discrepancy between
theoretical predictions and measurements. However, instead of
questioning the validity of the standard FLRW metric and the
Friedmann equations, Riess et al. [37] and Perlmutter et al. [38]
introduced a free parameter into the Friedmann equations to comply
them with data. In this way, the model is capable to fit the SNe Ia
observations, but at the cost of introducing a physically controversial
concept of dark energy. By contrast, the EdS model based on the
conformal FLRW metric fits the SNe Ia data with no need to
introduce any new free parameter.

An argument that dark energy is not physical, but originates in
the applied standard FLRW metric is used also by other authors
[67–70]. For example, the accelerated expansion could be an
artefact of neglecting inhomogeneity of the Universe [71–75] as
proposed in the Swiss-cheese cosmology [76–78] or in the
timescape cosmology [79–81]. The SNe Ia dimming can partly
be a result of cosmic opacity neglected in interpretations of the SNe
Ia luminosity [82–85]. By contrast, here I show that the essential
difficulty with the standard FLRW metric is not in the
oversimplification of the model by assuming perfect
homogeneity and isotropy of the Universe, but in false
neglecting time dilation during the Universe history. The results

indicate that anisotropy, heterogeneity and opacity of the Universe
produce probably only the second-order effects in observations.

5 CONCLUSION

In summary, we conclude that the conformal FLRWmetric is the
only correct metric for describing the evolution of the Universe,
which can predict the cosmological redshift and time dilation
properly. If the time rate is independent of the expansion of the
Universe as in the standard FLRW metric, the frequency of
photons cannot change during the expansion. Therefore, the
variable rate of time during the expansion is inevitable and
implies the following fundamental consequences:

(1) The gravitational and cosmological redshifts are calculated by
the same formula and describe the same physical process.
Both redshifts reflect a distortion of time produced by
changes in the gravitational field. While the gravitational
redshift originates in spatial variations of the gravitational
field, the cosmological redshift originates in temporal
variations of the gravitational field.

(2) The metric describing the evolution of the Universe is
conformal with the static model. This metric leaves the
Maxwell’s equations unchanged from their form in the
Minkowski spacetime [20–22].

(3) The conformal FLRW metric predicts correctly the
cosmological redshift: the frequency of photons increases
with redshift as (1 + z). Not only the frequency of photons but
also the rate of photons increases with redshift as (1 + z) due
to time dilation. The real physical nature of cosmic time
dilation is supported by observations of gamma ray-bursts
[56–58] and Type Ia supernovae light curves [59, 60, 66].

(4) The comoving speed of light is constant. The proper speed of
light decreases with redshift as (1 + z)−1. Hence, the speed of
light is not a nature constant but it varies being dependent on
the scale factor a(t) [28, 86]. Consequently, distance between
galaxies changes with redshift, but photons emitted by a galaxy
reach a neighbouring galaxy after the same time at high redshift
as well as at the present epoch. The wavelength of photons does
not decrease with redshift as (1 + z)−1 as assumed in the
standard FLRWmetric but it decreases with redshift as (1 + z)−2.

(5) The conformal FLRWmetric fits the SN Ia observations with no
need to introduce dark energy into the Einstein and Friedmann
equations. The dark energy is an artefact of the erroneousmetric
used for describing the evolution of the Universe. Consequently,
no repulsive forces produced by dark energy and acting against
gravity are present in the corrected Friedmann equations. Since
the only force considered in the Friedmann equations is gravity,
the expansion of the Universe is decelerating at the
present epoch.
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APPENDIX A: COORDINATE SPEED OF
LIGHT IN THE STANDARD AND
CONFORMAL FLRW METRICS

Let us assume light propagating in the space described by the
standard FLRW metric, see Eq. 4. The equation of the null
geodesics for photons, ds2 = 0, yields

cdt � a t( )dl, (A1)
where dl is the element of the comoving distance. The comoving
speed of light v reads

v � dl

dt
� c

a t( ), (A2)

and the proper speed of light ~v is

~v � ���
vivi

√ �
�����
vivigii

√
� a t( )v � c. (A3)

If light propagates in the space described by the conformal FLRW
metric described by Eq. 5, the equation of the null geodesics for
photons, ds2 = 0, yields

cdt � dl. (A4)
Hence, the comoving speed of light v is

v � dl

dt
� c, (A5)

and the proper speed of light ~v is

~v � ���
vivi

√ �
�����
vivigii

√
� a t( )v � a t( )c. (A6)

The dependence of ~v on the scale factor a(t) in Eq. A6 is a trivial
consequence of Eq. A5 expressing that the speed of light is
constant in the comoving coordinates. Since the proper speed
of light is the actually measured speed of light, Eqs A3,A6 predict
essentially different behaviour of light in the standard and
conformal FLRW metrics.

APPENDIX B: DISTANCE BETWEEN TWO
SUCCESSIVE PHOTONS TRAVELLING
ALONG THE SAME RAYPATH

Let us assume two photons propagating in the space described by
the standard FLRWmetric, see Eq. 4. We will consider the case of
two successive photons travelling along the same raypath with
time delay Δt between them. The photons are emitted by a
common source situated at the origin of coordinates and they
travel in the space along the x-axis for time T to reach a receiver.
The equations of the null geodesics for the photons, ds2 = 0, yield

cdt � a t( )dx , cdt′ � a t′( )dx′, (B1)
where t′ = t + Δt. The initial comoving coordinates of photons at
the initial time t0 are taken as

x0 � ∫
t0

t0+Δt cdt
a t( ) , y0 � 0 , z0 � 0, (B2)

x0′ � 0 , y0′ � 0 , z0′ � 0, (B3)
and the comoving distance d0 between the photons at time t0
reads

d0 � x0 − x0′ � ∫
t0

t0+Δt cdt
a t( ) �

~d0

a0
(B4)

where ~d0 is the proper distance between the photons at time t0
defined as

~d0 � ∫
t0

t0+Δt
cdt � cΔt (B5)

and we assumed in Eq. B4 that the scale factor a(t) does not
change much during the time interval Δt. Once the second
photon reaches the receiver, we get

dT � xT − xT′ � ∫
t0+T

t0+T+Δt cdt
a t( ) � ∫

T

T+Δt cdt
a t( ) �

~dT

aT
(B6)

where aT is the scale factor at time t0 + T and ~dT is the proper
distance between the photons at time t0 + T

~dT � ∫
t0+T

t0+T+Δt
cdt � cΔt. (B7)

Comparing Eqs B5, B7, we see that the proper distance
between two successive photons is constant and independent
of the scale factor a(t). Consequently, the wavelength of photons
cannot change with the scale factor a(t) in the standard FLRW
metric.

APPENDIX C: DISTANCE BETWEEN TWO
PHOTONS TRAVELLINGALONGPARALLEL
RAYPATHS

Let us assume two photons propagating in the space described
by the standard FLRW metric, see Eq. 4. We will consider the
case of two photons emitted at the same time by two different
sources and travelling along two parallel rays. The photons
travel in the space along the x-axis and need time T to reach
their receivers. The equations of the null geodesics for the
photons, ds2 = 0, yield

cdt � a t( )dx , cdt � a t( )dx′. (C1)
The initial comoving coordinates of photons at the initial time t0
are taken as

x0 � 0 , y0 � d0 , z0 � 0, (C2)
x0′ � 0 , y0′ � 0 , z0′ � 0. (C3)

Hence, the initial comoving distance between the two photons is
d0. After elapsing time T, we get

xT � ∫
t0

t0+Δt cdt
a t( ) , y0 � d0 , z0 � 0, (C4)
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xT′ � ∫
t0

t0+Δt cdt
a t( ) , y0′ � 0 , z0′ � 0, (C5)

and the comoving distance dT between the photons at time t0 + T
reads

dT � d0. (C6)

Consequently, the proper distances ~d0 and ~dT between the two
photons at times t0 and t0 + T read

~d0 � a0d0 , ~dT � aTdT, (C7)
implying that the proper distance between the photons linearly
increases with the increasing scale factor a(t).
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