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A B S T R A C T   

We present an approach of identifying anisotropy axes and the type of symmetry from ultrasonic measurements 
of 21 elastic constants of the complete stiffness tensor characterizing anisotropic materials. The approach is 
applied to examine anisotropic elasticity of two crystalline rock samples from two underground research labo-
ratories: (1) the migmatized gneiss from Bukov in the Czech Republic; and (2) the Aare Granite from Grimsel in 
Switzerland. The full stiffness matrix is measured at selected pressure levels from 0.1 to 100 MPa. We demon-
strate that the Bukov migmatized gneiss is orthorhombic, whereas the Grimsel granite is transversely isotropic 
under atmospheric pressure. The degree of anisotropy of both rocks decreases with applied confining pressure 
due to closing of preferentially oriented cracks. While the Grimsel granite is very sensitive to pressure and be-
comes almost isotropic at high pressures, a great portion of anisotropy in the Bukov migmatized gneiss remains 
even under high pressures due to its texture. The dependence of Young’s and shear moduli with pressure em-
phasizes the importance of taking the pressure into account for underground projects.   

1. Introduction 

Most of rocks display elastic anisotropy, which is manifested by a 
directional dependence of propagation velocity of seismic waves.1,2 

Based on its origin, we distinguish between: (1) intrinsic anisotropy 
produced by the crystal preferred orientation or the shape preferred 
orientation,3,4 and (2) extrinsic anisotropy, caused by the alignment of 
micro-cracks, cracks or fractures or by layering.5,6 The propagation 
velocity and its anisotropy are influenced by in situ acting stress,7 with 
two different phenomena being typically recognizable: (1) A charac-
teristic rapid increase of velocity with pressure caused by microcrack 
closing. This effect is dominant at low pressure, typically below 100 
MPa. It is accompanied by a decrease of degree of anisotropy, provided 
the cracks are preferentially aligned (e.g., Pros et al.8). (2) A linear in-
crease of velocity with pressure observed after microcrack closing. The 
velocity increase is slow and anisotropy remains practically on the same 
level without any change in its orientation. This behavior is attributed to 

the pressure dependence of the elastic constants of a crack-free rock 
matrix.8 

The most general type of anisotropy is associated with triclinic 
symmetry, which is described by 21 elastic parameters. However, the 
natural rock forming processes often result in anisotropy of higher 
symmetry related to a subparallel arrangement of rock constituents 
manifested, e.g., by foliation for metamorphic rocks and by aligned 
microcracks for igneous rocks. Such structures are conveniently 
described by transverse isotropy (TI) with five independent elastic 
constants and two angles describing the direction of the symmetry axis 
of anisotropy (hereinafter anisotropy axis). This anisotropy is very 
popular with many geophysical and geotechnical applications in 
practice.9–14 While the applicability of TI is obvious, natural processes 
also often produce a more complex rock behavior such as anisotropy 
with orthorhombic symmetry (OS) or monoclinic symmetry (MS). 
Orthorhombic anisotropy can describe, e.g., effects of foliation and 
lineation in the foliation plane,3 horizontal bedding with presence of 
aligned vertical cracks in fractured reservoirs,15 mutually perpendicular 
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microcrack systems16,17 or the presence of triaxial stress in an isotropic 
rock.7,18 The OS is defined by 9 independent elastic constants and by 
three angles required to orient the principal mutually orthogonal di-
rections with respect to an arbitrary coordinate system. Monoclinic 
symmetry is produced, e.g., by two non-orthogonal systems of fractures 
or even by a single system of microcorrugated fractures.19 

Anisotropic constants are commonly estimated from P- and S-wave 
velocities, measured in the lab by the pulse–transmission method.20 If 
anisotropy axes are known, e.g., from macroscopically visible structural 
features, it is sufficient to measure three P-wave and two S-wave ve-
locities to estimate the stiffness tensor of TI21–23 and six P-wave and 
three S-wave velocities to estimate the stiffness tensor of OS.24 If the 
system of anisotropy axes is not obvious, the P- and S-wave velocities 
must be measured in a net with dense directional coverage and inverted 
for the most general stiffness tensor with 21 elastic constants in an 
experimentally chosen coordinate system.18,25,26 As a result, the ob-
tained stiffness tensor contains the complete information about the 
material, but it does not provide the symmetry type and the elastic 
constants of the material in its symmetry planes. Obviously, this diffi-
culty might complicate geophysical and geotechnical interpretations of 
measurements. 

The problem of identifying the symmetry type of an anisotropic 
material defined by 21 elastic constants has been addressed by several 
authors.27–36 For example, Backus27 used the Maxwell multi-poles to 
identify the symmetry type of the material. This was not an easy the-
ory,28 thus other researchers tried to present it through examples to 
make it more understandable (e.g., Baerheim29). Zou et al.30 developed 
this method by adding the concept of a mirror plane. Another method 
was proposed by Aristegui and Baste31 who studied a composite with a 
known fibrous reinforcement direction. They selected an arbitrarily 
oriented observation coordinate system (defined by Euler angles) 
resulting in a stiffness tensor with 21 non-zero elements and tried to 
identify the symmetry type of the material and its elastic parameters 
from this tensor. Using the Christoffel equation, two functionals were 
constructed for various types of symmetries. Cowin and Mehrabadi32 

proposed a simple way to determine the symmetry type of the crystals. 
They introduced two symmetric tensors of the second rank and 

identified the symmetry type of the material using the eigenvectors of 
these tensors. Arts33,34 tried to apply this method to experimental data 
and numerically obtained the best plane of symmetry by evaluating 
various directions around the three eigenvectors to find the best solution 
with the least error for each symmetry type. Arts33 showed that using the 
average of these two sets of eigenvectors is a reasonable solution and 
gives more stable results than those obtained from the more complicated 
method proposed by Backus,27 especially, when data are contaminated 
by high level of triclinic noise. 

In this study, we present an analytical approach of identifying 
anisotropy axes and the type of symmetry from measurements of 21 
elastic constants of the complete stiffness tensor using the method pro-
posed by Cowin and Mehrabadi32 and by Ting.37 We use an innovative 
way to implement this method and provide a MATLAB code SYMMETRY 
applicable to experimental data containing general triclinic noise. The 
main advantages of this method are: (1) the method is straightforward 
and easily reproducible, (2) the stiffness tensor is directly rotated into its 
principal orientations without a necessity to rotate it into different 
symmetry types and to select the best solution, and (3) we do not need to 
calculate the Euler angles for rotating the stiffness tensor into the 
principal coordinate system. We apply this approach to examine 
anisotropic elasticity of crystalline rock samples from two underground 
research laboratories: (1) the migmatized gneiss from Bukov in the 
Czech Republic; and (2) the Aare Granite from Grimsel in Switzerland. 
We have specified the anisotropy axes on experimental plots of the ve-
locity distribution to visualize the efficiency of this method. We prove 
that the tested rock samples are well described by elastic anisotropy with 
OS. Besides, the effects of pressure on the symmetry type of these two 
rocks are studied in the range of pressure levels from 0.1 to 100 MPa. 
The rock-structure relation and the influence of pressure on the degree 
(strength) of anisotropy and the orientation of anisotropy axes are 
studied and discussed for both rock samples. 

2. Identification of type of anisotropy symmetry and its 
principal coordinate system 

The stiffness tensor cijkl of general anisotropy is defined by 21 inde-
pendent elastic parameters. However, if anisotropy is of higher symmetry, 
this number can be reduced and tensor cijkl simplified when expressed in the 
principal coordinate system related to the symmetry axes. Since 9 forms of 
cijkl represent all 32 classes of crystals38 except for isotropy, 10 forms of cijkl 

categorize the whole range of the known symmetries in the stiffness 
tensor.37,39 Nevertheless, the dominant anisotropy types for the rocks are 
mostly TI and OS described only by 7 and 12 independent parameters, 
respectively. Therefore, an important task of any study of elastic anisotropy 
of unknown symmetry is to analyze the full stiffness tensor of 21 elastic 
parameters measured in an arbitrary coordinate system and to identify 
possible anisotropy symmetries and their principal coordinate system. For 
simplicity, we use the Einstein notation in deriving the formulas; however, 
the most important results will be expressed in the matrix form. 

A transformed form of the symmetric matrix will not change when 
the transformation is implemented with respect to the symmetry plane. 
So, if a material has a symmetry described by matrix Ω, we can use the 
Einstein summation convention to write37: 

cijkl =ΩipΩjqΩkrΩltcpqrt, (1)  

where Ω must satisfy the following equations: 

Ωij = δij − 2ninj, (2a)  

niΩij = − nj , (2b)  

miΩij =mj. (2c)  

Here, n is the unit vector perpendicular to the plane of symmetry, while 
m is an arbitrary unit vector in the plane of symmetry, i.e., their scalar 

Nomenclature 

cijkl, c*
ijkl Stiffness tensor and its rotated form into the principal 

coordinate system 
CIJ, C*

IJ The 6 x 6 stiffness matrix and its rotated form into the 
principal coordinate system 

Ei, i = 1, 2,3 Young’s moduli along three orthogonal principal 
orientations of the material 

Gij, i, j = 1, 2, 3 Shear moduli in the plane ij 
KMN, M, N = 1, …,6 The 6 × 6 transformation matrix 
n,m Unit vectors normal and within the symmetry plane 
x,x* Vectors before and after rotation 

Greek symbols 
νij,i,j = 1,2, 3 Poisson’s ratios (the relative strain in direction j to 

the strain in direction i for a load applied in direction i) 
Ωij, i, j = 1, 2,3 The 3 × 3 rotation matrix 
δij The 3 × 3 identity matrix 

Abbreviations 
BUK Bukov migmatized gneiss 
GRM Grimsel granite 
TI Transverse isotropy 
OS Orthorhombic symmetry 
URL Underground Research Laboratory  
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product equals zero, n⋅m = 0. Symbol δ is the identity matrix. It is useful 
to remind that matrix Ω is an orthogonal or rotational matrix which 
means ΩT = Ω− 1, hence ΩΩT = ΩTΩ = δ. Hence, if real vectors n and m 
are rotated into new vectors n* and m*, the length of the vectors and the 
angles between them will not change because (n*)

Tm* = (Ωn)T
(Ωm) =

nTΩTΩm = nTm.37 The relation between the matrix Ω and Euler angles 
is presented in Appendix B. 

Cowin and Mehrabadi32 used Eqs (1) and (2) to extract the following 
four conditions necessary and sufficient for n to be the normal vector to a 
plane of symmetry: 

cijkknj =
(
cpqttnpnq

)
ni, (3a)  

cilklnk =
(
cpqrqnpnr

)
ni, (3b)  

cijklnjnlnk =
(
cpqrtnpnqnrnt

)
ni, (3c)  

cijklmjmlnk =
(
cpqrtnpmqnrmt

)
ni. (3d) 

Eq. (3) shows that n is a common eigenvector of four 3× 3 matrices 
cijkk, cilkl, cijklnjnl, and cijklmjml. A repeated subscript indicates a summa-
tion, thus the tensors cijkk and cilkl can be expanded as symmetric matrices 
U and V (in the Voigt notation): 

U=

⎡

⎣
C11 + C12 + C13 C16 + C26 + C36 C15 + C25 + C35

C12 + C22 + C23 C14 + C24 + C34
C13 + C23 + C33

⎤

⎦ (4a)  

V=

⎡

⎣
C11 + C55 + C66 C16 + C26 + C45 C15 + C35 + C46

C22 + C44 + C66 C24 + C34 + C56
C33 + C44 + C55

⎤

⎦ (4b)  

where matrix CIJ represents the two-index Voigt notation of the stiffness 
tensor cijkl, see Musgrave.39 

For the evaluation of Eq. (3d), one needs to know vector m, which is 
dependent on vector n. Therefore, Ting37 multiplied both sides of Eqs 
(3c) and (3d) by m and obtained the following simplified equations due 
to the properties of orthogonal matrices: 

cijklminjnknl = 0, (5a)  

cijklmimjmknl = 0. (5b) 

In other words, it can be concluded that a stiffness tensor has a 
symmetry plane only if vector n is an eigenvector of both cijkk and cilkl and 
satisfies Eq. (5) for any two vectors m(ξ), ξ = 1,2 in the plane of symmetry 
that do not make an angle π/3 (or its multiples) with each other. It should 
be reminded that vectors n and m are perpendicular to each other. 

Here, we only consider four common symmetry types of the rock 
materials although all 10 symmetry types known in the crystals can be 
determined using this method. We assume isotropic, orthorhombic, 
transversely isotropic, or triclinic materials, which are most common in 
geophysical applications (see Table 1). For a detailed classification of 
material symmetries according to properties of matrices U and V, we 
refer to Cowin and Mehrabadi.32 

An additional constraint (4th column) is needed for distinguishing 
between: (1) isotropic and cubic symmetry, and (2) transversely 
isotropic and tetragonal symmetry. C*

KL are the components of the 6 x 6 
stiffness matrix in the principal coordinate system. 

If the sets of the normal vectors to the planes of symmetry and their 
properties are known, the number of symmetry planes is determined 
from Table 1. 

When three normal vectors n (the common sets of eigenvectors of 
matrices cijkk and cilkl) are calculated from Eq. (4), the matrix Ω, called 
the coordinate transformation matrix or the rotation matrix, will be a 
3 × 3 matrix composed of these three normal vectors, which transforms 
an initial coordinate system to the principal coordinate system: 

x* =Ωx, (6)  

where x is any initial vector, and x* is its corresponding transformed 
vector. According to the transformations laws,37 the transformed tensor 
c*

ijks is calculated as: 

C* =KCKT , (7)  

where, the 6 × 6 transformation matrix K is defined by Auld25 or Ting34:    

In summary, the eigenvectors of matrices U and V identify the 
principal orientations of the material, whereas their eigenvalues inform 
us about the stiffness as well as the anisotropy degree of the material. For 
example, an isotropic rock has three equal eigenvalues, which are higher 
than those for a softer isotropic rock. Besides, a higher difference be-
tween two eigenvalues in an anisotropic rock reveals its higher ratio of 
anisotropy between those two directions. 

An example of evaluating an ideal orthorhombic tensor in an arbi-
trary coordinate system and its transformation into the principal coor-
dinate system is shown in Appendix A. In the case of an experimentally 
obtained stiffness matrix, we used a mean value of the two sets of ei-
genvectors obtained from Eqs. (4a) and (4b). The resultant 3 × 3 matrix 
was used as the coordinate transformation matrix Ω and the 6 × 6 

Table 1 
Determination of the type of symmetry in rock materials based on Eqs (4) and 
(5), adapted from Cowin and Mehrabadi.32.  

Symmetry type Three eigenvalues  
(Eq. (4a) or Eq.  
(4b)) 

Number of  
eigenvectors  
satisfying Eq.  
(5) 

Additional 
constraint 

Isotropic Three are equal 3 C*
11 − C*

12 = 2C*
66 

Transversely 
isotropic 

Two are equal 3 C*
11 − C*

12 = 2C*
66 

Orthorhombic Three are different 3  
Triclinic Three are different 0   

K=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω2
11 Ω2

12 Ω2
13 2Ω12Ω13 2Ω13Ω11 2Ω11Ω12

Ω2
21 Ω2

22 Ω2
23 2Ω22Ω23 2Ω23Ω21 2Ω21Ω22

Ω2
31 Ω2

32 Ω2
33 2Ω32Ω33 2Ω33Ω31 2Ω31Ω32

Ω21Ω31 Ω22Ω32 Ω23Ω33 Ω22Ω33 + Ω23Ω32 Ω23Ω31 + Ω21Ω33 Ω21Ω32 + Ω22Ω31

Ω31Ω11 Ω32Ω12 Ω33Ω13 Ω32Ω13 + Ω33Ω12 Ω33Ω11 + Ω31Ω13 Ω31Ω12 + Ω32Ω11

Ω11Ω21 Ω12Ω22 Ω13Ω23 Ω12Ω23 + Ω13Ω22 Ω13Ω21 + Ω11Ω23 Ω11Ω22 + Ω12Ω21

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)   
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transformation matrix K was obtained using Eq. (8). The initial stiffness 
matrix was rotated into its principal directions using Eq. (7). Then, we 
investigated each of the three eigenvectors in matrix Ω to determine, 
whether it satisfies the conditions to be normal to a symmetry plane, see 
Eqs. (5a) and (5b). If all three eigenvectors have high residuals, the rock 
sample has less than three planes of symmetry. Otherwise, the sample is 
isotropic, transversely isotropic or orthorhombic. The sample is 
isotropic if all eigenvalues are almost equal, while it is transversely 
isotropic if only two eigenvalues are equal. Otherwise, the sample is 
orthorhombic. We have also shown the procedure of finding the sym-
metry type of the stiffness matrix contaminated by noise and the elastic 
parameters in the principal coordinate system in the supplementary 
MATLAB code SYMMETRY. 

3. The rock samples 

We analyzed elastic anisotropy of two rock samples from the un-
derground research laboratories (URL) that are focused mainly on the 
investigation of functionality of deep repositories: (1) the BUK sample – 
migmatized gneiss, typical for the test site of the URL Bukov, Czech 
Republic; (2) the GRM sample - Central Aare granite, a predominant host 
rock of the URL Grimsel, Switzerland. 

The Bukov URL is a part of the national program of the Radioactive 
Waste Authority of the Czech Republic (SURAO) for the siting process of 
a deep geological repository. The URL is located within the Moldanubian 
Unit of the Bohemian Massif, 550 m under the surface on level 12 of the 
former uranium mine Rožná, Czech Republic. The pressure at depth 550 
m, caused by the overburden rock with an average density ~2.75 g/cm,3 

is about ~15 MPa. The horizontal stress ratio is ~2, with SHmax in the 
range of 25–35 MPa in the NE-SW direction.40 The characteristic rocks 
are paragneiss, amphibolite, and migmatite. Their original foliation is 
related to the preferential orientation of biotite, amphibole, and ortho-
clase. It had been steeply dipping to the N–S direction and was at most 
places intensively refolded.40,41 The BUK sample is fine to medium 
grained migmatized paragneiss that comes from level 22 (depth 1100 m) 
of Rožná mine and is practically identical with the host rock of the URL, 
600 m above this level. It has a characteristic macroscopically visible 
foliation formed by alternating layers of leucosome and mesosome 
(Fig. 1a). The leucosome consists of varying proportions of quartz, 

plagioclase, and K-feldspar. The mesosome contains mainly biotite 
flakes, with a preferential orientation subparallel to the foliation 
(Fig. 1c). The biotite content is 20–30%.41 Microcracks with a prefer-
ential orientation are mainly within the biotite and parallel to its basal 
planes (Fig. 1c). Based on the texture, we expect some of the grains 
boundaries to be sub-parallel with the foliation as well. The 
texture-related anisotropy of the migmatized gneiss was reported in 
Berčáková et al.42 and Bukovská et al.41 Petružálek et al.43 described the 
texture related micro/macro scale-fracturing for Rožná migmatite using 
acoustic emissions. 

The Grimsel URL is located at the 450 m depth within the Aare massif 
(Switzerland), on the border between the Central Aare granite and the 
Grimsel granodiorite. Both rocks present a macroscopically visible 
foliation, steeply dipping to the E–W direction, with a variable intensity 
generally increasing towards the mylonitic shear zones.44 A more 
detailed geological/structural description of the Aare massif can be 
found in Wehrens et al.,45 and the URL test site is described in Keusen 
et al.46 The overburden pressure is ~12 MPa, considering the rock 
density of 2.7 g/cm3. The far-field principal stresses are in the range: σ1 
= 13.1–14.4 MPa, σ2 = 9.2–10.2 MPa, σ3 = 8.6–9.7 MPa with σ1 
plunging to the east at 30–40◦.11 The Central Aare granite sample GRM 
comes from the over-coring at the drill hole LASMO 14-2. It is a slightly 
foliated leucocratic biotite meta-granite with a weakly porhyritic 
texture (plagioclase grains ~ 10 mm). Above 90% of the rock matrix is 
formed from quartz, feldspar, and plagioclase with addition of 4–8% of 
biotite. A weakly developed foliation is caused by alignment of biotite 
and flattening of interstitial quartz grains (Fig. 1b,d). Larger microcracks 
are parallel with the grain boundaries, especially between quartz and 
feldspars (Fig. 1d). The heavily sericitized feldspars contain a dense net 
of small microcracks. Table 1 in Krietsch et al.11 lists the geology related 
works and their outputs performed at the URL up to 2017. Wenning 
et al.44 described seismic anisotropy of the Grimsel granodiorite and its 
dependence on strength of the foliation and acting pressure. Nejati 
et al.47 and Dambly et al.48 estimated the texture-based transverse 
isotropy model to describe the static and dynamic anisotropy of the Aare 
granite. Krietsch et al.11 applied a transverse isotropy model to improve 
the estimation of in situ stress tensor from overcoring strain 
measurements. 

Fig. 1. Tested spherical samples in the experimental 
coordinate system: (a) BUK, the migmatized gneiss 
with a macroscopically visible foliation in the N–S 
direction, (b) GRM the Aare granite, with a weak 
foliation in the N–S direction. (c) thin section of 
migmatized gneiss (BUK) under plane polarized light. 
(d) thin section of the Aare granite (GRM) under 
plane polarized light. The z-axis is perpendicular to 
the foliation, the x-axis is parallel to the lineation. B – 
biotite, F- feldspar, Q – quartz. The short arrows point 
to the cracks subparallel to the foliation.   
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4. Experiments 

The pressure dependent seismic anisotropy was measured by an 
apparatus originally proposed by Pros and Babuška,49 who developed 
the pressure vessel for the measurements of the P-wave velocity 
anisotropy on spherical specimens in the 15◦ regular net of meridians 
and parallels (132 independent directions). Lokajícek and Svitek50 

designed a new high-pressure measuring head that allowed us to include 
the measurement of the shear-wave velocity in two mutually perpen-
dicular polarizations. Here, the pulse transmission technique is applied 
to measure all the velocities across the 50 mm spherical sample in a 
regular net with 132 independent directions. The spherical samples 
were coated by a thin (0.1 mm) epoxy resin layer to prevent saturation of 
pore space of rock by the confining fluid. Shear-wave gel was used to 
improve the contact conditions between ultrasonic sensors and surface 
of the samples. Thanks to the point contact between flat ultrasonic 
sensors and the spherical surface of the sample, the ray (group) veloc-
ities are measured. The signals are pre-amplified by low noise 20 dB 
amplifier with a flat bandwidth in the range of 10 kHz–30 MHz. After 8 

times averaging, the waveforms are registered with 100 MHz sampling 
frequency and the resolution of 10-bit dynamic range. The waveforms, 
and their dependence on the orientation and pressure, are similar to 
those published for the same experiment performed on anisotropic 
biotite gneiss.25,51 

Klíma and Červený52 introduced a numerical method for obtaining a 
full tensor of 21 elastic constants from the experimentally measured 
velocities. However, only 15 P-wave related constants were retrieved 
reliably if the S-wave velocities were not included into the inversion. 
Utilizing a recently developed measuring head allowed us to obtain also 
the S1 (faster) and S2 (slower) shear-wave velocity distributions and 
thus to retrieve a complete elastic tensor accurately.25 We stress out that 
the S1 and S2 describe the faster and slower shear waves for each 
particular direction and are not directly related to their polarization. 
Hence, the polarization can flip in some cases (e.g., close to the shear 
wave singularities, see Vavrycuk50). Since we measure the ray (group) 
velocities but not the phase velocities, we have to recalculate the group 
velocities to the phase velocities before applying the inversion proced-
ure. Therefore, we construct the wave surface from a dense grid of 

Fig. 2. The phase velocity distribution of the BUK 
sample plotted in the equal-area stereographic pro-
jection on the lower hemisphere. From left to right: 
velocities of the P, S1, S2 waves and the difference 
between the S1 and S2 velocities (in km/s). The 
pressure level increases from top to bottom. Stiffness 
tensor orientation is represented by the black sym-
bols: square – x1-axis (maximum P-wave velocity), 
circle – x2-axis (intermediate P-wave velocity), tri-
angle - x3-axis (minimum P-wave velocity).   
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measured group velocities and by applying a simple transformation we 
obtain the corresponding phase velocity surface. The phase velocities 
are then inverted for a full set of anisotropic constants. The whole 
inversion process is described step by step in Svitek et al.25 

Spherical specimens with a diameter of 50 mm were prepared from 
the BUK and GRM samples. They were vacuum dried at temperature 50 
◦C and covered by a 0.1 mm thick layer of epoxy resin, to isolate the rock 
from the pressurizing oil. The ultrasonic sounding was performed at 
selected levels of hydrostatic pressure: 0,1; 2; 5; 10; 20; 50 and 100 MPa 
for the BUK sample, and 0,1; 5; 10; 15; 20; 50; 80 and 100 MPa for the 
GRM sample. Three ultrasonic sensor pairs (P, S1, S2) were applied to 
generate and capture the corresponding ultrasonic waves. The rotation 
of the spherical sample and sensor holders allowed to measure the P, S1, 
and S2 velocities in 132 independent directions Lokajícek and Svitek.50 

The onsets of the firstly arriving P waves were picked automatically.53 

Due to the waveforms complexity at later times, a careful inspection was 

needed to manually determine the S1 and S2 arrivals. The phase ve-
locities that are presented in the paper were obtained from the measured 
ray velocities according to Svitek et al.25 The set of 3 x 132 phase ve-
locities (P, S1, and S2) was used to retrieve the full stiffness tensor with 
21 elastic constants.25 

The P-, S1- and S2-phase velocity distributions are plotted for all 
pressure levels in Fig. 2 (BUK) and Fig. 3 (GRM). Both rocks display a 
similar relation between their texture and the P-wave velocity distri-
bution. The high-velocity plane is parallel to the foliation, while the 
minimum velocity region is practically perpendicular to the foliation. A 
clearly visible maximum in the high-velocity plane does not change with 
pressure for the BUK sample, but slight changes are observed for the 
GRM sample above the 20 MPa pressure. Since all three extreme velocity 
directions (maximum, mean, and minimum) are practically mutually 
perpendicular, the application of the orthorhombic symmetry (OS) 
should be sufficient to characterize the anisotropic elasticity of both 

Fig. 3. The phase velocity distribution for the GRM sample plotted in the equal-area stereographic projection on the lower hemisphere. From left to right: velocities 
of the P, S1, S2 and the difference between the S1 and S2 velocities (in km/s). The pressure level increases from top to bottom. Stiffness tensor orientation is 
represented by the black symbols: square – x1-axis (maximum P-wave velocity), circle – x2-axis (intermediate P-wave velocity), triangle - x3-axis (minimum P- 
wave velocity). 
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tested rocks. 
Fig. 4 displays the velocity/pressure dependency for three extreme 

directions together with the degree of anisotropy evaluated in percent, k 
= 100(vmax-vmin)/vmean). Based on these trends, we can distinguish be-
tween microcracks and rock-matrix dominated pressure ranges. In 
general, the crack closing pressure is estimated as a threshold between 
non-linear (crack closing) and linear (rock matrix dominated) velocity/ 
pressure trends (e.g., Pros et al.8). For most rocks, it is expected to be 
within the range of 150–500 MPa.54 However, for mantle rocks, Chris-
tensen55 reported an influence of cracks up to 1000 MPa. In this work, 
the maximum applied pressure of 100 MPa was not high enough to close 
all the cracks and to reach the linear velocity/pressure trend. For these 
reasons, we used the anisotropy behavior to distinguish between the 
crack- and matrix-dominated pressure regions. However, this change in 
anisotropy behavior is related only to the influence of oriented cracks (e. 
g., Kern et al.5). For both samples, this threshold is between 20 and 50 
MPa. Below this level, anisotropy steeply decreases with pressure; then 
it remains practically constant. The BUK sample displays a clear ortho-
rhombic symmetry of rock matrix with the 12% anisotropy at 100 MPa 
when most of the cracks are already closed. At low pressures, the sym-
metry remains the same, but the level of anisotropy is increasing up to 
32% for the P-wave velocity. This behavior is caused by cracks aligned 
with the foliation. The GRM sample is practically isotropic at 100 MPa 
(k = 4%), while being transversely isotropic at low pressure (k = 36%). 
This TI of the GRM sample is related to the preferential orientation of 
cracks and it is characteristic for granitic rocks.17,18 Both rocks display a 

similar behavior of P- and S-wave anisotropy. Degree (strength) of the 
high-pressure anisotropy of the rock matrix is the same for both wave 
types. At low pressures, when the influence of oriented cracks is sig-
nificant, degree of the P-wave anisotropy is about twice higher than that 
of the S-wave anisotropy. 

5. Dynamic elastic parameters in the principal coordinate 
system 

The procedure described in Section 2 was used to transform the 
stiffness tensors of the BUK and GRM samples from the coordinate sys-
tems chosen in the experiments to their principal coordinate systems. 
The types of the symmetry of anisotropy were determined using criteria 
summarized in Table 1. Then, the compliance tensors were calculated as 
the inverse of the stiffness tensors in the symmetry planes. The elastic 
constants were determined and their pressure dependencies were 
evaluated. 

5.1. The stiffness tensor for the BUK and GRM samples 

Tensors cijkk and cilkl have three distinct eigenvalues (132,122,76 
GPa and 141, 127, 86 GPa) for the BUK sample under the atmospheric 
pressure. The three eigenvectors also satisfy Eq. (5) suggesting that the 
stiffness tensor cijkl is orthorhombic according to Table 1. The results 
obtained from Eqs (4) and (5) for the atmospheric pressure and 100 MPa 
are presented in Table 2. The results show small deviations from zero at 

Fig. 4. The maximum, mean, and minimum phase velocity/pressure plots together with the coefficient of anisotropy k = 100 (vmax-vmin)/vmean. From left to right: P, 
S1, S2 waves. Top: the BUK sample; bottom: the GRM sample. 

Table 2 
Evaluation of the eigenvectors and eigenvalues of cijkk and cilkl for the BUK and GRM samples under pressures of 0.1 and 100 MPA based on Eq. (4) and Eq. (5).  

Rock type Matrix Pressure (MPa) Eigenvalues (GPa) Residual of Eq. (5a) (GPa) Residual of Eq. (5b) (GPa) Mean of absolute residuals (GPa) 

BUK cijkk 0.1 132 122 76 − 2.10 0.20 0.61 − 1.47 − 0.59 2.93 1.32 
100 177 168 155 1.52 − 0.94 − 1.03 1.38 − 1.08 − 3.27 1.54 

cilkl 0.1 141 127 86 0.51 − 0.64 − 0.61 1.47 − 1.09 − 0.17 0.75 
100 174 162 140 − 0.82 − 0.52 0.16 0.12 0.22 0.53 0.39 

GRM cijkk 0.1 81 75 47 − 0.38 − 1.22 − 0.31 0.37 − 0.33 − 1.13 0.62 
100 186 180 179 − 0.74 − 1.66 0.51 − 1.39 0.85 0.64 0.96 

cilkl 0.1 70 69 41 0.21 0.95 0.45 0.39 − 0.08 0.38 0.41 
100 191 185 183 0.56 − 0.79 0.00 1.51 0.21 0.82 0.65  
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the right-hand side of Eq. (5) since the material is not perfectly sym-
metric. The absolute sum of residuals does not exceed, however, an 
average of 1.54 GPa for the BUK sample, which is quite small compared 
to the elements of the stiffness tensor. By an ideal symmetric material, 
we mean a material with a stiffness tensor corresponding to one of the 
forms of symmetric tensors defined for the isotropic, transversely 
isotropic, and orthorhombic materials with exactly zero right-hand sides 
of Eq. (5). An example of an ideal orthorhombic tensor is presented in 
Appendix A. 

One can use one of the two sets of the eigenvectors obtained from cijkk 
and cilkl to find the symmetry planes of the material. For example, the 
eigenvectors obtained from cilkl for the BUK sample under 0.1 and 100 
MPa pressures (Table 2) have smaller average errors than those obtained 
from cijkk. In this case, it would be better to use the set of the eigenvectors 
that produces smaller errors according to Eq. (5). However, a more 
realistic way is using an average of the two sets of eigenvectors obtained 
from cijkk and cilkl to find the symmetry planes of the material. 

Table 3 presents the elements of the stiffness tensors in the principal 
coordinate system for the BUK sample under various confining pressures 

obtained by the rotation of the initial tensors using Eq. (7). Constants C14 
to C56 are expected to be zero in an ideal isotropic, transversely 
isotropic, and orthorhombic material. Moreover, C11 = C22, C44 = C55, 
and C66 = (C11 − C12)/2 for a transversely isotropic material. Since the 
rocks do not display a perfectly symmetric anisotropy, constants C14 to 
C56 are small but not exactly zero. Since these values are insignificant, 
we neglect them in physical interpretations. 

For the GRM sample at atmospheric pressure, the cilkl has two equal 
eigenvalues 70 and 69 GPa (the third eigenvalue is 41 GPa) and three 
eigenvectors that satisfy Eq. (5) as presented in Table 2. Therefore, GRM 
can be considered as transversely isotropic at lower pressures (see 
Table 1). By applying higher confining pressures, the sample becomes 
closer to isotropy having three equal values satisfying Eq. (5). Note that 
the averages of the sum of absolute residuals of Eq. (5) (0.62,0.96,0.41,
0.65 GPa) are less for the GRM sample than those for the BUK sample 
(1.32,1.54,0.75,0.39 GPa). This suggests that the symmetry planes in the 
GRM sample coincide better with the ideal cases. Again, by applying 
higher pressures, the GRM becomes closer to an isotropic rock. 

The stiffness tensor of the GRM sample in its principal coordinate 

Table 3 
The elements of the stiffness tensor of the BUK sample in its principal coordinate system. Bolded are pressure levels closest to the in-situ conditions (~15 MPa).  

Elements (GPa) Pressure (MPa) 

0.1 2 5 10 20 50 80 100 

C11 89.80 91.46 92.78 94.97 99.38 106.17 108.45 109.35 
C22 78.88 80.51 81.40 83.89 89.13 97.02 99.18 99.36 
C33 45.05 49.61 54.65 62.60 72.92 82.26 84.24 85.07 
C44 19.68 20.34 21.08 22.39 24.02 26.14 26.63 27.12 
C55 21.79 22.66 23.03 24.18 26.07 27.69 28.43 28.44 
C66 28.55 29.00 29.41 30.78 32.52 34.49 35.02 35.45 
C12 27.02 27.74 27.91 27.30 28.57 32.04 32.99 33.25 
C13 14.85 17.35 19.05 22.93 27.53 33.54 33.91 34.13 
C23 16.66 18.97 20.57 24.35 29.92 34.97 36.04 36.00 
C14 0.41 0.16 − 0.11 0.57 0.24 0.35 0.10 − 0.09 
C15 − 0.51 − 0.65 − 0.66 0.32 0.30 0.18 − 0.41 0.42 
C16 − 1.06 − 0.64 − 0.69 ¡0.59 ¡0.33 − 0.49 0.44 − 0.43 
C24 0.05 0.05 0.09 0.33 0.46 0.31 0.36 0.47 
C25 3.78 3.09 2.87 ¡2.34 ¡3.07 − 3.33 3.71 − 3.76 
C26 − 0.02 − 0.16 − 0.40 ¡0.38 ¡0.36 − 0.24 0.31 − 0.38 
C34 − 0.91 − 0.68 − 0.70 ¡0.41 ¡0.20 − 0.12 − 0.06 − 0.01 
C35 − 0.55 − 0.36 − 0.19 0.11 0.51 0.36 − 0.39 0.33 
C36 3.08 2.26 2.80 2.53 2.02 2.26 − 2.03 2.36 
C45 − 0.93 − 0.66 − 0.63 ¡0.58 ¡0.64 − 0.80 0.52 − 0.75 
C46 − 1.66 − 1.06 − 1.16 1.48 1.46 2.25 − 2.10 2.25 
C56 1.32 1.11 1.34 ¡0.42 ¡0.76 − 0.74 − 0.70 − 0.84  

Table 4 
The elements of the stiffness tensor of the GRM sample in its principal coordinate system. Bolded are pressure levels closest to the in-situ conditions (~12 MPa).  

Elements (GPa) Pressure (MPa) 

0.1 5 10 15 20 50 80 100 

C11 48.16 54.38 66.76 74.09 79.97 104.40 112.58 114.68 
C22 44.60 51.84 64.94 71.30 76.48 101.01 108.76 112.45 
C33 23.07 34.51 48.43 57.00 63.29 96.23 105.92 110.49 
C44 10.63 11.90 14.43 17.41 19.05 27.36 32.17 35.48 
C55 7.67 11.59 16.86 19.93 22.97 32.02 36.08 36.97 
C66 13.85 16.83 18.96 22.11 24.97 31.68 37.35 38.12 
C12 19.34 20.17 25.81 26.57 27.12 35.85 34.90 35.20 
C13 13.23 16.93 20.41 22.36 23.44 34.53 37.02 35.89 
C23 10.81 17.68 23.70 25.37 25.54 39.77 38.09 32.87 
C14 − 1.18 0.27 ¡0.57 0.26 − 0.96 − 0.76 − 0.07 − 0.53 
C15 0.06 − 0.23 0.58 0.34 0.16 − 0.09 0.19 0.32 
C16 − 0.30 0.24 ¡0.05 0.41 − 0.73 − 0.12 − 1.12 0.76 
C24 0.53 − 0.30 ¡0.64 0.40 0.11 0.30 − 0.92 0.12 
C25 − 1.70 1.98 ¡0.03 ¡0.65 − 0.95 − 1.09 − 1.03 1.06 
C26 0.43 − 0.21 ¡0.47 0.43 − 0.06 − 0.50 0.48 0.37 
C34 − 0.29 0.35 0.73 ¡0.16 0.29 − 0.45 0.65 0.42 
C35 0.36 − 0.14 ¡0.28 0.12 0.28 0.52 0.38 − 0.31 
C36 − 0.98 − 1.87 ¡0.57 ¡0.03 0.59 0.05 0.97 − 3.03 
C45 0.73 1.80 1.62 ¡1.65 1.00 1.19 0.31 0.77 
C46 0.85 − 1.25 ¡0.56 ¡0.28 0.07 0.24 − 0.11 − 1.08 
C56 0.70 − 0.38 0.40 ¡0.75 0.16 1.07 0.60 − 0.56  
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system is summarized in Table 4 for all confining pressures. The elements 
C14 to C56 are very small compared to the other elements and can be 
considered to be zero. At lower pressures, C11 = C22, C44 = C55, and 
C66 = (C11 − C12)/2, showing that the material is transversely isotropic 
and the plane of isotropy is 12. At higher pressures, this plane changes into 
23 so C22 = C33 and C55 = C66. 

5.2. The elastic parameters of the BUK and GRM samples 

The compliance matrix S is obtained from the inverse of the stiffness 
matrix C, which has the following form for orthorhombic materials: 

S =

⎡
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. (15) 

The Young’s and shear moduli as well as the Poisson’s ratios within 
the three principal planes of the BUK and GRM samples are plotted in 
Fig. 5 and summarized in Table C1. For the BUK sample (Fig. 5a), the 
three Young’s moduli at atmospheric pressure are E1 = 78 GPa,E2 =

66 GPa, and E3 = 40 GPa. When increasing the pressure to 100 MPa, 
these values climb to E1 = 91 GPa,E2 = 80 GPa, and E3 = 67 GPa, 
showing an increase of 17%, 21%, and 67% for directions 1, 2, 3, 
respectively. The highest rate of increase in Young’s moduli is in the 
third direction that stems from a high density of oriented microcracks. 
Moreover, this increase mostly occurs at lower pressures up to 30 MPa; 
then the Young’s moduli become stable. However, the BUK sample still 
behaves as an orthorhombic material even at the pressure of 100 MPa 
but with smaller anisotropy ratios of the Young’s moduli. Remind that 
the Poisson’s ratios ν31 and ν32 are the ratios of strains ε1 and ε2 to ε3 

when the loading is applied in direction 3, whereas ν21 is the ratio of ε1 

to ε2 for the loading applied in direction 2. Both ν31 and ν32 of the BUK 
sample increase with pressure due to increasing stiffness in direction 3 
caused by closing of microcracks parallel to the foliation (perpendicular 
to the direction 3). The decreasing trend of ν21 is rather surprising and 
points to a complex behavior of the crack-induced anisotropy during the 
crack closure. The observed decrease might be related to closing of 
preferentially oriented cracks, which can induce directionally depen-
dent changes in grain boundary conditions in the foliation plane. The 
shear moduli increase with a similar rate under higher pressure for all 
three principal planes. This means that the shear moduli in the three 
principal planes are affected similarly by pressure. To summarize, the 
BUK sample behaves like an orthorhombic material even at higher 

Fig. 5. Elastic parameters (E1,E2,E3, ν21, ν31, ν23,G23,

G31,G12) in three principal planes for (a) the BUK 
sample and (b) the GRM sample. The values them-
selves can be found in Appendix C. The shaded region 
is dominated by the presence of cracks, the white 
region is controlled by the rock fabric. The border 
between both regimes represents a crack-closing 
pressure. The green dashed line corresponds to the 
expected lithostatic pressure at the URL. (For inter-
pretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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pressures although its behavior becomes closer to isotropic materials, 
especially above the pressure with limited influence of oriented cracks 
(30 MPa). 

The variation of Young’s moduli with pressure for the GRM sample in 
Fig. 5b shows that E1 and E2 are very close at atmospheric pressure, 
while E3 is about half of the two others. With increasing pressure, all 
three Young’s moduli converge. Besides, the Poisson’s ratios and the 
shear moduli are smaller in planes 23,13 than the ones in 12 at first, 
then become closer for the higher confining pressures. The GRM sample 
is transversely isotropic at atmospheric pressure, but the degree of 
anisotropy decreases in all three plots of Young’s moduli, Poisson’s ra-
tios, and shear moduli. Hence, one may consider the GRM sample as 
transversely isotropic at atmospheric pressure but isotropic at 100 MPa. 

What is striking about the comparison of the elastic parameters of the 
two rocks is that the Young’s and shear moduli at atmospheric pressure 
for GRM (E1 = 36 GPa, E2 = 35 GPa, and E3 = 18 GPa) are smaller than 
the ones for the BUK (E1 = 78 GPa, E2 = 66 GPa, and E3 = 40 GPa) 
suggesting that the BUK is denser than the GRM. At 100 MPa pressure, 
these values increase dramatically in the GRM (E1 = 97 Gpa, E2 = 97 
GPa, and E3 = 94 GPa) and become higher than the corresponding 
values for the BUK (E1 = 91 GPa, E2 = 80 GPa, and E3 = 67 GPa). By 
increasing the pressure, all these moduli increase in the GRM sample due 
to the crack closure which makes the material more intact. However, a 
great portion of anisotropy in the BUK sample originates from texture 
anisotropy and will not be reduced due to pressure. 

6. Discussion 

In this section, the reasons behind the different behavior of the GRM 
and BUK samples under various confining pressures are discussed in 
detail. Moreover, the orientation stability of the principal coordinate 
systems with pressure is evaluated. Finally, the obtained results are 
compared to those already published and the expected properties at the 
in situ URL depths are summarized. 

6.1. Change in anisotropy ratios of the elastic constants with pressure 

Fig. 6 shows normalized values of elastic constants for the BUK and 
GRM samples as a function of pressure. These values represent anisot-
ropy ratios of the elastic constants in the three principal axes. The ratios 
E2/E3 and E1/E3 describe the behavior in two symmetry planes 
perpendicular to the foliation symmetry plane, which itself is charac-
terized by the E1/E2. The closer all these values get to the unity, the more 
isotropic the material is. As mentioned above, the pressure dependencies 
can be divided into two characteristic regions: (1) low pressure, domi-
nated by the crack influence, (2) high pressure, dominated by properties 
of the rock matrix. Due to the low maximum pressure used in the 
experiment (100 MPa), some of the cracks remained open even at the 
highest pressures linear velocity/pressure trends were not reached. To 
distinguish between crack- and matrix-dominated pressure ranges, we 
used the change in anisotropic behavior that should be related only to 
the oriented cracks. We defined the “crack-closing pressure” for oriented 
cracks as a pressure, for which the E1/E3 ratio decreased by 90% from its 

Fig. 6. Normalized elastic parameters in three prin-
cipal planes for (a) the BUK sample and (b) the GRM 
sample. The shaded region is dominated by the 
presence of cracks, the white region is controlled by 
the rock fabric. The border between both regimes 
represents a crack-closing pressure. The green dashed 
line corresponds to the expected lithostatic pressure 
at the URL. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the Web version of this article.)   
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initial value. It was found to be 30 MPa for BUK and 50 MPa for the GRM 
sample, respectively. Above this level, the influence of oriented cracks 
was insignificant. 

As documented by the trends of E2/E3 and E1/E3 , both rocks display 
high anisotropy at low pressure related to the crack system parallel to 
the foliation. On the other hand, the E1/E2 ratios are independent of the 
pressure. This might be explained as follows: (1) no cracks are perpen-
dicular to the foliation; (2) two equal crack systems are perpendicular to 
the symmetry axes directions 1 and 2; and (3) cracks perpendicular to 
the foliation have a random azimuthal distribution. The type (1) inter-
pretation may correspond to the BUK sample, where the influence of the 
cracks perpendicular to the foliation is marginal (see Fig. 6a). The type 
(3) interpretation can explain the behavior of heavily cracked GRM 
sample. The E1/E2 ratio is ~1.2 for the BUK sample but ~1.03 for the 
GRM sample. This illustrates a difference between orthorhombic 
anisotropy (BUK) and transverse isotropy (GRM) with a symmetry plane 
in the foliation. Above the crack-closing pressure, the ratio trends sta-
bilize and reflect the anisotropy of the rock matrix. At 100 MPa, the BUK 
sample displays ratios within 1.1-1.3 range. On the other hand, the GRM 
sample becomes practically isotropic with ratios below 1.1. 

The interpretation of trends for the normalized Poisson’s ratio and 
normalized shear moduli with pressure is more difficult, because it re-
lates the behavior of two symmetry planes. Nevertheless, the trends are 
in general similar to those of the Young moduli. The ratios are getting 
closer to one with increasing pressure as the cracks are closing. The 
pressure changes are more distinct for the GRM sample, which has high 
microcrack content. After the crack closure, the BUK sample remains 
anisotropic and the GRM displays practically isotropic behavior. 

6.2. Orientation of the principal stiffness tensor 

Figs. 2 and 3 show anisotropic distributions of velocities together 
with axes of the principal coordinate system. In general, axes x1 and x2 
(corresponding to the C11 and C22 stiffness constants) lie within the high 
P-wave velocity plane of foliation. The x1-axis fits well to the highest 
velocity directions identifying the lineation. The x3-axis (corresponding 
to the C33 stiffness constant) lies within the minimum velocity area that 
is perpendicular to the foliation and to the dominant microcrack system 
as well. A similar relation can be observed for the S1 wave anisotropy 
but the maximum velocity regions are about 45◦ rotated when compared 
to the direction of the maximum stiffness. On the other hand, the regions 
of the maximum S2 velocity are completely out of the foliation plane. 
The complexities in the S-wave velocity distributions are often predicted 
for theoretical anisotropy models as well as measured for real rocks.56–58 

Fig. 7 displays the pressure-induced changes in the orientation of the 
principal coordinate system. For the BUK sample, the orientation of 

anisotropy axes is stable and independent of the applied pressure. 
Consequently, the microcrack anisotropy and the fabric-induced 
anisotropy have likely parallel orientations, otherwise, a rotation of 
symmetry axes should be observed.59 The GRM sample displays a scat-
tering in the pressure-dependent orientation of anisotropy axes, espe-
cially, at low and high pressures (Fig. 7b). At the low pressure, it may be 
a combined effect of uneven microcrack closing and isotropy in the 
foliation plane. At the high pressure, it may be an effect of heterogeneity 
of the GRM sample. 

6.3. Comparison of the elastic constants with other reported results 

The elastic constants of the GRM sample measured under the at-
mospheric pressure are compared with those from other studies 
(Table 5). In this paper, no presumption about anisotropy symmetry is 
considered and the elastic constants of the GRM are obtained in the most 
general form. By contrast, previous works assumed the GRM sample as a 
transversely isotropic material and considered some other presumptions 
to obtain the elastic constants. 

Since a transversely isotropic rock has five independent elastic con-
stants (E1 = E2,E3,G23 = G31, ν21, ν31 = ν32) while only four indepen-
dent strain measurements of a single uniaxial compression test are 
available, one elastic constant remains undetermined. Hence, Nejati60 

assumed the Saint-Venant relation as the fifth constraint and obtained 
the static constants of GRM samples from the uniaxial compression test 
(average of S1, S2, and S3 in Table 3 from Nejati60). Nejati et al.47 ob-
tained the four elements of the dynamic stiffness matrix (C11, C13, C33, 
and C44) by fitting the velocity obtained from P-wave measurements 
against the polar angle. As the fifth constraint, Nejati et al.47 assumed 
three alternative values for the in-plane Poisson’s ratio (ν21). They 
considered ν21 = 0.1, 0.2,0.3 and presented the resulting tangent elastic 
constants for this whole range under a zero confinement. Here, we chose 
the results reported for ν21 = 0.3, which we consider as most realistic. In 
Table 5, we have provided an average of three tested samples (the 
average of S1, S2, and S3 when νd = 0.3 is assumed in Table 6 from 
Nejati et al.47). The dynamic constants are often expected to be higher 
than the static ones,61 although exceptions are reported in the 
literature.48 

In addition, elastic constants determined for the BUK sample in this 
study are compared with those obtained from a cyclic uniaxial loading of 
cylindrical samples. The migmatized gneiss was considered to be 
transversely isotropic, and several cylindrical samples with the sym-
metry plane (foliation) normal, parallel, and inclined (45◦) to the 
loading axis were tested. Here we present the elastic constants estimated 
from the first cycle with the uniaxial loading range of 7–21 MPa 
(Table 6). As expected, the obtained static moduli are smaller than their 

Fig. 7. Pressure dependent orientation of stiffness tensor plotted in the equal-area stereographic projection on the lower hemisphere. The dashed line represents the 
foliation plane. (a) the BUK sample; (b) the GRM sample. 
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dynamic equivalents from the present study. However, the values 
become closer, if we consider the unloading part of the test, which is less 
influenced by pre-existing cracks. Note that these values become even 
closer if we consider the following cycles for which the upper loading 
limit gradually increases up to 72 MPa. 

6.4. The expected properties at the in situ URL depths 

Both tested samples come from the URLs related to research of a 
long-term deposition of a nuclear waste. The expected depth of such a 
repository is about 300–500 m. In this study, we consider the in situ 
depths of URLs and the corresponding lithostatic pressure caused by 
overburden rocks. These are 550 m and 15 MPa for the Bukov URL and 
400 m and 12 MPa for the Grimsel URL, as is highlighted in Figs. 5 and 6 
and Tables 3 and 4 At 15 MPa, the BUK sample displays orthorhombic 
symmetry described by the engineering constants: E1 = 84 GPa, E2 = 71 
GPa, and E3 = 56 GPa; G12 = 32 GPa, G13 = 25 GPa, and G23 = 23 GPa; 
ν21 = 0.19, ν31 = 0.19, and ν32 = 0.27. These values were obtained 
from a spline approximation between the nearest measured pressure 
levels (see Table C1 in Appendix C). The in-situ pressure is within the 
crack dominated range (below 30 MPa) and based on the normalized 
Young moduli (Fig. 6a), we can expect some of the cracks with prefer-
ential orientation being still open. 

At the 12 MPa, the GRM sample displays transverse isotropy that is 
described by the engineering constants: E1 = 56 GPa, E2 = 52 GPa, and 
E3 = 41 GPa; G12 = 20 GPa, G13 = 19 GPa, and G23 = 15 GPa; ν21 =

0.27, ν31 = 0.20, and ν32 = 0.28. They were estimated in the same way 
as for the BUK sample, moreover, the appropriate pairs (E1, E2; v13, v23; 
G13, G12) can be averaged to get the TI constants. The in-situ pressure is 
well within the crack dominated range (50 MPa) and based on the 
normalized Young moduli (Fig. 6a) and exponential velocity/pressure 
trend in Fig. 4, we can expect a significant influence of cracks. The 
orientation of the principal coordinate system coincides with the 
orientation of the texture for both tested samples. The x3-axis (corre-
sponding to the C33 stiffness constant) is perpendicular to the foliation 
and the x1-axis (corresponding to the C11 stiffness constant) is parallel to 
the lineation. 

7. Conclusions 

We arrived at the following conclusions:  

• Analyzing the stiffness tensor of an anisotropic rock, which is defined 
by 21 elastic constants measured in an arbitrarily oriented 

coordinate system, we can identify the symmetry type of anisotropy 
and transform the stiffness tensor into its principal coordinate sys-
tem. To achieve this, we have developed a method (based on a pre-
viously proposed method for ideal stiffness tensors) in a way to be 
used for experimental noisy data.  

• The Bukov migmatized gneiss displays orthorhombic symmetry at all 
pressures, whereas the Grimsel granite is transversely isotropic 
under the atmospheric pressure and becomes almost isotropic at high 
pressures.  

• The orientation of anisotropy axes agrees well with the orientation of 
structural elements for both rocks. The minimum P-wave velocity is 
perpendicular to the foliation, while the maximum P-wave velocity is 
parallel to the lineation in the foliation plane. The preferential crack 
systems are parallel to the foliation for both the BUK and GRM 
samples. Additionally, the GRM sample probably contains cracks 
perpendicular to the foliation with a random azimuthal orientation. 

• At lower pressures, the anisotropy of both samples is highly influ-
enced by the presence of oriented cracks. Their influence is marginal 
above the 30 and 50 MPa for the BUK and GRM samples, respec-
tively. The degree of anisotropy decreases with increasing pressure, 
while its orientation remains unchanged. The decrease of anisotropy 
degree is likely caused by closing the crack systems parallel to the 
foliation. Once the cracks are closed, the BUK sample remains 
orthorhombic, while the GRM sample becomes isotropic.  

• Both rocks are anisotropic under the equivalent of the overburden 
pressure acting at the in-situ URL conditions. The Bukov migmatized 
gneiss is orthorhombic, while the Grimsel Aare granite is trans-
versely isotropic. A significant amount of cracks remains open at 
these pressures and contribute to the overall anisotropy of rocks.  

• The presented results agree well with those reported previously in 
the literature being obtained under a priori presumption about the 
type and orientation of the anisotropy symmetry. The presented 
approach is more general and thus preferable, in particular, if the 
anisotropy symmetry of a rock is not obvious. 
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Open-public MATLAB code SYMMETRY.m (https://www.ig.cas.cz/ 
symmetry-code/) for identification of the type of anisotropy symmetry 
and the orientation of the principal coordinate system from a general 
stiffness tensor is provided in the Supplement.  

Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijrmms.2022.105168. 

Appendix A. Example of transforming an orthorhombic anisotropy into the principal coordinate system 

Consider stiffness matrix C* describing an orthorhombic symmetry with nine independent parameters for a single crystal of calcium sulfate in its 
principal coordinate system reported by Simmons and Wang62: 

C* =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

185 32 16 0 0 0
112 15 0 0 0

94 0 0 0
26 0 0

9 0
32

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A1) 

The matrix contains 12 zero elements in the upper half of the matrix. Now, let us rotate the coordinate system by a clockwise rotation of 45◦ about 
the third axis. Based on Eq. (13), we transform the matrix C* using the coordinate transformation matrix Ω to obtain matrix C in a new coordinate 
system that does not coincide with the symmetry planes: 

Ω=

⎡

⎣
cos(π/4) sin(π/4) 0
− sin(π/4) cos(π/4) 0

0 0 1

⎤

⎦, (A2a)  

K=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5 0.5 0 0 0 1
0.5 0.5 0 0 0 − 1
0 0 1 0 0 0
0 0 0 0.7 − 0.7 0
0 0 0 0.7 0.7 0

− 0.5 0.5 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A2b)  

C=KC*(K)
T
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

123 58 16 0 0 − 18
123 16 0 0 − 18

94 0 0 − 1
18 8 0

18 0
58

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A2c) 

Since the matrix is not in the principal coordinate system, some zero-elements in Eq. (A1) disappeared. Hence, matrix C can simulate a general 
stiffness tensor in an arbitrary coordinate system obtained by the inversion of ultrasonic measurements. Now, we use the procedure proposed in 
section 2 to determine the symmetry type of matrix C and rotate it into its principal coordinate system. Matrices U and V (the expanded forms of the 
tensors cijkk and cisks) are calculated using Eq. (4) and their eigenvectors (Ω) and eigenvalues (E) are determined: 

U =

⎡

⎢
⎢
⎣

196 − 37 0

196 0

125

⎤

⎥
⎥
⎦, E1 =

⎡

⎢
⎢
⎣

234

159

125

⎤

⎥
⎥
⎦, Ω1 =

⎡

⎢
⎢
⎣

− 0.7 0.7 0

0.7 0

1

⎤

⎥
⎥
⎦. (A3)  

V =

⎡

⎢
⎢
⎣

199 − 28 0

199 0

130

⎤

⎥
⎥
⎦, E2 =

⎡

⎢
⎢
⎣

227

171

130

⎤

⎥
⎥
⎦, Ω2 =

⎡

⎢
⎢
⎣

0.7 − 0.7 0

0.7 0

1

⎤

⎥
⎥
⎦. (A4) 

All three eigenvalues given in vectors E1,E2 are distinct and their eigenvectors in Ω1, Ω2 satisfy Eq. (4). Thus, matrix C is orthorhombic according 
to Table 1. Now, Eq. (13) is used to write the matrix C back in the principal coordinate system: 

Ω1 =

⎡

⎣
− 0.7 0.7 0

0.7 0
1

⎤

⎦,Ω2 =

⎡

⎣
0.7 − 0.7 0

0.7 0
1

⎤

⎦ (A5a)  
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K1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5 0.5 0 0 0 − 1

0.5 0.5 0 0 0 1

0 0 1 0 0 0

0 0 0 0.7 0.7 0

0 0 0 − 0.7 0.7 0

0.5 − 0.5 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, K2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5 0.5 0 0 0 − 1

0.5 0.5 0 0 0 1

0 0 1 0 0 0

0 0 0 0.7 0.7 0

0 0 0 0.7 − 0.7 0

− 0.5 0.5 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A5b)  

C* = KiC(Ki)
T where for both, i = 1, 2, we get the following identical result:

C* =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

185 32 16 0 0 0

112 15 0 0 0

94 0 0 0

26 0 0

9 0

32

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(A5c)  

Appendix B. Relation between Euler angles and matrix Ω 

The three Euler angles are widely used for representing the transformation of an orthogonal coordinate system in a three-dimensional space, 
although there are various definitions how to employ them. Here, we chose the definition presented by Rose,63 in which the rotation is defined as the 
product of three Euler rotations to rotate the coordinate system from 123 to 1′′′2′′′3′′′ as illustrated in Fig. B1. In the three rotation steps, α is the rotation 
angle around axis 3, β is the rotation angle around axis 2′′, and ϒ is the rotation angle around the axis 3′′′ .

Fig. B.1. Three-step rotation of a coordinate system based on the Euler angles.  

The rotations matrix is defined as: 

Ω=

⎡

⎣
cos(α)cos(β)cos(γ) − sin(α)sin(γ) sin(α)cos(β)cos(γ) + cos(α)sin(γ) − sin(β)cos(γ)

− cos(α)cos(β)sin(γ) − sin(α)cos(γ) − sin(α)cos(β)sin(γ) + cos(α)cos(γ) sin(β)sin(γ)
cos(α)sin(β) sin(α)sin(β) cos(β)

⎤

⎦. (B1) 

In our study, matrix Ω was directly calculated, hence we did not have to calculate the Euler angles. However, one can readily find the Euler angles 
from Eq. (B1) whenever it is needed. 

Appendix C. Elastic constants 

Elastic constants of the BUK and GRM samples are summarized in Table C1. 

A. Aminzadeh et al.                                                                                                                                                                                                                            



International Journal of Rock Mechanics and Mining Sciences 158 (2022) 105168

15

Table C.1 
Elastic constants of the GRM and BUK samples based on different testing methods. Bolded are pressure levels closest to the in-situ conditions  

Sample Confining pressure (MPa) E1 (GPa) E2 (GPa) E3 (GPa) G23 (GPa) G31 (GPa) G12 (GPa) ν21 ν31 ν32 

BUK 0.1 78 66 40 20 22 29 0.25 0.11 0.18 
2 79 68 43 20 23 29 0.25 0.13 0.19 
5 80 68 47 21 23 29 0.24 0.14 0.21 
10 82 70 53 22 24 31 0.21 0.17 0.23 
20 85 73 59 24 26 33 0.19 0.20 0.27 
50 89 78 64 26 28 34 0.19 0.23 0.29 
80 91 80 66 27 28 35 0.19 0.22 0.29 
100 91 80 67 27 28 35 0.20 0.22 0.29 

GRM 0.1 36 35 18 11 8 14 0.33 0.21 0.15 
5 43 39 26 12 12 17 0.25 0.22 0.26 
10 53 49 38 14 17 19 0.27 0.20 0.29 
15 61 56 45 17 20 22 0.25 0.20 0.28 
20 66 62 52 19 23 25 0.25 0.20 0.26 
50 86 79 76 27 32 32 0.23 0.22 0.32 
80 95 90 86 32 36 37 0.22 0.24 0.27 
100 97 97 94 35 37 38 0.24 0.25 0.22  
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- závěrečná zpráva TT - data acquisition from the deep horizons of the Rožná mine - 
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